1
|
Sun T, Golestani R, Zhan H, Krishnamurti U, Harigopal M, Zhong M, Liang Y. Clinicopathologic Characteristics of MYC Copy Number Amplification in Breast Cancer. Int J Surg Pathol 2025; 33:59-64. [PMID: 38839260 DOI: 10.1177/10668969241256109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
INTRODUCTION MYC overexpression is a known phenomenon in breast cancer. This study investigates the correlation of MYC gene copy number amplification and MYC protein overexpression with coexisting genetic abnormalities and associated clinicopathologic features in breast cancer patients. METHODS The study analyzed data from 81 patients with localized or metastatic breast cancers using targeted next-generation sequencing and MYC immunohistochemical studies, along with pathological and clinical data. RESULTS Applying the criteria of MYC/chromosome 8 ratio ≥5, MYC copy number amplified tumors (n = 11, 14%) were associated with invasive ductal carcinoma (91% vs 68%, P = .048), poorly differentiated (grade 3, 64% vs 30%, P = .032), mitotically active (Nottingham mitotic score 3, 71% vs 20%, P = .004), estrogen receptor (ER)-negative (45% vs 12%, P = .008), and triple-negative (56% vs 12%, P = .013) compared to MYC non-amplified tumors. Among MYC-amplified breast cancer patients, those with triple-negative status showed significantly shorter disease-free survival time than non-triple negative MYC-amplified patients (median survival month: 25.5 vs 127.6, P = .049). MYC amplification is significantly associated with TP53 mutation (P = .007). The majority (10 of 11; 91%) of MYC-amplified tumors showed positive c-MYC immunostaining. CONCLUSION Breast cancers with MYC copy number amplication display distinct clinicopathologic characteristics indicative of more aggressive behavior.
Collapse
MESH Headings
- Humans
- Female
- Middle Aged
- Gene Amplification
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/diagnosis
- Aged
- Adult
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Gene Dosage
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/mortality
- Aged, 80 and over
- Immunohistochemistry
- High-Throughput Nucleotide Sequencing
- Disease-Free Survival
Collapse
Affiliation(s)
- Tong Sun
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Reza Golestani
- Department of Pathology, Cayuga Medical Center, Ithaca, NY, USA
| | - Haiying Zhan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Uma Krishnamurti
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, The Mount Sinai Hospital, New York, NY, USA
| | - Minghao Zhong
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Yuanxin Liang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Mekonnen N, Seo MR, Yang H, Chelakkot C, Choi JY, Hong S, Song K, Shin YK. Design, Screening and Development of Asymmetric siRNAs Targeting the MYC Oncogene in Triple-Negative Breast Cancer. Biomol Ther (Seoul) 2025; 33:155-169. [PMID: 39632755 PMCID: PMC11704396 DOI: 10.4062/biomolther.2024.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 12/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks hormone receptor and Her2 (ERBB2) expression, leaving chemotherapy as the only treatment option. The urgent need for targeted therapy for TNBC patients has led to the investigation of small interfering RNAs (siRNAs), which can target genes in a sequence-specific manner, unlike other drugs. However, the clinical translation of siRNAs has been hindered by the lack of an effective delivery system, except in the case of liver diseases. The MYC oncogene is commonly overexpressed in TNBC compared to other breast cancer subtypes. In this study, we used siRNA to target MYC in MDA-MB-231, MDA-MB-157, MDA-MB-436 and Hs-578T cells. We designed various symmetric and asymmetric (asiRNAs), screened them for in vitro efficacy, modified them for enhanced nuclease resistance and reduced off-target effects, and conjugated them with cholesterol (ChoL) and docosanoic acid (DCA) as a delivery system. DCA was conjugated to the 3' end of asiRNA by a cleavable phosphodiester linker for in vivo delivery. Our findings demonstrated that asiRNA-VP and Mod_asiRNA10-6 efficiently downregulated MYC and its downstream targets, including RRM2, RAD51 and PARP1. Moreover, in a tumor xenograft model, asiRNA-VP-DCA effectively knocked down MYC mRNA and protein expression. Remarkably, durable knockdown persisted for at least 46 days postdosing in mouse tumor xenografts, with no visible signs of toxicity, underscoring the safety of DCA-conjugated asiRNAs. In conclusion, this study developed novel asiRNAs, design platforms, validated modification patterns, and in vivo delivery systems specifically targeting MYC in TNBC.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul 08826, Republic of Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar 7676, Ethiopia
| | - Myeung-Ryun Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Graduate School of Convergence Science and Technology, Seoul 08826, Republic of Korea
| | - Hobin Yang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Chaithanya Chelakkot
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul 08826, Republic of Korea
| | | | - Sungyoul Hong
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Graduate School of Convergence Science and Technology, Seoul 08826, Republic of Korea
- R&D Center, ABION Inc., Seoul 08394, Republic of Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Priya, Kumar A, Kumar D. Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications. 3 Biotech 2025; 15:33. [PMID: 39777154 PMCID: PMC11700964 DOI: 10.1007/s13205-024-04195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.
Collapse
Affiliation(s)
- Priya
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar 801505 India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
4
|
Jakobsen ST, Siersbæk R. Transcriptional regulation by MYC: an emerging new model. Oncogene 2025; 44:1-7. [PMID: 39468222 DOI: 10.1038/s41388-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Jin Y, Lee Y. Proteolysis Targeting Chimeras (PROTACs) in Breast Cancer Therapy. ChemMedChem 2024; 19:e202400267. [PMID: 39136599 PMCID: PMC11617661 DOI: 10.1002/cmdc.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Indexed: 10/16/2024]
Abstract
Breast cancer (BC) accounts for 30 % of cancer cases among women cancer patients globally, indicating the urgent need for the development of selective therapies targeting BCs. Recently, proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy to target breast cancer. PROTAC is a chimeric molecule consisting of a target protein ligand, an E3 ligase ligand, and conjugating linkers, enabling it to facilitate the degradation of desired target proteins by recruiting E3 ligase in close proximity. Due to the catalytic behavior and direct degradation of BC-causing proteins, PROTAC could achieve high drug efficacy with low doses, drawing great attention for its potential as therapeutics. This review provides cases of the currently developed PROTACs targeting BCs depending on the type of BCs, limitations, and future perspectives of PROTAC in targeting BCs.
