1
|
Lu HH, Ege D, Salehi S, Boccaccini AR. Ionic medicine: exploiting metallic ions to stimulate skeletal muscle tissue regeneration. Acta Biomater 2024:S1742-7061(24)00625-1. [PMID: 39454933 DOI: 10.1016/j.actbio.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of healthy and functional skeletal muscle at sites of injuries and defects remains a challenge. Mimicking the natural environment surrounding skeletal muscle cells and the application of electrical and mechanical stimuli are approaches being investigated to promote muscle tissue regeneration. Likewise, chemical stimulation with therapeutic (biologically active) ions is an emerging attractive alternative in the tissue engineering and regenerative medicine fields, specifically to trigger myoblast proliferation, myogenic differentiation, myofiber formation, and ultimately to promote new muscle tissue growth. The present review covers the specialized literature focusing on the biochemical stimulation of muscle tissue repair by applying inorganic ions (bioinorganics). Extracting information from the literature, different ions and their potential influence as chemical cues on skeletal muscle regeneration are discussed. It is revealed that different ions and their varied doses have an individual effect at different stages of muscle cellular development. The dose-dependent effects of ions, as well as applications of ions alone and in combination with biomaterials, are also summarized. Some ions, such as boron, silicon, magnesium, and zinc, are reported to exhibit a beneficial effect on skeletal muscle cells in carefully controlled doses, while the effects of other ions such as iron and copper appear to be contradictory. In addition, calcium is an essential regulatory ion for the differentiation of myoblasts. On the other hand, some ions such as phosphate have been shown to inhibit muscle cell behaviour. It is expected that this review will provide a complete overview of the application of ionic stimulation for skeletal muscle tissue engineering applications, and will highlight the importance of inorganic ions as an attractive alternative to the application of small molecules and growth factors to stimulate muscle tissue repair. STATEMENT OF SIGNIFICANCE: Ionic medicine (IM) is emerging as a promising and attractive approach in the field of tissue engineering, including muscle tissue regeneration. IM is based on the delivery of biologically active ions to injury sites, acting as stimulants for the repair process. This method offers a potentially simpler and more affordable alternative to conventional biomolecule-based regulators such as growth factors. Different biologically active ions, depending on their specific doping concentrations, can have varying effects on cellular development, which could be either beneficial or inhibitory. This literature review covers the field of IM in muscle regeneration with focus on the impact of various ions on skeletal muscle regeneration. The paper is thus a critical summary for guiding future research in ionic-related regenerative medicine, highlighting the potential and challenges of this approach for muscle regeneration.
Collapse
Affiliation(s)
- Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli 34684, Istanbul, Turkey
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
3
|
Veselá B, Bzdúšková J, Ramešová A, Švandová E, Grässel S, Matalová E. Inhibition of caspase-11 under inflammatory conditions suppresses chondrogenic differentiation. Tissue Cell 2024; 89:102425. [PMID: 38875922 DOI: 10.1016/j.tice.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Caspase-11 is the murine homologue of human caspases-4 and -5 and is involved in mediating the inflammatory response. However, its functions are often confused and misinterpreted with the more important and better described caspase-1. Therefore, this study focused exclusively on the specific roles of caspase-11, both in cartilage formation and in the inflammatory environment. The presence of caspase-11 during mouse limb development and in chondrogenic cell cultures was investigated by immunofluorescence detection. Subsequently, the function of caspase-11 was downregulated and the affected molecules investigated. The expression analysis applied for osteo/chondrogenesis associated factors and inflammatory cytokines. Simultaneously, morphological appearance of the micromass cultures was evaluated. The results revealed that caspase-11 is physiologically present during cartilage development, but its inhibition under physiological conditions has no significant effect on chondrogenic differentiation. However, in an inflammatory environment, inhibition and downregulation of caspase-11 leads to reduced differentiation of cartilage nodules. Additionally, reduced expression of several genes including Col2a1 and Sp7 and conversely increased expression of Mmp9 were observed. In the cytokine expression panel, a significant decrease was found in molecules that, along with the inflammatory function, may also be involved in cartilage differentiation. The findings bring new information about caspase-11 in chondrogenesis and show that its downregulation under inflammatory conditions reduces cartilage formation.
Collapse
Affiliation(s)
- Barbora Veselá
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jana Bzdúšková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramešová
- University of Veterinary Medicine, Vienna Department of Biological Sciences and Pathobiology Centre of Biological Sciences
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Biopark 1, Germany
| | - Eva Matalová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG. The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 2023; 14:1207746. [PMID: 38022578 PMCID: PMC10644737 DOI: 10.3389/fimmu.2023.1207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tewfik Hamidi
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Brittany Counts
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Denis C. Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C. Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Leonidas G. Koniaris
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| |
Collapse
|
5
|
Parafati M, Giza S, Shenoy TS, Mojica-Santiago JA, Hopf M, Malany LK, Platt D, Moore I, Jacobs ZA, Kuehl P, Rexroat J, Barnett G, Schmidt CE, McLamb WT, Clements T, Coen PM, Malany S. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. NPJ Microgravity 2023; 9:77. [PMID: 37714852 PMCID: PMC10504373 DOI: 10.1038/s41526-023-00322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLabTM payloads on the ISS.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shelby Giza
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Tushar S Shenoy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jorge A Mojica-Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | - Meghan Hopf
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | | | - Don Platt
- Micro Aerospace Solutions, INC, Melbourne, FL, 32935, USA
| | | | | | - Paul Kuehl
- Space Tango, LLC, Lexington, KY, 40505, USA
| | | | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Morena da Silva F, Lim S, Cabrera AR, Schrems ER, Jones RG, Rosa-Caldwell ME, Washington TA, Murach KA, Greene NP. The time-course of cancer cachexia onset reveals biphasic transcriptional disruptions in female skeletal muscle distinct from males. BMC Genomics 2023; 24:374. [PMID: 37403010 DOI: 10.1186/s12864-023-09462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/17/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Ronald G Jones
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
7
|
Parafati M, Giza S, Shenoy T, Mojica-Santiago J, Hopf M, Malany L, Platt D, Kuehl P, Moore I, Jacobs Z, Barnett G, Schmidt C, McLamb W, Coen P, Clements T, Malany S. Validation of Human Skeletal Muscle Tissue Chip Autonomous Platform to Model Age-Related Muscle Wasting in Microgravity. RESEARCH SQUARE 2023:rs.3.rs-2631490. [PMID: 37034730 PMCID: PMC10081368 DOI: 10.21203/rs.3.rs-2631490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Microgravity-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting experienced by older adults, known as sarcopenia. These shared attributes provide a rationale for investigating microgravity-induced molecular changes in human bioengineered muscle cells that may also mimic the progressive underlying pathophysiology of sarcopenia. Here, we report the results of an experiment that incorporated three-dimensional myobundles derived from muscle biopsies from young and older adults, that were integrated into an autonomous CubeLabâ"¢, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 in December 2020 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analysis comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation for those in space. The analysis also revealed differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were uniquely modulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides a novel approach to studying the cell autonomous effects of microgravity on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. Thus, we also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLab TM payloads on the ISS.
Collapse
|
8
|
Garay RP. Recent clinical trials with stem cells to slow or reverse normal aging processes. FRONTIERS IN AGING 2023; 4:1148926. [PMID: 37090485 PMCID: PMC10116573 DOI: 10.3389/fragi.2023.1148926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023]
Abstract
Aging is associated with a decline in the regenerative potential of stem cells. In recent years, several clinical trials have been launched in order to evaluate the efficacy of mesenchymal stem cell interventions to slow or reverse normal aging processes (aging conditions). Information concerning those clinical trials was extracted from national and international databases (United States, EU, China, Japan, and World Health Organization). Mesenchymal stem cell preparations were in development for two main aging conditions: physical frailty and facial skin aging. With regard to physical frailty, positive results have been obtained in phase II studies with intravenous Lomecel-B (an allogeneic bone marrow stem cell preparation), and a phase I/II study with an allogeneic preparation of umbilical cord-derived stem cells was recently completed. With regard to facial skin aging, positive results have been obtained with an autologous preparation of adipose-derived stem cells. A further sixteen clinical trials for physical frailty and facial skin aging are currently underway. Reducing physical frailty with intravenous mesenchymal stem cell administration can increase healthy life expectancy and decrease costs to the public health system. However, intravenous administration runs the risk of entrapment of the stem cells in the lungs (and could raise safety concerns). In addition to aesthetic purposes, clinical research on facial skin aging allows direct evaluation of tissue regeneration using sophisticated and precise methods. Therefore, research on both conditions is complementary, which facilitates a global vision.