Collapse
Affiliation(s)
- Yerim Jin
- Department of ChemistryPusan National UniversityBusan46241Korea
| | - Yeongju Lee
- Department of ChemistryPusan National UniversityBusan46241Korea
| |
Collapse
|
6
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
7
|
Awah CU, Mun JS, Paragodaarachchi A, Boylu B, Ochu C, Matsui H, Ogunwobi OO. The Engineered Drug 3'UTRMYC1-18 Degrades the c-MYC-STAT5A/B-PD-L1 Complex In Vivo to Inhibit Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2663. [PMID: 39123391 PMCID: PMC11311709 DOI: 10.3390/cancers16152663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
c-MYC is overexpressed in 70% of human cancers, including triple-negative breast cancer (TNBC), yet there is no clinically approved drug that directly targets it. Here, we engineered the mRNA-stabilizing poly U sequences within the 3'UTR of c-MYC to specifically destabilize and promote the degradation of c-MYC transcripts. Interestingly, the engineered derivative outcompetes the endogenous overexpressed c-MYC mRNA, leading to reduced c-MYC mRNA and protein levels. The iron oxide nanocages (IO-nanocages) complexed with MYC-destabilizing constructs inhibited primary and metastatic tumors in mice bearing TNBC and significantly prolonged survival by degrading the c-MYC-STAT5A/B-PD-L1 complexes that drive c-MYC-positive TNBC. Taken together, we have described a novel therapy for c-MYC-driven TNBC and uncovered c-MYC-STAT5A/B-PD-L1 interaction as the target.
Collapse
Affiliation(s)
- Chidiebere U. Awah
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 14850, USA
| | - Joo Sun Mun
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Aloka Paragodaarachchi
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Baris Boylu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Chika Ochu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hiroshi Matsui
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
- Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, NY 14850, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 14850, USA
- Hunter College for Cancer Health Disparities Research, Hunter College, City University of New York, New York, NY 10065, USA
| |
Collapse
|
8
|
Razavipour SF, Yoon H, Jang K, Kim M, Nawara HM, Bagheri A, Huang WC, Shin M, Zhao D, Zhou Z, Van Boven D, Briegel K, Morey L, Ince TA, Johnson M, Slingerland JM. C-terminally phosphorylated p27 activates self-renewal driver genes to program cancer stem cell expansion, mammary hyperplasia and cancer. Nat Commun 2024; 15:5152. [PMID: 38886396 PMCID: PMC11183067 DOI: 10.1038/s41467-024-48742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Razavipour
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Hyunho Yoon
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, South Korea
| | - Kibeom Jang
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Minsoon Kim
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Hend M Nawara
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Amir Bagheri
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Wei-Chi Huang
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Miyoung Shin
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Dekuang Zhao
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Zhiqun Zhou
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Derek Van Boven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Karoline Briegel
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Lluis Morey
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tan A Ince
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Johnson
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Joyce M Slingerland
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA.
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA.
| |
Collapse
|
9
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Wang R, Li G, Gao F, Xu F, Li X, Zhang J, Li J, Guan X. Ultrasound-responsive spherical nucleic acid against c-Myc/PD-L1 to enhance anti-tumoral macrophages in triple-negative breast cancer progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:698-710. [PMID: 38151609 DOI: 10.1007/s11427-023-2433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 12/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype because of its aggressive behavior and limited therapeutic targets. c-Myc is hyperactivated in the majority of TNBC tissues, however, it has been considered an "undruggable" target due to its disordered structure. Herein, we developed an ultrasound-responsive spherical nucleic acid (SNA) against c-Myc and PD-L1 in TNBC. It is a self-assembled and carrier-free system composed of a hydrophilic small-interfering RNA (siRNA) shell and a hydrophobic core made of a peptide nucleic acid (PNA)-based antisense oligonucleotide (ASO) and a sonosensitizer. We accomplished significant enrichment in the tumor by enhanced permeability and retention (EPR) effect, the controllable release of effective elements by ultrasound activation, and the combination of targeted therapy, immunotherapy and physiotherapy. Our study demonstrated significant anti-tumoral effects in vitro and in vivo. Mass cytometry showed an invigorated tumor microenvironment (TME) characterized by a significant alteration in the composition of tumor-associated macrophages (TAM) and decreased proportion of PD-1-positive (PD-1+) T effector cells after appropriate treatment of the ultrasound-responsive SNA (USNA). Further experiments verified that tumor-conditioned macrophages residing in the TME were transformed into the anti-tumoral population. Our finding offers a novel therapeutic strategy against the "undruggable" c-Myc, develops a new targeted therapy for c-Myc/PD-L1 and provides a treatment option for the TNBC.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaigai Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Begg LR, Orriols AM, Zannikou M, Yeh C, Vadlamani P, Kanojia D, Bolin R, Dunne SF, Balakrishnan S, Camarda R, Roth D, Zielinski-Mozny NA, Yau C, Vassilopoulos A, Huang TH, Kim KYA, Horiuchi D. S100A8/A9 predicts response to PIM kinase and PD-1/PD-L1 inhibition in triple-negative breast cancer mouse models. COMMUNICATIONS MEDICINE 2024; 4:22. [PMID: 38378783 PMCID: PMC10879183 DOI: 10.1038/s43856-024-00444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. METHODS We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. RESULTS Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. CONCLUSIONS Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.
Collapse
Affiliation(s)
- Lauren R Begg
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adrienne M Orriols
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Markella Zannikou
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chen Yeh
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biostatistics Collaboration Center, Northwestern University, Chicago, IL, USA
- Rush University Medical Center, Chicago, IL, USA
| | | | - Deepak Kanojia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mythic Therapeutics, Waltham, MA, USA
| | - Rosemary Bolin
- Center for Comparative Medicine, Northwestern University, Chicago, IL, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Sara F Dunne
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL, USA
| | - Sanjeev Balakrishnan
- University of California, San Francisco, San Francisco, CA, USA
- Pulze.ai, San Francisco, CA, USA
| | - Roman Camarda
- University of California, San Francisco, San Francisco, CA, USA
- Novo Ventures US, Inc., San Francisco, CA, USA
| | - Diane Roth
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicolette A Zielinski-Mozny
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Comparative Medicine, Northwestern University, Chicago, IL, USA
| | - Christina Yau
- University of California, San Francisco, San Francisco, CA, USA
| | - Athanassios Vassilopoulos
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- AbbVie, Inc., North Chicago, IL, USA
| | - Tzu-Hsuan Huang
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kwang-Youn A Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biostatistics Collaboration Center, Northwestern University, Chicago, IL, USA
| | - Dai Horiuchi
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Lei X, Liao R, Chen X, Wang Z, Cao Q, Bai L, Ma C, Deng X, Ma Y, Wu X, Li J, Dai Z, Dong C. IMPA2 promotes basal-like breast cancer aggressiveness by a MYC-mediated positive feedback loop. Cancer Lett 2024; 582:216527. [PMID: 38048842 DOI: 10.1016/j.canlet.2023.216527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive subtype with poor prognosis; however, the mechanisms underlying aggressiveness in BLBC remain poorly understood. In this study, we showed that in contrast to other subtypes, inositol monophosphatase 2 (IMPA2) was dramatically increased in BLBC. Mechanistically, IMPA2 expression was upregulated due to copy number amplification, hypomethylation of IMPA2 promoter and MYC-mediated transcriptional activation. IMPA2 promoted MI-PI cycle and IP3 production, and IP3 then elevated intracellular Ca2+ concentration, leading to efficient activation of NFAT1. In turn, NFAT1 up-regulated MYC expression, thereby fulfilling a positive feedback loop that enhanced aggressiveness of BLBC cells. Knockdown of IMPA2 expression caused the inhibition of tumorigenicity and metastasis of BLBC cells in vitro and in vivo. Clinically, high IMPA2 expression was strongly correlated with large tumor size, high grade, metastasis and poor survival, indicating poor prognosis in breast cancer patients. These findings suggest that IMPA2-mediated MI-PI cycle allows crosstalk between metabolic and oncogenic pathways to promote BLBC progression.
Collapse
Affiliation(s)
- Xingyu Lei
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruocen Liao
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenzhen Wang
- Department of Ultrasound Medicine, Cancer Center, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qianhua Cao
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Longchang Bai
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chenglong Ma
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinyue Deng
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yihua Ma
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xuebiao Wu
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathophysiology, Gannan Medical University, Gannan, China
| | - Jun Li
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhijun Dai
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Karati D, Saha A, Roy S, Mukherjee S. PIM Kinase Inhibitors as Novel Promising Therapeutic Scaffolds in Cancer Therapy. Curr Top Med Chem 2024; 24:2489-2508. [PMID: 39297470 DOI: 10.2174/0115680266321659240906114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Ankur Saha
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| |
Collapse
|
14
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Broeker CD, Ortiz MMO, Murillo MS, Andrechek ER. Integrative multi-omic sequencing reveals the MMTV-Myc mouse model mimics human breast cancer heterogeneity. Breast Cancer Res 2023; 25:120. [PMID: 37805590 PMCID: PMC10559619 DOI: 10.1186/s13058-023-01723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Breast cancer is a complex and heterogeneous disease with distinct subtypes and molecular profiles corresponding to different clinical outcomes. Mouse models of breast cancer are widely used, but their relevance in capturing the heterogeneity of human disease is unclear. Previous studies have shown the heterogeneity at the gene expression level for the MMTV-Myc model, but have only speculated on the underlying genetics. METHODS Tumors from the microacinar, squamous, and EMT histological subtypes of the MMTV-Myc mouse model of breast cancer underwent whole genome sequencing. The genomic data obtained were then integrated with previously obtained matched sample gene expression data and extended to additional samples of each histological subtype, totaling 42 gene expression samples. High correlation was observed between genetic copy number events and resulting gene expression by both Spearman's rank correlation coefficient and the Kendall rank correlation coefficient. These same genetic events are conserved in humans and are indicative of poor overall survival by Kaplan-Meier analysis. A supervised machine learning algorithm trained on METABRIC gene expression data was used to predict the analogous human breast cancer intrinsic subtype from mouse gene expression data. RESULTS Herein, we examine three common histological subtypes of the MMTV-Myc model through whole genome sequencing and have integrated these results with gene expression data. Significantly, key genomic alterations driving cell signaling pathways were well conserved within histological subtypes. Genomic changes included frequent, co-occurring mutations in KIT and RARA in the microacinar histological subtype as well as SCRIB mutations in the EMT subtype. EMT tumors additionally displayed strong KRAS activation signatures downstream of genetic activating events primarily ascribed to KRAS activating mutations, but also FGFR2 amplification. Analogous genetic events in human breast cancer showed stark decreases in overall survival. In further analyzing transcriptional heterogeneity of the MMTV-Myc model, we report a supervised machine learning model that classifies MMTV-Myc histological subtypes and other mouse models as being representative of different human intrinsic breast cancer subtypes. CONCLUSIONS We conclude the well-established MMTV-Myc mouse model presents further opportunities for investigation of human breast cancer heterogeneity.
Collapse
Affiliation(s)
- Carson D Broeker
- Department of Biochemistry and Molecular Biology, Michigan State University, 567 Wilson Road, BPS Room 2120, East Lansing, MI, 48824, USA
| | - Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, 567 Wilson Road, BPS Room 2120, East Lansing, MI, 48824, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 South Shaw Lane, Engineering Building Room 1508C, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 South Shaw Lane, Engineering Building Room 1508C, East Lansing, MI, 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 567 Wilson Road, BPS Room 2194, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Begg LR, Orriols AM, Zannikou M, Yeh C, Vadlamani P, Kanojia D, Bolin R, Dunne SF, Balakrishnan S, Camarda R, Roth D, Zielinski-Mozny NA, Yau C, Vassilopoulos A, Huang TH, Kim KYA, Horiuchi D. S100A8/A9 predicts triple-negative breast cancer response to PIM kinase and PD-1/PD-L1 inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558870. [PMID: 37790346 PMCID: PMC10542194 DOI: 10.1101/2023.09.21.558870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
It remains elusive why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well. Our retrospective analysis of historical gene expression datasets reveals that increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors is robustly associated with subsequent disease progression in TNBC. Although it has recently gained recognition as a potential anticancer target, S100A8/A9 has not been integrated into clinical study designs evaluating molecularly targeted therapies. Our small molecule screen has identified PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Furthermore, combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Importantly, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Thus, our data suggest that S100A8/A9 could be a predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC and encourage the development of S100A8/A9-based liquid biopsy tests.