Collapse
Affiliation(s)
- Ricardo P. Garay
- Pharmacology and Therapeutics, Craven, 91360 Villemoisson-sur-Orge, France
- CNRS, National Centre of Scientific Research, Paris, France
- *Correspondence: Ricardo P. Garay,
| |
Collapse
|
9
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
10
|
Kracht KD, Eichorn NL, Berlau DJ. Perspectives on the advances in the pharmacotherapeutic management of Duchenne muscular dystrophy. Expert Opin Pharmacother 2022; 23:1701-1710. [PMID: 36168943 DOI: 10.1080/14656566.2022.2130246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Duchenne muscular dystrophy (DMD) is a progressive genetic disease characterized by muscular weakness with a global prevalence of 7.1 cases per 100,000 males. DMD is caused by mutations of the dystrophin gene on the X chromosome which is responsible for dystrophin protein production. Dystrophin is a cytoskeletal protein that contributes to structural support in muscle cells. DMD mutations result in dystrophin protein deficiency which leads to muscle damage and the associated clinical presentation. AREAS COVERED : Corticosteroids such as prednisone and deflazacort are routinely given to patients to treat inflammation, but their use is limited by the occurrence of side effects and a lack of standardized prescribing. Exon-skipping medications are emerging as treatment options for a small portion of DMD patients even though efficacy is uncertain. Many new therapeutics are under development that target inflammation, fibrosis, and dystrophin replacement. EXPERT OPINION : Because of side effects associated with corticosteroid use, there is need for better alternatives to the standard of care. Excessive cost is a barrier to patients receiving medications that have yet to have established efficacy. Additional therapies have the potential to help patients with DMD, although most are several years away from approval for patient use.
Collapse
|
11
|
Park SD, Saunders AS, Reidy MA, Bender DE, Clifton S, Morris KT. A review of granulocyte colony-stimulating factor receptor signaling and regulation with implications for cancer. Front Oncol 2022; 12:932608. [PMID: 36033452 PMCID: PMC9402976 DOI: 10.3389/fonc.2022.932608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 12/29/2022] Open
Abstract
Granulocyte colony-stimulating factor receptor (GCSFR) is a critical regulator of granulopoiesis. Studies have shown significant upregulation of GCSFR in a variety of cancers and cell types and have recognized GCSFR as a cytokine receptor capable of influencing both myeloid and non-myeloid immune cells, supporting pro-tumoral actions. This systematic review aims to summarize the available literature examining the mechanisms that control GCSFR signaling, regulation, and surface expression with emphasis on how these mechanisms may be dysregulated in cancer. Experiments with different cancer cell lines from breast cancer, bladder cancer, glioma, and neuroblastoma are used to review the biological function and underlying mechanisms of increased GCSFR expression with emphasis on actions related to tumor proliferation, migration, and metastasis, primarily acting through the JAK/STAT pathway. Evidence is also presented that demonstrates a differential physiological response to aberrant GCSFR signal transduction in different organs. The lifecycle of the receptor is also reviewed to support future work defining how this signaling axis becomes dysregulated in malignancies.
Collapse
Affiliation(s)
- Sungjin David Park
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Apryl S. Saunders
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Megan A. Reidy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Dawn E. Bender
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Shari Clifton
- Department of Information Management, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Katherine T. Morris
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- *Correspondence: Katherine T. Morris,
| |
Collapse
|
12
|
Wen J, Hou B, Lin W, Guo F, Cheng M, Zheng J, He P, Ji W. 3D-printed hydrogel scaffold-loaded granulocyte colony-stimulating factor sustained-release microspheres and their effect on endometrial regeneration. Biomater Sci 2022; 10:3346-3358. [DOI: 10.1039/d2bm00109h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After injury, the endometrium cannot self-repair or regenerate because damages of the basal layer of the uterine, which often lead to intrauterine adhesions (IUAs), which can cause serious problems such...
Collapse
|
13
|
Weiss JB, Phillips CJ, Malin EW, Gorantla VS, Harding JW, Salgar SK. Stem cell, Granulocyte-Colony Stimulating Factor and/or Dihexa to promote limb function recovery in a rat sciatic nerve damage-repair model: Experimental animal studies. Ann Med Surg (Lond) 2021; 71:102917. [PMID: 34703584 PMCID: PMC8524106 DOI: 10.1016/j.amsu.2021.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Background Optimizing nerve regeneration and re-innervation of target muscle/s is the key for improved functional recovery following peripheral nerve damage. We investigated whether administration of mesenchymal stem cell (MSC), Granulocyte-Colony Stimulating Factor (G-CSF) and/or Dihexa can improve recovery of limb function following peripheral nerve damage in rat sciatic nerve transection-repair model. Materials and methods There were 10 experimental groups (n = 6–8 rats/group). Bone marrow derived syngeneic MSCs (2 × 106; passage≤6), G-CSF (200–400 μg/kg b.wt.), Dihexa (2–4 mg/kg b.wt.) and/or Vehicle were administered to male Lewis rats locally via hydrogel at the site of nerve repair, systemically (i.v./i.p), and/or to gastrocnemius muscle. The limb sensory and motor functions were assessed at 1–2 week intervals post nerve repair until the study endpoint (16 weeks). Results The sensory function in all nerve boundaries (peroneal, tibial, sural) returned to nearly normal by 8 weeks (Grade 2.7 on a scale of Grade 0–3 [0 = No function; 3 = Normal function]) in all groups combined. The peroneal nerve function recovered quickly with return of function at one week (∼2.0) while sural nerve function recovered rather slowly at four weeks (∼1.0). Motor function at 8–16 weeks post-nerve repair as determined by walking foot print grades significantly (P < 0.05) improved with MSC + G-CSF or MSC + Dihexa administrations into gastrocnemius muscle and mitigated foot flexion contractures. Conclusions These findings demonstrate MSC, G-CSF and Dihexa are promising candidates for adjunct therapies to promote limb functional recovery after surgical nerve repair, and have implications in peripheral nerve injury and limb transplantation. IACUC No.215064. G-CSF in combination with MSCs improved limb function recovery in sciatic nerve transection- repair model. Dihexa in combination with MSC improved limb function recovery in sciatic nerve transection- repair model. Foot flexion contractures were reduced with G-CSF & MSC or Dihexa & MSC administration into target muscle gastrocnemius. MSC, G-CSF or Dihexa combination therapy is attractive, feasible & promising in peripheral nerve injury repair and have implications in limb transplantation. The findings warrant further investigation to understand the cellular/molecular mechanisms.
Collapse
Affiliation(s)
- Jessica B Weiss
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Cody J Phillips
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Edward W Malin
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph W Harding
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| |
Collapse
|
14
|
Ueda N, Musashi M, Shimoda T, Kawaguchi Y, Ohkubo I, Nakagawa Y. Involvement of G-CSF, IL-6, and cortisol in transient neutrophilia after marathon races. Eur J Haematol 2021; 107:583-591. [PMID: 34342052 DOI: 10.1111/ejh.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to clarify the mechanisms of the transient increase in neutrophils after running standard marathon races by measurement of cytokines involved in the production and survival of neutrophils, and cortisol. METHODS Fourteen male runners who participated in the Hokkaido Marathon, which is the sole marathon race held in summer in Japan, and finished the standard marathon were analyzed sequentially from the start until a maximum of 8 days after the finish. RESULTS Neutrophilia was observed in all runners just after they reached the goal (mean neutrophils: 13 226/μL). IL-6, G-CSF, and cortisol, but not GM-CSF, increased at the same time. Time-course studies with complete blood counts, biochemical markers, cytokines, and cortisol showed transient increases in neutrophils, monocytes, myoglobin, high-sensitivity C-reactive protein (hsCRP), G-CSF, IL-6, and cortisol. The increase in hsCRP was delayed 6 hours from the first increase in neutrophils. Correlations were observed between the neutrophil count and G-CSF, IL-6, and cortisol (G-CSF; r = .667, IL-6; r = .667, cortisol; r = .623). CONCLUSION These results suggest that G-CSF is directly involved, and IL-6 is involved via cortisol in the transient neutrophilia that occurs after marathon races.