Collapse
|
17
|
Ang HX, Sutiman N, Deng XL, Liu A, Cerda-Smith CG, Hutchinson HM, Kim H, Bartelt LC, Chen Q, Barrera A, Lin J, Sheng Z, McDowell IC, Reddy TE, Nicchitta CV, Wood KC. Cooperative regulation of coupled oncoprotein synthesis and stability in triple-negative breast cancer by EGFR and CDK12/13. Proc Natl Acad Sci U S A 2023; 120:e2221448120. [PMID: 37695916 PMCID: PMC10515179 DOI: 10.1073/pnas.2221448120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Evidence has long suggested that epidermal growth factor receptor (EGFR) may play a prominent role in triple-negative breast cancer (TNBC) pathogenesis, but clinical trials of EGFR inhibitors have yielded disappointing results. Using a candidate drug screen, we identified that inhibition of cyclin-dependent kinases 12 and 13 (CDK12/13) dramatically sensitizes diverse models of TNBC to EGFR blockade. This combination therapy drives cell death through the 4E-BP1-dependent suppression of the translation and translation-linked turnover of driver oncoproteins, including MYC. A genome-wide CRISPR/Cas9 screen identified the CCR4-NOT complex as a major determinant of sensitivity to the combination therapy whose loss renders 4E-BP1 unresponsive to drug-induced dephosphorylation, thereby rescuing MYC translational suppression and promoting MYC stability. The central roles of CCR4-NOT and 4E-BP1 in response to the combination therapy were further underscored by the observation of CNOT1 loss and rescue of 4E-BP1 phosphorylation in TNBC cells that naturally evolved therapy resistance. Thus, pharmacological inhibition of CDK12/13 reveals a long-proposed EGFR dependence in TNBC that functions through the cooperative regulation of translation-coupled oncoprotein stability.
Collapse
Affiliation(s)
- Hazel X. Ang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Natalia Sutiman
- Duke-National University of Singapore Medical School,Singapore169857, Singapore
| | - Xinyue L. Deng
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Annie Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
- Department of Surgery, Duke University School of Medicine, Durham, NC22710
| | - Christian G. Cerda-Smith
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Haley M. Hutchinson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Holly Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Luke C. Bartelt
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Qiang Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, NC22710
| | - Alejandro Barrera
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Jiaxing Lin
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Zhecheng Sheng
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Ian C. McDowell
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Timothy E. Reddy
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | | | - Kris C. Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| |
Collapse
|
18
|
Doha ZO, Wang X, Calistri NL, Eng J, Daniel CJ, Ternes L, Kim EN, Pelz C, Munks M, Betts C, Kwon S, Bucher E, Li X, Waugh T, Tatarova Z, Blumberg D, Ko A, Kirchberger N, Pietenpol JA, Sanders ME, Langer EM, Dai MS, Mills G, Chin K, Chang YH, Coussens LM, Gray JW, Heiser LM, Sears RC. MYC Deregulation and PTEN Loss Model Tumor and Stromal Heterogeneity of Aggressive Triple-Negative Breast Cancer. Nat Commun 2023; 14:5665. [PMID: 37704631 PMCID: PMC10499828 DOI: 10.1038/s41467-023-40841-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.
Collapse
Affiliation(s)
- Zinab O Doha
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Department of medical laboratory technology, Taibah University, Al-Madinah al-Munawwarah, Saudi Arabia
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nicholas L Calistri
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Eng
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Luke Ternes
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Eun Na Kim
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - Michael Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Courtney Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sunjong Kwon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Xi Li
- Division of Oncologic Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Trent Waugh
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Zuzana Tatarova
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Dylan Blumberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Ko
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Nell Kirchberger
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon Mills
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Division of Oncologic Sciences, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
19
|
Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel) 2023; 15:4164. [PMID: 37627192 PMCID: PMC10452610 DOI: 10.3390/cancers15164164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling undertaken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics, transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby enriching the field of personalized medicine in breast cancer. The comparison between traditional and single-cell transcriptomics has identified unique gene expression patterns and facilitated the understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer subtypes by illuminating intricate protein expression patterns and their post-translational modifications. The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex dynamics of protein regulation and interaction. Despite these advancements, this review underscores the need for a holistic integration of multiple 'omics' strategies to fully decipher breast cancer heterogeneity. Such integration not only ensures a comprehensive understanding of breast cancer's molecular complexities, but also promotes the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
20
|
Smrekar K, Belyakov A, Jin K. Crosstalk between triple negative breast cancer and microenvironment. Oncotarget 2023; 14:284-293. [PMID: 36999995 PMCID: PMC10064880 DOI: 10.18632/oncotarget.28397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Although many advances have been made in the treatment of breast cancer, for the triple negative breast cancer (TNBC) these therapies have not significantly increased overall survival. Tumor microenvironment (TME) plays an essential role to develop and control TNBC progression. Many preclinical and clinical studies are ongoing to treat patients with TNBC disease, but the effective therapies are currently not available. Here, we have reviewed recent progress in understanding of TNBC and advance in defining mechanisms of TNBC therapies and potential therapeutic strategies to overcome TNBC.