Collapse
Affiliation(s)
- Naho Ueda
- Master Course, Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Manabu Musashi
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Taeko Shimoda
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Yuichi Kawaguchi
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Iwao Ohkubo
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Yukie Nakagawa
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| |
Collapse
|
15
|
Bohaud C, Johansen MD, Jorgensen C, Kremer L, Ipseiz N, Djouad F. The Role of Macrophages During Mammalian Tissue Remodeling and Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707856. [PMID: 34335621 PMCID: PMC8317995 DOI: 10.3389/fimmu.2021.707856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Several infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation. Tissue lesions in mammals, commonly studied under non-infectious conditions, trigger cell death at the site of the injury, as well as the production of danger signals favouring the massive recruitment of immune cells, particularly macrophages. Macrophages are also of paramount importance in infected injuries, characterized by the presence of pathogenic microorganisms, where they must respond to both infection and tissue damage. In this review, we compare the processes implicated in the tissue repair of non-infected versus infected injuries of two organs, the skeletal muscles and the lungs, focusing on the primary role of macrophages. We discuss also the negative impact of infection on the macrophage responses and the possible routes of investigation for new regenerative therapies to improve the recovery state as seen with COVID-19 patients.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
16
|
Chen M, Zhuang YW, Wu CE, Peng HY, Qian J, Zhou JY. β-asarone suppresses HCT116 colon cancer cell proliferation and liver metastasis in part by activating the innate immune system. Oncol Lett 2021; 21:435. [PMID: 33868473 PMCID: PMC8045167 DOI: 10.3892/ol.2021.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
Studies have revealed that β-asarone exerts a powerful inhibitory effect on the proliferation of human cancer cells. The authors' previous study demonstrated that β-asarone could induce LoVo colon cancer cell apoptosis in vitro and in vivo, indicating its anticancer properties. The present study aimed to determine the antineoplastic effect of β-asarone in HCT116 colon cancer cells. An in vitro proliferation assay using a real time cell analyzer demonstrated that β-asarone effectively decreased HCT116 cell proliferation in a dose-dependent manner. Bioinformatics analysis revealed that differentially expressed genes following β-asarone inhibition were involved in the ‘cell cycle’, ‘cell division’, ‘cell proliferation’ and ‘apoptosis’. Subsequently, a xenograft assay evidenced the inhibitory effect of β-asarone on the growth of HCT116 tumors in vivo. Further detection of immune-associated cytokines and cells suggested that β-asarone might be involved in the antitumor immune response by stimulating granulocyte-colony stimulating factor and increasing the number of macrophage cells in the spleen. Additionally, a murine model of splenic-transplantation verified the strong suppressive role of β-asarone in colon cancer liver metastasis in vivo. Taken together, the results of the current study revealed that β-asarone decreased HCT116 colon cancer cell proliferation and liver metastasis potentially by activating the innate immune system, supporting the multi-system regulation theory and providing a basis for further mechanistic studies on colon cancer.
Collapse
Affiliation(s)
- Min Chen
- General Internal Medicine Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Wen Zhuang
- Traditional Chinese Medicine Department, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Cun-En Wu
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Hai-Yan Peng
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Qian
- Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Neuroprotection through G-CSF: recent advances and future viewpoints. Pharmacol Rep 2021; 73:372-385. [PMID: 33389706 DOI: 10.1007/s43440-020-00201-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of hematopoietic growth factors, is 19.6 kDa glycoprotein which is responsible for the proliferation, maturation, differentiation, and survival of neutrophilic granulocyte lineage. Apart from its proven clinical application to treat chemotherapy-associated neutropenia, recent pre-clinical studies have highlighted the neuroprotective roles of G-CSF i.e., mobilization of haemopoietic stem cells, anti-apoptotic, neuronal differentiation, angiogenesis and anti-inflammatory in animal models of neurological disorders. G-CSF is expressed by numerous cell types including neuronal, immune and endothelial cells. G-CSF is released in autocrine manner and binds to its receptor G-CSF-R which further activates numerous signaling transduction pathways including PI3K/AKT, JAK/STAT and MAP kinase, and thereby promote neuronal survival, proliferation, differentiation, mobilization of hematopoietic stem and progenitor cells. The expression of G-CSF receptors (G-CSF-R) in the different brain regions and their upregulation in response to neuronal insult indicates the autocrine protective signaling mechanism of G-CSF by inhibition of apoptosis, inflammation, and stimulation of neurogenesis. These observed neuroprotective effects of G-CSF makes it an attractive target to mitigate neurodegeneration associated with neurological disorders. The objective of the review is to highlight and summarize recent updates on G-CSF as a therapeutically versatile neuroprotective agent along with mechanisms of action as well as possible clinical applications in neurodegenerative disorders including AD, PD and HD.
Collapse
|
18
|
Tseng HW, Kulina I, Salga M, Fleming W, Vaquette C, Genêt F, Levesque JP, Alexander KA. Neurogenic Heterotopic Ossifications Develop Independently of Granulocyte Colony-Stimulating Factor and Neutrophils. J Bone Miner Res 2020; 35:2242-2251. [PMID: 32568412 DOI: 10.1002/jbmr.4118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Abstract
Neurogenic heterotopic ossifications (NHOs) are incapacitating heterotopic bones in periarticular muscles that frequently develop following traumatic brain or spinal cord injuries (SCI). Using our unique model of SCI-induced NHO, we have previously established that mononucleated phagocytes infiltrating injured muscles are required to trigger NHO via the persistent release of the pro-inflammatory cytokine oncostatin M (OSM). Because neutrophils are also a major source of OSM, we investigated whether neutrophils also play a role in NHO development after SCI. We now show that surgery transiently increased granulocyte colony-stimulating factor (G-CSF) levels in blood of operated mice, and that G-CSF receptor mRNA is expressed in the hamstrings of mice developing NHO. However, mice defective for the G-CSF receptor gene Csf3r, which are neutropenic, have unaltered NHO development after SCI compared to C57BL/6 control mice. Because the administration of recombinant human G-CSF (rhG-CSF) has been trialed after SCI to increase neuroprotection and neuronal regeneration and has been shown to suppress osteoblast function at the endosteum of skeletal bones in human and mice, we investigated the impact of a 7-day rhG-CSF treatment on NHO development. rhG-CSF treatment significantly increased neutrophils in the blood, bone marrow, and injured muscles. However, there was no change in NHO development compared to saline-treated controls. Overall, our results establish that unlike monocytes/macrophages, neutrophils are dispensable for NHO development following SCI, and rhG-CSF treatment post-SCI does not impact NHO development. Therefore, G-CSF treatment to promote neuroregeneration is unlikely to adversely promote or affect NHO development in SCI patients. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Irina Kulina
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Whitney Fleming
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia.,Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France.,Evolution of Neuromuscular Diseases: Innovative Concepts and Practice (END:ICAP) U1179 Institut Natational de la Santé et de la Recherche Médicale, Unité de Formation et de Recherche Simone Veil-Santé, University of Versailles Saint Quentin en Yvelines, Montigny-le-Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
19
|
Stem Cell Aging in Skeletal Muscle Regeneration and Disease. Int J Mol Sci 2020; 21:ijms21051830. [PMID: 32155842 PMCID: PMC7084237 DOI: 10.3390/ijms21051830] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.
Collapse
|
20
|
Nourreddine FZ, Oussedik-Oumehdi H, Laraba-Djebari F. Myotoxicity induced by Cerastes cerastes venom: Beneficial effect of heparin in skeletal muscle tissue regeneration. Acta Trop 2020; 202:105274. [PMID: 31738878 DOI: 10.1016/j.actatropica.2019.105274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
Abstract
Myonecrosis is a relevant tissue damage induced by snakes of Viperidae family often leading to permanent tissue and function loss and even amputation. The aim of this study was to evaluate the effect of heparin on skeletal muscle tissue regeneration after Cerastes cerastes envenomation. Mice received either the venom (1 LD50) by i.m. route, or the venom followed, by heparin administration by i.v. route at 15 min and 4 h. Obtained results showed that Cerastes cerastes venom induced deep tissue structure alterations, characterized mainly by edema, hemorrhage, myonecrosis and inflammation. Myotoxicity was correlated with increased CK levels in sera, concomitant with their decrease in muscle tissue homogenates. Muscle wet weight was restored within 2 weeks after heparin treatment and 28 days in the envenomed group. Heparin treatment significantly decreased MPO activity, suggesting an anti-inflammatory effect. NO, HGF, VEGF and G-CSF levels were increased after heparin administration. These mitogenic factors constitute potent stimuli for satellite and endothelial cells improving, thus, muscle regeneration. This study showed that muscle tissue recovery was significantly enhanced after heparin treatment. Heparin use seems to be a promising therapeutic approach after viper envenomation.
Collapse
Affiliation(s)
- Fatima Zohra Nourreddine
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria.
| |
Collapse
|
21
|
Wang R, Nakshatri H. Systemic Actions of Breast Cancer Facilitate Functional Limitations. Cancers (Basel) 2020; 12:cancers12010194. [PMID: 31941005 PMCID: PMC7016719 DOI: 10.3390/cancers12010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of breast cancer can lead to functional limitations in patients who suffer from muscle weakness, fatigue, pain, fibromyalgia, or many other dysfunctions, which hasten cancer-associated death. Mechanistic studies have identified quite a few molecular defects in skeletal muscles that are associated with functional limitations in breast cancer. These include circulating cytokines such as TNF-α, IL-1, IL-6, and TGF-β altering the levels or function of myogenic molecules including PAX7, MyoD, and microRNAs through transcriptional regulators such as NF-κB, STAT3, and SMADs. Molecular defects in breast cancer may also include reduced muscle mitochondrial content and increased extracellular matrix deposition leading to energy imbalance and skeletal muscle fibrosis. This review highlights recent evidence that breast cancer-associated molecular defects mechanistically contribute to functional limitations and further provides insights into therapeutic interventions in managing functional limitations, which in turn may help to improve quality of life in breast cancer patients.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-2238
| |
Collapse
|
22
|
G-CSF Inhibits Growths of Osteoblasts and Osteocytes by Upregulating Nitric Oxide Production in Neutrophils. J Craniofac Surg 2020; 30:e776-e780. [PMID: 31689739 DOI: 10.1097/scs.0000000000005769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Granulocyte colony-stimulating factor (G-CSF) is the critical regulator of the proliferation, differentiation, and survival of granulocytes. Recently, it has been shown that G-CSF can adversely affect bone health in both animal models and patients. Here, the authors aimed to investigate whether G-CSF could inhibit the growth of osteoblasts and osteocytes by regulating nitric oxide. METHODS The C57BL/6 mice were divided into the control group, G-CSF treatment group and recovery group (G-CSF+L-NAME). The morphology of femurs was assessed by histology and immunohistochemistry. The expression of apoptosis-related molecules in femurs was detected by immunohistochemistry and quantitative RT-PCR, respectively. To examine if neutrophil-secreted factors can induce apoptosis in osteoblasts, Gr1-positive (Gr1+) neutrophils from the bone marrow of wild-type mice were sorted and co-cultured with MC3T3 pre-osteoblasts for 2 days. RESULTS The number of osteoblasts and newly embedding osteocytes significantly decreased and markers related to osteoblasts and osteocytes were downregulated in the G-CSF treatment compared to the control group. Moreover, G-CSF treatment did not change proliferation markers but induced apoptosis in osteoblast-lineage cells. The combined treatment of mice with G-CSF and a nitric oxide inhibitor partially restored the number of osteoblasts and osteocyte parameters. CONCLUSIONS The G-CSF can inhibit osteoblasts and osteocytes by upregulating nitric oxide.
Collapse
|
23
|
Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020; 147:147/1/dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation at systemic and local levels. We suggest that certain mechanisms enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a unified approach could complement research in both fields.
Collapse
Affiliation(s)
- Alan Y Wong
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Li H, Chen Q, Li C, Zhong R, Zhao Y, Zhang Q, Tong W, Zhu D, Zhang Y. Muscle-secreted granulocyte colony-stimulating factor functions as metabolic niche factor ameliorating loss of muscle stem cells in aged mice. EMBO J 2019; 38:e102154. [PMID: 31736098 DOI: 10.15252/embj.2019102154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023] Open
Abstract
The function and number of muscle stem cells (satellite cells, SCs) decline with muscle aging. Although SCs are heterogeneous and different subpopulations have been identified, it remains unknown whether a specific subpopulation of muscle SCs selectively decreases during aging. Here, we find that the number of SCs expressing high level of transcription factor Pax7 (Pax7Hi ) is dramatically reduced in aged mice. Myofiber-secreted granulocyte colony-stimulating factor (G-CSF) regulates age-dependent loss of Pax7Hi cells, as the Pax7Hi SCs are replenished by exercise-induced G-CSF in aged mice. Mechanistically, we show that transcription of G-CSF (Csf3) gene in myofibers is regulated by MyoD in a metabolism-dependent manner. Furthermore, myofiber-secreted G-CSF acts as a metabolic niche factor required for establishing and maintaining the Pax7Hi SC subpopulation in adult and physiological aged mice by promoting the asymmetric division of Pax7Hi and Pax7Mi SCs. Together, our findings uncover that muscles provide a metabolic niche regulating Pax7 SC heterogeneity in mice.
Collapse
Affiliation(s)
- Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Changyin Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ran Zhong
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yixia Zhao
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qianying Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weimin Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Efficiency of granulocyte colony-stimulating factor immobilized on magnetic microparticles on proliferation of NFS-60 cells. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Sakamoto K, Furuichi Y, Yamamoto M, Takahashi M, Akimoto Y, Ishikawa T, Shimizu T, Fujimoto M, Takada-Watanabe A, Hayashi A, Mita Y, Manabe Y, Fujii NL, Ishibashi R, Maezawa Y, Betsholtz C, Yokote K, Takemoto M. R3hdml regulates satellite cell proliferation and differentiation. EMBO Rep 2019; 20:e47957. [PMID: 31524320 DOI: 10.15252/embr.201947957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022] Open
Abstract
In this study, we identified a previously uncharacterized skeletal satellite cell-secreted protein, R3h domain containing-like (R3hdml). Expression of R3hdml increases during skeletal muscle development and differentiation in mice. Body weight and skeletal muscle mass of R3hdml knockout (KO) mice are lower compared to control mice. Expression levels of cell cycle-related markers, phosphorylation of Akt, and expression of insulin-like growth factor within the skeletal muscle are reduced in R3hdml KO mice compared to control mice. Expression of R3hdml increases during muscle regeneration in response to cardiotoxin (CTX)-induced muscle injury. Recovery of handgrip strength after CTX injection was significantly impaired in R3hdml KO mice, which is rescued by R3hdml. Our results indicate that R3hdml is required for skeletal muscle development, regeneration, and, in particular, satellite cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kenichi Sakamoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Masashi Yamamoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Megumi Takahashi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Takahiro Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masanori Fujimoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Aki Takada-Watanabe
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Mita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Ryoichi Ishibashi
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology, Uppsala Universitet, Uppsala, Sweden.,Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, Novum, Huddinge, Sweden
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| |
Collapse
|
27
|
Granulocyte Colony-Stimulating Factor Does Not Influence Clostridium Perfringens α-Toxin-Induced Myonecrosis in Mice. Toxins (Basel) 2019; 11:toxins11090509. [PMID: 31480318 PMCID: PMC6784116 DOI: 10.3390/toxins11090509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens type A causes gas gangrene characterized by myonecrosis and development of an effective therapy for treating affected patients is of clinical importance. It was recently reported that the expression of granulocyte colony-stimulating factor (G-CSF) is greatly up-regulated by C. perfringens infection. However, the role of G-CSF in C. perfringens-mediated myonecrosis is still unclear. Here, we assessed the destructive changes in C. perfringens-infected skeletal muscles and tested whether inhibition of G-CSF receptor (G-CSFR) signaling or administration of recombinant G-CSF affects the tissue injury. Severe edema, contraction of muscle fiber diameter, and increased plasma creatine kinase activity were observed in mice intramuscularly injected with C. perfringens type A, and the destructive changes were α-toxin-dependent, indicating that infection induces the destruction of skeletal muscle in an α-toxin-dependent manner. G-CSF plays important roles in the protection of tissue against damage and in the regeneration of injured tissue. However, administration of a neutralizing antibody against G-CSFR had no profound impact on the destructive changes to skeletal muscle. Moreover, administration of recombinant human G-CSF, filgrastim, imparted no inhibitory effect against the destructive changes caused by C. perfringens. Together, these results indicate that G-CSF is not beneficial for treating C. perfringens α-toxin-mediated myonecrosis, but highlight the importance of revealing the mechanism by which C. perfringens negates the protective effects of G-CSF in skeletal muscle.