Collapse
Affiliation(s)
- Karly Smrekar
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY 12208, USA
| | - Artem Belyakov
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY 12208, USA
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY 12208, USA
| |
Collapse
|
21
|
Song WM, Chia PL, Zhou X, Walsh M, Silva J, Zhang B. Pseudo-temporal dynamics of chemoresistant triple negative breast cancer cells reveal EGFR/HER2 inhibition as synthetic lethal during mid-neoadjuvant chemotherapy. iScience 2023; 26:106064. [PMID: 36824282 PMCID: PMC9942122 DOI: 10.1016/j.isci.2023.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In the absence of targetable hormonal axes, chemoresistance for triple-negative breast cancer (TNBC) often compromises patient outcomes. To investigate the underlying tumor dynamics, we performed trajectory analysis on the single-nuclei RNA-seq (snRNA-seq) of chemoresistant tumor clones during neoadjuvant chemotherapy (NAC). It revealed a common tumor trajectory across multiple patients with HER2-like expansions during NAC. Genome-wide CRISPR-Cas9 knock-out on mammary epithelial cells revealed chemosensitivity-promoting knock-outs were up-regulated along the tumor trajectory. Furthermore, we derived a consensus gene signature of TNBC chemoresistance by comparing the trajectory transcriptome with chemoresistant transcriptomes from TNBC cell lines and poor prognosis patient samples to predict FDA-approved drugs, including afatinib (pan-HER inhibitor), targeting the consensus signature. We validated the synergistic efficacy of afatinib and paclitaxel in chemoresistant TNBC cells and confirmed pharmacological suppression of the consensus signature. The study provides a dynamic model of chemoresistant tumor transcriptome, and computational framework for pharmacological intervention.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Pei-Ling Chia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
22
|
Peng P, Qiang X, Li G, Li L, Ni S, Yu Q, Sourd L, Marangoni E, Hu C, Wang D, Wu D, Wu F. Tinengotinib (TT-00420), a Novel Spectrum-Selective Small-Molecule Kinase Inhibitor, Is Highly Active Against Triple-Negative Breast Cancer. Mol Cancer Ther 2023; 22:205-214. [PMID: 36223547 PMCID: PMC9890131 DOI: 10.1158/1535-7163.mct-22-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous cancer lacking actionable targets. Using a phenotypic screen of TNBC cells, we discovered a novel multiple kinase inhibitor tinengotinib (TT-00420) that strongly inhibited Aurora A/B, FGFR1/2/3, VEGFRs, JAK1/2, and CSF1R in biochemical assays. Exposure to tinengotinib specifically inhibited proliferation across all subtypes of TNBC in vitro and in vivo, while leaving luminal breast cancer cells intact. Incubation of HCC1806 with tinengotinib led to dose-dependent downregulation of genes essential for TNBC cell growth and proliferation. Studies revealed that the potential mechanism of action of tinengotinib involved, predominantly, inhibition of Aurora A or B kinase activity, while inhibition of other pathways contributed to suppression of potency and activity. In vitro treatment of TNBC cell lines or in vivo administration in a syngeneic model with tinengotinib resulted in up-regulation of CXCL10 and 11 or diminished tumor-associated macrophage (TAM) infiltration. Tinengotinib represents a novel combinatorial inhibitory mechanism to treat TNBC. The phase I trial of tinengotinib was completed (ClinicalTrials.gov identifier: NCT03654547).
Collapse
Affiliation(s)
- Peng Peng
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Xiaoyan Qiang
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Guoyu Li
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Lin Li
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Shumao Ni
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Qi Yu
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Laura Sourd
- Translational Research Department, Institute Curie, PSL Research University, Paris, France
| | - Elisabetta Marangoni
- Translational Research Department, Institute Curie, PSL Research University, Paris, France
| | - Chao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di Wu
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Frank Wu
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| |
Collapse
|
23
|
Carrillo P, Bernal M, Téllez-Quijorna C, Marrero AD, Vidal I, Castilla L, Caro C, Domínguez A, García-Martín ML, Quesada AR, Medina MA, Martínez-Poveda B. The synthetic molecule stauprimide impairs cell growth and migration in triple-negative breast cancer. Biomed Pharmacother 2023; 158:114070. [PMID: 36526536 DOI: 10.1016/j.biopha.2022.114070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Stauprimide, a semi-synthetic derivative of staurosporine, is known mainly for its potent differentiation-enhancing properties in embryonic stem cells. Here, we studied the effects of stauprimide in cell growth and migration of triple-negative breast cancer cells in vitro, evaluating its potential antitumoral activity in an orthotopic mouse model of breast cancer in vivo. Our results from survival curves, EdU incorporation, cell cycle analysis and annexin-V detection in MDA-MB-231 cells indicated that stauprimide inhibited cell proliferation, arresting cell cycle in G2/M without induction of apoptosis. A decrease in the migratory capability of MDA-MB-231 was also assessed in response to stauprimide. In this work we pointed to a mechanism of action of stauprimide involving the modulation of ERK1/2, Akt and p38 MAPK signalling pathways, and the downregulation of MYC in MDA-MB-231 cells. In addition, orthotopic MDA-MB-231 xenograft and 4T1 syngeneic models suggested an effect of stauprimide in vivo, increasing the necrotic core of tumors and reducing metastasis in lung and liver of mice. Together, our results point to the promising role of stauprimide as a putative therapeutic agent in triple-negative breast cancer.
Collapse
Affiliation(s)
- P Carrillo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - M Bernal
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - C Téllez-Quijorna
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain
| | - A D Marrero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - I Vidal
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - L Castilla
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - C Caro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - A Domínguez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - M L García-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - A R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain; CIBER de Enfermedades Raras (CIBERER, Instituto de Salud Carlos III), Spain
| | - M A Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain; CIBER de Enfermedades Raras (CIBERER, Instituto de Salud Carlos III), Spain
| | - B Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/Severo Ochoa, 35, 29590, Málaga, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV, Instituto de Salud Carlos III, Madrid), Spain.
| |
Collapse
|
24
|
Chen Y, Zhang XF, Ou-Yang L. Inferring cancer common and specific gene networks via multi-layer joint graphical model. Comput Struct Biotechnol J 2023; 21:974-990. [PMID: 36733706 PMCID: PMC9873583 DOI: 10.1016/j.csbj.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease caused primarily by genetic variants. Reconstructing gene networks within tumors is essential for understanding the functional regulatory mechanisms of carcinogenesis. Advances in high-throughput sequencing technologies have provided tremendous opportunities for inferring gene networks via computational approaches. However, due to the heterogeneity of the same cancer type and the similarities between different cancer types, it remains a challenge to systematically investigate the commonalities and specificities between gene networks of different cancer types, which is a crucial step towards precision cancer diagnosis and treatment. In this study, we propose a new sparse regularized multi-layer decomposition graphical model to jointly estimate the gene networks of multiple cancer types. Our model can handle various types of gene expression data and decomposes each cancer-type-specific network into three components, i.e., globally shared, partially shared and cancer-type-unique components. By identifying the globally and partially shared gene network components, our model can explore the heterogeneous similarities between different cancer types, and our identified cancer-type-unique components can help to reveal the regulatory mechanisms unique to each cancer type. Extensive experiments on synthetic data illustrate the effectiveness of our model in joint estimation of multiple gene networks. We also apply our model to two real data sets to infer the gene networks of multiple cancer subtypes or cell lines. By analyzing our estimated globally shared, partially shared, and cancer-type-unique components, we identified a number of important genes associated with common and specific regulatory mechanisms across different cancer types.