Collapse
|
28
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
29
|
Granulocyte-colony stimulating factor enhances load-induced muscle hypertrophy in mice. Biochem Biophys Res Commun 2018; 506:944-949. [PMID: 30401566 DOI: 10.1016/j.bbrc.2018.10.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a cytokine crucially involved in the regulation of granulopoiesis and the mobilization of hematopoietic stem cells from bone marrow. However, emerging data suggest that G-CSF exhibits more diverse functions than initially expected, such as conferring protection against apoptosis to neural cells and stimulating mitogenesis in cardiomyocytes and skeletal muscle stem cells after injury. In the present study, we sought to investigate the potential contribution of G-CSF to the regulation of muscle volume. We found that the administration of G-CSF significantly enhances muscle hypertrophy in two different muscle overload models. Interestingly, there was a significant increase in the transcripts of both G-CSF and G-CSF receptors in the muscles that were under overload stress. Using mutant mice lacking the G-CSF receptor, we confirmed that the anabolic effect is dependent on the G-CSF receptor signaling. Furthermore, we found that G-CSF increases the diameter of myotubes in vitro and induces the phosphorylation of AKT, mTOR, and ERK1/2 in the myoblast-like cell line C2C12 after differentiation induction. These findings indicate that G-CSF is involved in load-induced muscle hypertrophy and suggest that G-CSF is a potential agent for treating patients with muscle loss and sarcopenia.
Collapse
|
30
|
Berndt R, Hummitzsch L, Heß K, Albrecht M, Zitta K, Rusch R, Sarras B, Bayer A, Cremer J, Faendrich F, Groß J. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach. Stem Cell Res Ther 2018; 9:117. [PMID: 29703251 PMCID: PMC5921555 DOI: 10.1186/s13287-018-0871-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
BACKROUND Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). METHODS Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. RESULTS Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. CONCLUSIONS In summary, PCMO improve angiogenesis and tissue recovery in chronic ischemic muscle and first clinical results promise to provide an effective and safe treatment of CLI.
Collapse
Affiliation(s)
- Rouven Berndt
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany.
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Beke Sarras
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Andreas Bayer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Fred Faendrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Groß
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| |
Collapse
|
31
|
Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 2018; 285:1973-1984. [PMID: 29473995 DOI: 10.1111/febs.14417] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/27/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Luiz Augusto Perandini
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Brazil
| | - Diego da Silva Lutkemeyer
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.,Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Department of Medicine, Federal University of Sao Paulo, Brazil
| |
Collapse
|
32
|
|
33
|
Mizuno S, Yoda M, Shimoda M, Chiba K, Nakamura M, Horiuchi K. Inhibition of ADAM10 in satellite cells accelerates muscle regeneration following muscle injury. J Orthop Res 2018; 36:2259-2265. [PMID: 29464750 DOI: 10.1002/jor.23878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
Muscle injury is one of the most common orthopedic and sports disorders. For severe cases, surgical repair may be indicated; however, other than immobilization and the administration of anti-inflammatory drugs there is currently no effective conservative treatment for this condition. Satellite cells (SCs) are muscle-specific stem cells and are indispensable for muscle regeneration after muscle injury. SCs are activated upon muscle injury to proliferate and differentiate into myoblasts, which subsequently fuse into myofibers and regenerate the damaged muscle. We have previously shown that ADAM10, a membrane-anchored proteolytic enzyme, is essential for the maintenance of SC quiescence by activating the Notch signaling pathway in SCs. Because suppression of ADAM10 activity in SCs can activate SC differentiation, we asked whether inactivation of ADAM10 in SCs after muscle injury could enhance muscle regeneration. Using Adam10 conditional knockout mice, in which ADAM10 activity can specifically be suppressed in SCs, we found that partial inactivation of ADAM10 accelerates muscle regeneration after muscle injury. Nearly identical results were obtained by the administration of GI254023X, a selective ADAM10 inhibitor. The findings of the present study thus indicate that transient enhancement of SC differentiation after muscle injury expedites muscle regeneration and that ADAM10 can be a potential molecular target in treating muscle injuries. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Sakiko Mizuno
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopedics, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa City, Chiba, 272-8513, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
34
|
Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators Inflamm 2017; 2017:7517350. [PMID: 29362521 PMCID: PMC5738577 DOI: 10.1155/2017/7517350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was originally discovered in the context of hematopoiesis. However, the identification of the G-CSF receptor (G-CSFR) being expressed outside the hematopoietic system has revealed wider roles for G-CSF, particularly in tissue repair and regeneration. Skeletal muscle damage, including that following strenuous exercise, induces an elevation in plasma G-CSF, implicating it as a potential mediator of skeletal muscle repair. This has been supported by preclinical studies and clinical trials investigating G-CSF as a potential therapeutic agent in relevant disease states. This review focuses on the growing literature associated with G-CSF and G-CSFR in skeletal muscle under healthy and disease conditions and highlights the current controversies.
Collapse
|
35
|
Sienkiewicz D, Kułak W, Okurowska-Zawada B, Paszko-Patej G, Wojtkowski J, Sochoń K, Kalinowska A, Okulczyk K, Sienkiewicz J, McEachern E. Efficacy and the Safety of Granulocyte Colony-Stimulating Factor Treatment in Patients with Muscular Dystrophy: A Non-Randomized Clinical Trial. Front Neurol 2017; 8:566. [PMID: 29123500 PMCID: PMC5662550 DOI: 10.3389/fneur.2017.00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/10/2017] [Indexed: 01/19/2023] Open
Abstract
Introduction The current standard treatment for patients with Duchenne muscular dystrophy (DMD) involves corticosteroids. Granulocyte colony-stimulating factor (G-CSF) induces the proliferation of satellite cells and myoblasts and, in turn, muscle regeneration. Beneficial effects of G-CSF were also described for skeletal muscle disorders. Aim We assessed the safety and effects of using G-CSF to promote muscle strength in patients with DMD. Materials and methods Inclusion criteria were as follows: patients aged 5–15 years with diagnosed with DMD confirmed by genetic test or biopsy. Fourteen patients were treated with steroids, and their use was not changed in this study. Diagnoses were confirmed by genetic tests: deletions were detected in 11 patients and duplications in 5 patients. Nineteen 5- to 15-year-old patients diagnosed with DMD—9 were in wheelchairs, whereas 10 were mobile and independent—completed an open study. Participants received a clinical examination and performed physiotherapeutic and laboratory tests to gage their manual muscle strength, their isometric force using a hand dynamometer, and aerobic capacity [i.e., 6-min walk test (6MWT)] before and after therapy. Each participant received G-CSF (5 µg/kg/body/day) subcutaneously for five consecutive days during the 1st, 2nd, 3rd, 6th, and 12th month. Laboratory investigations that included full blood count and biochemistry were performed. Side effects of G-CSF treatment were assessed during each visit. During each cycle of G-CSF administration in the hospital, rehabilitation was also applied. All patients received regular ambulatory rehabilitation. Results The subcutaneous administration of G-CSF improved muscle strength in participants. We recorded a significant increase in the distance covered in the 6MWT, either on foot or in a wheelchair, increased muscle force in isometric force, and a statistically significant decrease in the activity of the muscle enzyme creatine kinase after nearly every cycle of treatment. We observed no side effects of treatment with G-CSF. Conclusion Our findings suggest that G-CSF increases muscle strength in patients with DMD, who demonstrated that G-CSF therapy is safe and easily tolerable.
Collapse
Affiliation(s)
- Dorota Sienkiewicz
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | - Wojciech Kułak
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | | | - Grażyna Paszko-Patej
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | - Janusz Wojtkowski
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | - Karolina Sochoń
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | - Anna Kalinowska
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | - Kamila Okulczyk
- Department of Pediatric Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | | | - Edward McEachern
- Medicine Bioscientific Research Faculty, Metro Health Medical Center Case Western Reserve, University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
36
|
Rah WJ, Lee YH, Moon JH, Jun HJ, Kang HR, Koh H, Eom HJ, Lee JY, Lee YJ, Kim JY, Choi YY, Park K, Kim MJ, Kim SH. Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study. J Transl Med 2017; 15:16. [PMID: 28109298 PMCID: PMC5251252 DOI: 10.1186/s12967-017-1120-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE We performed a randomized, double-blind, cross-over study to assess the neuroregenerative potential of intravenous granulocyte colony-stimulating factor (G-CSF) followed by infusion of mobilized peripheral blood mononuclear cells (mPBMCs) in children with cerebral palsy (CP). METHODS Children with non-severe CP were enrolled in this study. G-CSF was administered for 5 days, then mPBMCs were collected by apheresis and cryopreserved. One month later (M1), recipients were randomized to receive either mPBMCs or a placebo infusion, and these treatment groups were switched at 7 months (M7) and observed for another 6 months (M13). We assessed the efficacy of treatment by evaluating neurodevelopmental tests, as well as by brain magnetic resonance imaging-diffusion tensor imaging (MRI-DTI) and 18F-fluorodeoxyglucose (FDG) brain positron emission tomography-computed tomography (PET-CT) scanning to evaluate the anatomical and functional changes in the brain. RESULTS Fifty-seven patients aged 4.3 ± 1.9 (range 2-10) years and weighing 16.6 ± 4.9 (range 11.6-56.0) kg were enrolled in this study. The administration of G-CSF as well as the collection and reinfusion of mPBMCs were safe and tolerable. The yield of mPBMCs was comparable to that reported in studies of pediatric donors without CP and patients with nonhematologic diseases. 42.6% of the patients responded to the treatment with higher neurodevelopmental scores than would normally be expected. In addition, larger changes in neurodevelopment test scores were observed in the 1 month after G-CSF administration (M0-M1) than during the 6 months after reinfusion with mPBMCs or placebo (M1-M7 or M7-M13). Patients who received G-CSF followed by mPBMC infusion at 7 months (T7 group) demonstrated significantly more neurodevelopmental improvement than patients who received G-CSF followed by mPBMC infusion at 1 month (T1 group). In contrast to the results of neurodevelopment tests, the results of MRI-DTI at the end of this study showed greater improvement in the T1 group. Although we observed metabolic changes to the cerebellum, thalamus and cerebral cortex in the 18F-FDG brain PET-CT scans, there were no significant differences in such changes between the mPBMC and placebo group or between the T1 and T7 group. CONCLUSIONS Neurodevelopmental improvement was seen in response to intravenous G-CSF followed by mPBMC reinfusion, particularly to the G-CSF alone even without mPBMC reinfusion. Further studies using a larger number of mPBMCs for the infusion which could be collected by repeated cycles of apheresis or using repeated cycles of G-CSF alone, are needed to clarify the effect of mPBMC reinfusion or G-CSF alone (Trial registration: ClinicalTrials.gov, NCT02983708. Registered 5 December, 2016, retrospectively registered).
Collapse
Affiliation(s)
- Wee-Jin Rah
- Department of Pediatrics, Hanyang University Medical Center, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Medical Center, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea. .,Blood and Marrow Transplantation Center, Hanyang University Medical Center, Seoul, South Korea. .,Cell Therapy Center, Hanyang University Medical Center, Seoul, South Korea.
| | - Jin-Hwa Moon
- Department of Pediatrics, Hanyang University Medical Center, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hyun-Ju Jun
- Department of Pediatrics, Hanyang University Medical Center, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hye-Ryeong Kang
- Department of Pediatrics, Hanyang University Medical Center, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hani Koh
- Department of Pediatrics, Hanyang University Medical Center, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.,Blood and Marrow Transplantation Center, Hanyang University Medical Center, Seoul, South Korea
| | - Hye Jung Eom
- Blood and Marrow Transplantation Center, Hanyang University Medical Center, Seoul, South Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, South Korea
| | - Young Jun Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, South Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, Hanyang University Medical Center, Seoul, South Korea
| | - Yun-Young Choi
- Department of Nuclear Medicine, Hanyang University Medical Center, Seoul, South Korea
| | - Kyeongil Park
- Department of Rehabilitation Medicine, Hanyang University Medical Center, Seoul, South Korea
| | - Mi Jung Kim
- Department of Rehabilitation Medicine, Hanyang University Medical Center, Seoul, South Korea
| | - Seung-Hyun Kim
- Cell Therapy Center, Hanyang University Medical Center, Seoul, South Korea
| |
Collapse
|
37
|
Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos KI. Avoidance of Total Knee Arthroplasty in Early Osteoarthritis of the Knee with Intra-Articular Implantation of Autologous Activated Peripheral Blood Stem Cells versus Hyaluronic Acid: A Randomized Controlled Trial with Differential Effects of Growth Factor Addition. Stem Cells Int 2017; 2017:8925132. [PMID: 29056974 PMCID: PMC5625803 DOI: 10.1155/2017/8925132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
In this randomized controlled trial, in early osteoarthritis (OA) that failed conservative intervention, the need for total knee arthroplasty (TKA) and WOMAC scores were evaluated, following a combination of arthroscopic microdrilling mesenchymal cell stimulation (MCS) and repeated intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSCs) with growth factor addition (GFA) and hyaluronic acid (HA) versus IA-HA alone. Leukapheresis-harvested AAPBSCs were administered as three weekly IA injections combined with HA and GFA (platelet-rich plasma [PRP] and granulocyte colony-stimulating factor [hG-CSF]) and MCS in group 1 and in group 2 but without hG-CSF while group 3 received IA-HA alone. Each group of 20 patients was evaluated at baseline and at 1, 6, and, 12 months. At 12 months, all patients in the AAPBSC groups were surgical intervention free compared to three patients needing TKA in group 3 (p < 0.033). Total WOMAC scores showed statistically significant improvements at 6 and 12 months for the AAPBSC groups versus controls. There were no notable adverse events. We have shown avoidance of TKA in the AAPBSC groups at 12 months and potent, early, and sustained symptom alleviation through GFA versus HA alone. Differential effects of hG-CSF were noted with an earlier onset of symptom alleviation throughout.