Collapse
Affiliation(s)
- Yuanxiao Chen
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China,Corresponding author.
| |
Collapse
|
25
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
26
|
Yuan C, Wang Z, Wang Z, Liu W, Li G, Meng J, Wu R, Wu Q, Wang J, Mei W. Novel Chiral Ru(II) Complexes as Potential c-myc G-quadruplex DNA Stabilizers Inducing DNA Damage to Suppress Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 24:ijms24010203. [PMID: 36613647 PMCID: PMC9820592 DOI: 10.3390/ijms24010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Currently, effective drugs for triple-negative breast cancer (TNBC) are lacking in clinics. c-myc is one of the core members during TNBC tumorigenesis, and G-rich sequences in the promoter region can form a G-quadruplex conformation, indicating that the c-myc inhibitor is a possible strategy to fight cancer. Herein, a series of chiral ruthenium(II) complexes ([Ru(bpy)2(DPPZ-R)](ClO4)2, Λ/Δ-1: R = -H, Λ/Δ-2: R = -Br, Λ/Δ-3: R = -C≡C(C6H4)NH2) were researched based on their interaction with c-myc G-quadruplex DNA. Λ-3 and Δ-3 show high affinity and stability to decrease their replication. Additional studies showed that Λ-3 and Δ-3 exhibit higher inhibition against different tumor cells than other molecules. Δ-3 decreases the viability of MDA-MB-231 cells with an IC50 of 25.51 μM, which is comparable with that of cisplatin, with an IC50 of 25.9 μM. Moreover, Δ-3 exhibits acceptable cytotoxic activity against MDA-MB-231 cells in a zebrafish xenograft breast cancer model. Further studies suggested that Δ-3 decreases the viability of MDA-MB-231 cells predominantly through DNA-damage-mediated apoptosis, which may be because Δ-3 can induce DNA damage. In summary, the results indicate that Ru(II) complexes containing alkinyl groups can be developed as c-myc G-quadruplex DNA binders to block TNBC progression.
Collapse
Affiliation(s)
- Chanling Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zongtao Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wentao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guohu Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlan Meng
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruzhen Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiong Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 530316, China
- Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (Q.W.); (W.M.)
| | - Jiacheng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (Q.W.); (W.M.)
| |
Collapse
|
27
|
Endah E, Wulandari F, Putri Y, Jenie RI, Meiyanto E. Piperine Increases Pentagamavunon-1 Anti-cancer Activity on 4T1 Breast Cancer Through Mitotic Catastrophe Mechanism and Senescence with Sharing Targeting on Mitotic Regulatory Proteins. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123820. [PMID: 35765510 PMCID: PMC9191230 DOI: 10.5812/ijpr.123820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 06/15/2023]
Abstract
Pentagamavunon-1 performs more potent anti-cancer effects than curcumin against various cancer cells, but it remains to be optimized. Piperine shows the activity as an enhancer of a therapeutic agent. This study expects to achieve higher effectiveness of PGV-1 on 4T1 breast cancer cells through co-treatment with piperine with exploring the effect of cytotoxicity, mitotic catastrophe, cellular senescence, and target proteins of PGV-1 and piperine on the regulation of mitosis in TNBC cells (4T1). The assays emphasize MTT assay, May Grünwald-Giemsa staining, SA-β-galactosidase assay, and bioinformatics analysis, respectively, to elicit the respected activities. The results revealed that PGV-1 performed a cytotoxic effect with an IC50 value of 9 µM while piperine showed a lower cytotoxic effect with an IC50 value of 800 µM on 4T1 cells 24 h treatment. However, the combination treatment of both showed a synergistic cytotoxic enhancement effect with an average CI value < 1. Furthermore, the combination of PGV-1 and piperine induced mitotic catastrophe and senescence better than the single treatment. Treatment of 1 µM of PGV-1 and 400 µM of piperine increased the percentage of senescent cells by 33%. Bioinformatics analysis revealed that PGV-1 and piperine target proteins play a role in mitotic regulation, namely CDK1, KIF11, AURKA, AURKB, and PLK1, to contribute to mitotic catastrophe. Therefore, piperine increases the effectiveness of PGV-1 to suppress 4T1 cells growth synergistically that may occur through mitotic catastrophe and senescence targeting on mitotic regulatory proteins.
Collapse
Affiliation(s)
- Endah Endah
- Department of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yurananda Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
28
|
Fatima M, Abourehab MAS, Aggarwal G, Jain GK, Sahebkar A, Kesharwani P. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today 2022; 27:103353. [PMID: 36099963 DOI: 10.1016/j.drudis.2022.103353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Extensive research efforts have been made and are still ongoing in the search for an ideal anti-cancer therapy. Almost all chemotherapeutics require a carrier or vehicle, a drug delivery system that can transport the drug specifically to the targeted cancer cells, sparing normal cells. Cell-penetrating peptides (CPPs) provide an effective and efficient pathway for the intra-cellular transportation of various bioactive molecules in several biomedical therapies. They are now well-recognized as facilitators of intracellular cargo delivery and have excellent potential for targeted anti-cancer therapy. In this review, we explain CPPs, recent progress in the development of new CPPs, and their utilization to transport cargoes such as imaging agents, chemotherapeutics, and short-interfering RNAs (siRNA) into tumor cells, contributing to the advancement of novel tumor-specific delivery systems.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
29
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
30
|
Ferraiuolo RM, Fifield BA, Hamm C, Porter LA. Stabilization of c-Myc by the atypical cell cycle regulator, Spy1, decreases efficacy of breast cancer treatments. Breast Cancer Res Treat 2022; 196:17-30. [PMID: 36029387 DOI: 10.1007/s10549-022-06715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE c-Myc is frequently upregulated in breast cancers, however, targeting c-Myc has proven to be a challenge. Targeting of downstream mediators of c-Myc, such as the 'cyclin-like' cell cycle regulator Spy1, may be a viable therapeutic option in a subset of breast cancer subtypes. METHODS Mouse mammary tumor cells isolated from MMTV-Myc mice and human breast cancer cell lines were used to manipulate Spy1 levels followed by tamoxifen or chemotherapeutic treatment with a variety of endpoints. Patient samples from TNBC patients were obtained and constructed into a TMA and stained for c-Myc and Spy1 protein levels. RESULTS Over time, MMTV-Myc cells show a decreased response to tamoxifen treatment with increasing levels of Spy1 in the tamoxifen-resistant cells. shRNA against Spy1 re-establishes tamoxifen sensitivity. Spy1 was found to be highly elevated in human TNBC cell and patient samples, correlating to c-Myc protein levels. c-Myc was found to be stabilized by Spy1 and knocking down Spy1 in TNBC cells shows a significant increase in response to chemotherapy treatments. CONCLUSION Understanding the interplay between protein expression level and response to treatment is a critical factor in developing novel treatment options for breast cancer patients. These data have shown a connection between Spy1 and c-Myc protein levels in more aggressive breast cancer cells and patient samples. Furthermore, targeting c-Myc has proven difficult, these data suggest targeting Spy1 even when c-Myc is elevated can confer an advantage to current chemotherapies.
Collapse
Affiliation(s)
- Rosa-Maria Ferraiuolo
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Bre-Anne Fifield
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.,WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada
| | - Caroline Hamm
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.,Windsor Regional Cancer Centre, Windsor Regional Hospital, Windsor, ON, N9C 3E6, Canada.,Western University, Windsor, ON, N9B 3P4, Canada.,WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada. .,WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
31
|
Dai Y, Hu S, Bai S, Li J, Yang N, Zhai P, Zhao B, Chen Y, Wu X. CDK1 promotes the proliferation of melanocytes in Rex rabbits. Genes Genomics 2022; 44:1191-1199. [PMID: 35951158 DOI: 10.1007/s13258-022-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The fur color constitutes one of the most important economic characteristics of fur animals and is determined by the content of melanin. A previous study has shown that the cyclin-dependent kinase 1 (CDK1) is a member of the protein kinase family, involved in forming the color of the fur in Rex rabbits. However, its effect on the melanocytes remains unclear. OBJECTIVE This study aimed to provide evidence for the role of CDK1 in melanogenesis. METHODS This study measured the expression of CDK1 in Rex rabbit skins of six coat colors using qRT-PCR. The CDK1-mediated regulation of the pigmentation-related genes and cyclin-dependent kinases were analyzed. The melanin content, proliferation, and apoptosis of the melanocytes were analyzed using the NaOH, CCK8, and Annexin V-FITC methods. RESULTS The CDK1 expression in the skin of the rex rabbits with different coat colors was found to be regular, and the expression level was found to be the highest in the skin of the black rex rabbits (P < 0.05). The overexpression/knockdown of CDK1 was found to significantly increase/decrease the melanin content in the melanocytes (P < 0.01). Besides, CDK1 was found to significantly promote the proliferation of the melanocyte and inhibit apoptosis (P < 0.01). Furthermore, the overexpression of CDK1 was found to significantly affect the expression of the other melanin-related genes like TYR, PMEL, DCT, as well as the mRNA expression of the cyclin-dependent kinases CDK4, CDK6, CDK8, CCNB1. CONCLUSIONS The results indicated that CDK1 can serve as a key gene regulating melanogenesis, melanocyte proliferation, and apoptosis, providing a new theoretical basis for studying the mechanism by which the different colors of the fur evolve in mammals.
Collapse
Affiliation(s)
- Yingying Dai
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Pin Zhai
- Animal Husbandry and Veterinary Research Institute, Jiangsu Academy of Agricultural Sciences, 210000, Nanjing, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
32
|
Hanna A, Nixon MJ, Estrada MV, Sanchez V, Sheng Q, Opalenik SR, Toren AL, Bauer J, Owens P, Mason FM, Cook RS, Sanders ME, Arteaga CL, Balko JM. Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer. Breast Cancer Res 2022; 24:51. [PMID: 35850776 PMCID: PMC9290202 DOI: 10.1186/s13058-022-01542-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
AIM Deregulated signaling pathways are a hallmark feature of oncogenesis and driver of tumor progression. Dual specificity protein phosphatase 4 (DUSP4) is a critical negative regulator of the mitogen-activated protein kinase (MAPK) pathway and is often deleted or epigenetically silenced in tumors. DUSP4 alterations lead to hyperactivation of MAPK signaling in many cancers, including breast cancer, which often harbor mutations in cell cycle checkpoint genes, particularly in TP53. METHODS Using a genetically engineered mouse model, we generated mammary-specific Dusp4-deleted primary epithelial cells to investigate the necessary conditions in which DUSP4 loss may drive breast cancer oncogenesis. RESULTS We found that Dusp4 loss alone is insufficient in mediating tumorigenesis, but alternatively converges with loss in Trp53 and MYC amplification to induce tumorigenesis primarily through chromosome 5 amplification, which specifically upregulates Dbf4, a cell cycle gene that promotes cellular replication by mediating cell cycle checkpoint escape. CONCLUSIONS This study identifies a novel mechanism for breast tumorigenesis implicating Dusp4 loss and p53 mutations in cellular acquisition of Dbf4 upregulation as a driver of cellular replication and cell cycle checkpoint escape.
Collapse
Affiliation(s)
- Ann Hanna
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Mellissa J Nixon
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Early Discovery Oncology, Merck & Co., Boston, MA, USA
| | - M Valeria Estrada
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Violeta Sanchez
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan R Opalenik
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Abigail L Toren
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Joshua Bauer
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Phillip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Frank M Mason
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Rebecca S Cook
- Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
| | - Melinda E Sanders
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwester, Dallas, TX, USA
| | - Justin M Balko
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
| |
Collapse
|
33
|
Guo X, Chen H, Zhou Y, Shen L, Wu S, Chen Y. Cyclin-dependent kinase inhibition and its intersection with immunotherapy in breast cancer: more than CDK4/6 inhibition. Expert Opin Investig Drugs 2022; 31:933-944. [PMID: 35786092 DOI: 10.1080/13543784.2022.2097067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cyclin-dependent kinase (CDK) 4/6 inhibitors (CDK4/6i) have had clinical success in treating hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer. Notably, CDK4/6i have expanded to the neoadjuvant setting for early breast cancer and other cancer types and potently synergize with immunotherapy. Other CDKs, including CDK7, CDK9, and CDK12/13, mainly function in transcriptional processes as well as cell cycle regulation, RNA splicing, and DNA damage response. Inhibiting these CDKs aids in suppressing tumors, reversing drug resistance, increasing drug sensitivity, and enhancing anti-tumor immunity in breast cancer. AREAS COVERED We reviewed the applications of CDK4/6i, CDK7i, CDK9i and CDK12/13i for various breast cancer subtypes and their potentials for combination with immunotherapy. A literature search of PubMed, Embase, and Web of Science was conducted in April 2022. EXPERT OPINION The use of CDK4/6i represents a major milestone in breast cancer treatment. Moreover, transcription-related CDKs play critical roles in tumor development and are promising therapeutic targets for breast cancer. Some relevant clinical studies are underway. More specific and efficient CDKis will undoubtedly be developed and clinically tested. Characterization of their immune-priming effects will promote the development of combination therapies consisting of CDKi and immunotherapy.