Collapse
Affiliation(s)
- Thana Turajane
- 1Department of Orthopedic Surgery, Police General Hospital, Bangkok, Thailand
| | | | | | - Jongjate Aojanepong
- 3Department of Gynecology and Obstetrics, Police General Hospital, Bangkok, Thailand
| | | |
Collapse
|
38
|
Rando A, Gasco S, de la Torre M, García-Redondo A, Zaragoza P, Toivonen JM, Osta R. Granulocyte Colony-Stimulating Factor Ameliorates Skeletal Muscle Dysfunction in Amyotrophic Lateral Sclerosis Mice and Improves Proliferation of SOD1-G93A Myoblasts in vitro. NEURODEGENER DIS 2017; 17:1-13. [DOI: 10.1159/000446113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
<b><i>Background:</i></b> Amyotrophic lateral sclerosis (ALS) causes loss of upper and lower motor neurons as well as skeletal muscle (SKM) dysfunction and atrophy. SKM is one of the tissues involved in the development of ALS pathology, and studies in a SOD1-G93A mouse model of ALS have demonstrated alterations in SKM degeneration/regeneration marker expression in vivo and defective mutant myoblast proliferation in vitro. Granulocyte colony-stimulating factor (G-CSF) has been shown to alleviate SOD1-G93A pathology. However, it is unknown whether G-CSF may have a direct effect on SKM or derived myoblasts. <b><i>Objective:</i></b> To investigate effects of G-CSF and its analog pegfilgrastim (PEGF) on SOD1-G93A- associated SKM markers in vivo and those of G-CSF on myoblast proliferation in vitro. <b><i>Methods:</i></b> The effect of PEGF treatment on hematopoietic stem cell mobilization, survival, and motor function was determined. RNA expression of SKM markers associated with mutant SOD1 expression was quantified in response to PEGF treatment in vivo, and the effect of G-CSF on the proliferation of myoblasts derived from mutant and control muscles was determined in vitro. <b><i>Results:</i></b> Positive effects of PEGF on hematopoietic stem cell mobilization, survival, and functional assays in SOD1-G93A animals were confirmed. In vivo PEGF treatment augmented the expression of its receptor Csf3r and alleviated typical markers for mutant SOD1 muscle. Additionally, G-CSF was found to directly increase the proliferation of SOD1-G93A, but not wild-type primary myoblasts in vitro. <b><i>Conclusion:</i></b> Our results support the beneficial role of the G-CSF analog PEGF in a SOD1-G93A model of ALS. Thus, G-CSF and<b> </b>its analogs may be directly beneficial in diseases where the SKM function is compromised.
Collapse
|
39
|
Abstract
Macrophages regulate tissue regeneration following injury. They can worsen tissue injury by producing reactive oxygen species and other toxic mediators that disrupt cell metabolism, induce apoptosis, and exacerbate ischemic injury. However, they also produce a variety of growth factors, such as IGF-1, VEGF-α, TGF-β, and Wnt proteins that regulate epithelial and endothelial cell proliferation, myofibroblast activation, stem and tissue progenitor cell differentiation, and angiogenesis. Proresolving macrophages in turn restore tissue homeostasis by functioning as anti-inflammatory cells, and macrophage-derived matrix metalloproteinases regulate fibrin and collagen turnover. However, dysregulated macrophage function impairs wound healing and contributes to the development of fibrosis. Consequently, the mechanisms that regulate these different macrophage activation states have become active areas of research. In this review, we discuss the common and unique mechanisms by which macrophages instruct tissue repair in the liver, nervous system, heart, lung, skeletal muscle, and intestine and illustrate how macrophages might be exploited therapeutically.
Collapse
Affiliation(s)
- Kevin M Vannella
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| |
Collapse
|
40
|
Martin KS, Kegelman CD, Virgilio KM, Passipieri JA, Christ GJ, Blemker SS, Peirce SM. In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Ann Biomed Eng 2016; 45:747-760. [PMID: 27718091 DOI: 10.1007/s10439-016-1707-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022]
Abstract
Numerous studies have pharmacologically modulated the muscle milieu in the hopes of promoting muscle regeneration; however, the timing and duration of these interventions are difficult to determine. This study utilized a combination of in silico and in vivo experiments to investigate how inflammation manipulation improves muscle recovery following injury. First, we measured macrophage populations following laceration injury in the rat tibialis anterior (TA). Then we calibrated an agent-based model (ABM) of muscle injury to mimic the observed inflammation profiles. The calibrated ABM was used to simulate macrophage and satellite stem cell (SC) dynamics, and suggested that delivering macrophage colony stimulating factor (M-CSF) prior to injury would promote SC-mediated injury recovery. Next, we performed an experiment wherein 1 day prior to injury, we injected M-CSF into the rat TA muscle. M-CSF increased the number of macrophages during the first 4 days post-injury. Furthermore, treated muscles experienced a swifter increase in the appearance of PAX7+ SCs and regenerating muscle fibers. Our study suggests that computational models of muscle injury provide novel insights into cellular dynamics during regeneration, and further, that pharmacologically altering inflammation dynamics prior to injury can accelerate the muscle regeneration process.
Collapse
Affiliation(s)
- Kyle S Martin
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA
| | - Christopher D Kegelman
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA
| | - Kelley M Virgilio
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA
| | - Julianna A Passipieri
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA
| | - George J Christ
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA
- Department of Orthopaedic Surgery, The University of Virginia, Charlottesville, VA, USA
| | - Silvia S Blemker
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA.
- Department of Mechanical and Aerospace Engineering, The University of Virginia, Charlottesville, VA, USA.
| | - Shayn M Peirce
- Department of Biomedical Engineering, The University of Virginia, Health System, PO Box 800759, Charlottesville, VA 22908, USA
- Department of Ophthalmology, The University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
41
|
Xie X, Tsai SY, Tsai MJ. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest 2016; 126:3929-3941. [PMID: 27617862 DOI: 10.1172/jci87414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disease caused by mutations in the dystrophin gene. Although dystrophin deficiency in myofiber triggers the disease's pathological changes, the degree of satellite cell (SC) dysfunction defines disease progression. Here, we have identified chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) hyperactivity as a contributing factor underlying muscular dystrophy in a dystrophin-deficient murine model of DMD. Ectopic expression of COUP-TFII in murine SCs led to Duchenne-like dystrophy in the muscles of control animals and exacerbated degenerative myopathies in dystrophin-deficient mice. COUP-TFII-overexpressing mice exhibited regenerative failure that was attributed to deficient SC proliferation and myoblast fusion. Mechanistically, we determined that COUP-TFII coordinated a regenerative program through combined regulation of multiple promyogenic factors. Furthermore, inhibition of COUP-TFII preserved SC function and counteracted the muscle weakness associated with Duchenne-like dystrophy in the murine model, suggesting that targeting COUP-TFII is a potential treatment for DMD. Together, our findings reveal a regulatory role of COUP-TFII in the development of muscular dystrophy and open up a potential therapeutic opportunity for managing disease progression in patients with DMD.
Collapse
MESH Headings
- Animals
- COUP Transcription Factor II/physiology
- Cell Fusion
- Cell Proliferation
- Cells, Cultured
- Female
- Male
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Regeneration
- Satellite Cells, Skeletal Muscle/physiology
Collapse
|
42
|
Kowalski K, Archacki R, Archacka K, Stremińska W, Paciorek A, Gołąbek M, Ciemerych MA, Brzoska E. Stromal derived factor-1 and granulocyte-colony stimulating factor treatment improves regeneration of Pax7-/- mice skeletal muscles. J Cachexia Sarcopenia Muscle 2016; 7:483-96. [PMID: 27239402 PMCID: PMC4863826 DOI: 10.1002/jcsm.12092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/03/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The skeletal muscle has the ability to regenerate after injury. This process is mediated mainly by the muscle specific stem cells, that is, satellite cells. In case of extensive damage or under pathological conditions, such as muscular dystrophy, the process of muscle reconstruction does not occur properly. The aim of our study was to test whether mobilized stem cells, other than satellite cells, could participate in skeletal muscle reconstruction. METHODS Experiments were performed on wild-type mice and mice lacking the functional Pax7 gene, that is, characterized by the very limited satellite cell population. Gastrocnemius mice muscles were injured by cardiotoxin injection, and then the animals were treated by stromal derived factor-1 (Sdf-1) with or without granulocyte-colony stimulating factor (G-CSF) for 4 days. The muscles were subjected to thorough assessment of the tissue regeneration process using histological and in vitro methods, as well as evaluation of myogenic factors' expression at the transcript and protein levels. RESULTS Stromal derived factor-1 alone and Sdf-1 in combination with G-CSF significantly improved the regeneration of Pax7-/- skeletal muscles. The Sdf-1 and G-CSF treatment caused an increase in the number of mononucleated cells associated with muscle fibres. Further analysis showed that Sdf-1 and G-CSF treatment led to the rise in the number of CD34+ and Cxcr4+ cells and expression of Cxcr7. CONCLUSIONS Stromal derived factor-1 and G-CSF stimulated regeneration of the skeletal muscles deficient in satellite cells. We suggest that mobilized CD34+, Cxcr4+, and Cxcr7+ cells can efficiently participate in the skeletal muscle reconstruction and compensate for the lack of satellite cells.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Rafał Archacki
- Laboratory of Systems Biology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | | | - Anna Paciorek
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Magdalena Gołąbek
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| |
Collapse
|
43
|
Kim CH, Shin JH, Hwang SJ, Choi YH, Kim DS, Kim CM. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes. Int J Nanomedicine 2016; 11:2407-15. [PMID: 27330287 PMCID: PMC4898430 DOI: 10.2147/ijn.s101299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Schisandrae fructus (SF) has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 μg/mL) of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 μg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged with sarcopenia and the patients with disuse atrophy.
Collapse
Affiliation(s)
- Cy Hyun Kim
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Center for Anti-Aging Industry, Pusan National University, Busan, Republic of Korea
| | - Jin-Hong Shin
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sung Jun Hwang
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Center for Anti-Aging Industry, Pusan National University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Dae-Seong Kim
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Cheol Min Kim
- Center for Anti-Aging Industry, Pusan National University, Busan, Republic of Korea; Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
44
|
Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans. Mol Metab 2016; 5:305-316. [PMID: 27069870 PMCID: PMC4812007 DOI: 10.1016/j.molmet.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/01/2023] Open
Abstract
Objective Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. CSF3, the gene encoding G-CSF, is induced in human myotubes by saturated, but not unsaturated, FFAs. CSF3 expression is induced via Toll-like receptor 4-dependent and -independent pathways. Human adipocytes and myotubes treated with G-CSF become insulin-resistant. A CSF3 SNP affects insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. G-CSF emerges as a new player in FFA-induced insulin resistance.
Collapse
|
45
|
Eljaszewicz A, Sienkiewicz D, Grubczak K, Okurowska-Zawada B, Paszko-Patej G, Miklasz P, Singh P, Radzikowska U, Kulak W, Moniuszko M. Effect of Periodic Granulocyte Colony-Stimulating Factor Administration on Endothelial Progenitor Cells and Different Monocyte Subsets in Pediatric Patients with Muscular Dystrophies. Stem Cells Int 2015; 2016:2650849. [PMID: 26770204 PMCID: PMC4684893 DOI: 10.1155/2016/2650849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023] Open
Abstract
Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration. We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells with proangiogenic potential. These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric MD patients.
Collapse
Affiliation(s)
- Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Dorota Sienkiewicz
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Bożena Okurowska-Zawada
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Grażyna Paszko-Patej
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Paula Miklasz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paulina Singh
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Urszula Radzikowska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wojciech Kulak
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
46
|
Cetean S, Căinap C, Constantin AM, Căinap S, Gherman A, Oprean L, Hangan A, Oprean R. The importance of the granulocyte-colony stimulating factor in oncology. ACTA ACUST UNITED AC 2015; 88:468-72. [PMID: 26732055 PMCID: PMC4689238 DOI: 10.15386/cjmed-531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein, the second CSF, sharing some common effects with granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5). G-CSF is mainly produced by fibroblasts and endothelial cells from bone marrow stroma and by immunocompetent cells (monocytes, macrophages). The receptor for G-CSF (G-CSFR) is part of the cytokine and hematopoietin receptor superfamily and G-CSFR mutations cause severe congenital neutropenia. The main action of G-CSF - G-CSFR linkage is stimulation of the production, mobilization, survival and chemotaxis of neutrophils, but there are many other G-CSF effects: growth and migration of endothelial cells, decrease of norepinephrine reuptake, increase in osteoclastic activity and decrease in osteoblast activity. In oncology, G-CSF is utilized especially for the primary prophylaxis of chemotherapy-induced neutropenia, but it can be used for hematopoietic stem cell transplantation, it can produce monocytic differentiation of some myeloid leukemias and it can increase some drug resistance. The therapeutic indications of G-CSF are becoming more and more numerous: non neutropenic patients infections, reproductive medicine, neurological disturbances, regeneration therapy after acute myocardial infarction and of skeletal muscle, and hepatitis C therapy.
Collapse
Affiliation(s)
- Sînziana Cetean
- Department of General and Inorganic Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Călin Căinap
- Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania; Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Căinap
- Department of Infant Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Gherman
- Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania; Department of Oncology and Radiotherapy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luminiţa Oprean
- Department of General and Inorganic Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adriana Hangan
- Department of General and Inorganic Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Oprean
- Department of Analytical Chemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Thorley M, Malatras A, Duddy W, Le Gall L, Mouly V, Butler Browne G, Duguez S. Changes in Communication between Muscle Stem Cells and their Environment with Aging. J Neuromuscul Dis 2015; 2:205-217. [PMID: 27858742 PMCID: PMC5240546 DOI: 10.3233/jnd-150097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGF1, sex hormones, and inflammatory cytokines. Changes in the local environment are also discussed, implicating IL-6, IL-4, FGF-2, as well as other myokines, and processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce after activation, and the consequences of all these changes on general muscle homeostasis.
Collapse
Affiliation(s)
- Matthew Thorley
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Apostolos Malatras
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - William Duddy
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Laura Le Gall
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Gillian Butler Browne
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| |
Collapse
|
48
|
Sienkiewicz D, Kulak W, Okurowska-Zawada B, Paszko-Patej G, Kawnik K. Duchenne muscular dystrophy: current cell therapies. Ther Adv Neurol Disord 2015; 8:166-77. [PMID: 26136844 PMCID: PMC4480531 DOI: 10.1177/1756285615586123] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Duchenne muscular dystrophy is a genetically determined X-linked disease and the most common, progressive pediatric muscle disorder. For decades, research has been conducted to find an effective therapy. This review presents current therapeutic methods for Duchenne muscular dystrophy, based on scientific articles in English published mainly in the period 2000 to 2014. We used the PubMed database to identify and review the most important studies. An analysis of contemporary studies of stem cell therapy and the use of granulocyte colony-stimulating factor (G-CSF) in muscular dystrophy was performed.
Collapse
Affiliation(s)
- Dorota Sienkiewicz
- Department of Pediatric Rehabilitation Medical University, Bialystok, Poland
| | - Wojciech Kulak
- Department of Pediatric Rehabilitation, Medical University of Białystok, 15-274 Bialystok, 17 Waszyngtona street, Poland
| | | | | | - Katarzyna Kawnik
- Department of Pediatric Rehabilitation Medical University, Bialystok, Poland
| |
Collapse
|
49
|
Ponsuksili S, Siengdee P, Du Y, Trakooljul N, Murani E, Schwerin M, Wimmers K. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties. PLoS One 2015; 10:e0123678. [PMID: 25875247 PMCID: PMC4397042 DOI: 10.1371/journal.pone.0123678] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/21/2015] [Indexed: 12/21/2022] Open
Abstract
Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with trait-associated expression.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Puntita Siengdee
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Yang Du
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Murani
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Manfred Schwerin
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for ‘Genome Biology’, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
- * E-mail:
| |
Collapse
|
50
|
G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun 2015; 6:6745. [PMID: 25865621 DOI: 10.1038/ncomms7745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/24/2015] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a chronic and life-threatening disease that is initially supported by muscle regeneration but eventually shows satellite cell exhaustion and muscular dysfunction. The life-long maintenance of skeletal muscle homoeostasis requires the satellite stem cell pool to be preserved. Asymmetric cell division plays a pivotal role in the maintenance of the satellite cell pool. Here we show that granulocyte colony-stimulating factor receptor (G-CSFR) is asymmetrically expressed in activated satellite cells. G-CSF positively affects the satellite cell population during multiple stages of differentiation in ex vivo cultured fibres. G-CSF could be important in developing an effective therapy for DMD based on its potential to modulate the supply of multiple stages of regenerated myocytes. This study shows that the G-CSF-G-CSFR axis is fundamentally important for long-term muscle regeneration, functional maintenance and lifespan extension in mouse models of DMD with varying severities.
Collapse
|