Collapse
Affiliation(s)
- Xianan Guo
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huihui Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Shen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun 2022; 13:3671. [PMID: 35760778 PMCID: PMC9237085 DOI: 10.1038/s41467-022-31238-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.
Collapse
|
35
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
36
|
Vittori C, Jeansonne D, Yousefi H, Faia C, Lin Z, Reiss K, Peruzzi F. Mechanisms of miR-3189-3p-mediated inhibition of c-MYC translation in triple negative breast cancer. Cancer Cell Int 2022; 22:204. [PMID: 35642054 PMCID: PMC9158314 DOI: 10.1186/s12935-022-02620-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor, progesterone receptor, and HER2. Our lab previously characterized miR-3189-3p as a microRNA with potent anti-cancer activity against glioblastoma. Here, we hypothesized a similar activity in TNBC cells. As miR-3189-3p is predicted to target a variety of RNA binding proteins, we further hypothesized an inhibitory effect of this miRNA on protein synthesis. METHODS MDA-MB-231 and MDA-MB-468 cells were used to investigate the effect of miR-3189-3p on cell proliferation, migration, and invasion. TGCA database was used to analyze the expression of miR-3189-3p, c-MYC, 4EPB1, and eIF4E in breast cancer. Western blotting and RT-qPCR assays were used to assess the expression of selected proteins and RNAs after transfections. RESULTS Although c-MYC is not a predicted gene target for miR-3189-3p, we discovered that c-MYC protein is downregulated in miRNA-treated TNBC cells. We found that the downregulation of c-MYC by miR-3189-3p occurs in both normal growth conditions and in the absence of serum. The mechanism involved the direct inhibition of eIF4EBP1 by miR-3189-3p. Additionally, we found that miR-3189-3p could negatively affect cap-independent translation mediated by internal ribosome entry sites (IRES) or by m6A. Finally, miR-3189-3p sensitized TNBC cells to doxorubicin. CONCLUSION Overall, results indicated that miR-3189-3p exerts its anti-tumor activity through targeting translational regulatory proteins leading to an impairment in c-MYC translation, and possibly other oncogenic factors, suggesting that miR-3189-3p, alone or in combination, could be a valuable therapeutic approach against a malignancy with few treatment options.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Duane Jeansonne
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Hassan Yousefi
- Department of Biochemistry, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Zhen Lin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center and Tulane Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
37
|
de Kouchkovsky I, Rao A, Carneiro BA, Zhang L, Lewis C, Phone A, Small EJ, Friedlander T, Fong L, Paris PL, Ryan CJ, Szmulewitz RZ, Aggarwal R. A Phase Ib/II Study of the CDK4/6 Inhibitor Ribociclib in Combination with Docetaxel plus Prednisone in Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:1531-1539. [PMID: 35176163 DOI: 10.1158/1078-0432.ccr-21-4302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Ribociclib, a CDK4/6 inhibitor, demonstrates preclinical antitumor activity in combination with taxanes. We evaluated the safety and efficacy of ribociclib plus docetaxel in a phase Ib/II study in metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Patients had chemotherapy-naïve mCRPC with progression on ≥ 1 androgen receptor signaling inhibitor (ARSI). The phase II primary endpoint was 6-month radiographic progression-free survival (rPFS) rate, with an alternative hypothesis of 55% versus 35% historical control. Circulating tumor cells (CTC) were collected at baseline and genomically profiled. RESULT Forty-three patients were enrolled (N = 30 in phase II). Two dose-limiting toxicities were observed (grade 4 neutropenia and febrile neutropenia). The recommended phase II dose (RP2D) and schedule was docetaxel 60 mg/m2 every 21 days plus ribociclib 400 mg/day on days 1-4 and 8-15 with filgrastim on days 5-7. At the RP2D, neutropenia was the most common grade ≥ 3 adverse event (37%); however, no cases of febrile neutropenia were observed. The primary endpoint was met; the 6-month rPFS rate was 65.8% [95% confidence interval (CI): 50.6%-85.5%; P = 0.005] and median rPFS was 8.1 months (95% CI, 6.0-10.0 months). Thirty-two percent of evaluable patients achieved a PSA50 response. Nonamplified MYC in baseline CTCs was associated with longer rPFS (P = 0.052). CONCLUSIONS The combination of intermittent ribociclib plus every-3-weeks docetaxel demonstrated acceptable toxicity and encouraging efficacy in ARSI-pretreated mCRPC. Genomic profiling of CTCs may enrich for those most likely to derive benefit. Further evaluation in a randomized clinical trial is warranted.
Collapse
Affiliation(s)
- Ivan de Kouchkovsky
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Arpit Rao
- Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Benedito A Carneiro
- Department of Medicine, Lifespan Cancer Institute, Brown University, Providence, Rhode Island
| | - Li Zhang
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Catriona Lewis
- School of Medicine, University of California, Irvine, Irvine, California
| | - Audrey Phone
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Eric J Small
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Terence Friedlander
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Lawrence Fong
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Pamela L Paris
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.,Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Charles J Ryan
- Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Russell Z Szmulewitz
- Department of Medicine, University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois
| | - Rahul Aggarwal
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
38
|
Jin XX, Gao C, Wei WX, Jiao C, Li L, Ma BL, Dong C. The role of microRNA-4723-5p regulated by c-myc in triple-negative breast cancer. Bioengineered 2022; 13:9097-9105. [PMID: 35382692 PMCID: PMC9162010 DOI: 10.1080/21655979.2022.2056824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the expression of miRNA regulated by c-myc and its mechanism in three negative breast cancer (TNBC). We constructed MDA-MB-231 cell line with low expression of c-myc by lentivirus short hairpin RNA (shRNA), analyzed the miRNA expression profile of MDA-MB-231 cell line with different expression levels of c-myc by high-throughput sequencing technology, obtained differential miRNA by bioinformatics analysis and statistical analysis, and verified hsa-mir-4723-5p by Quantitative Real-time polymerase chain reaction(QRT-PCR). The target gene of hsa-mir-4723-5p was analyzed by miRDB and miRWalk database. The results showed that there were significant differences in 126 miRNAs in c-myc knockdown cell lines compared with the control group, of which 84 were significantly up-regulated and 42 were significantly down regulated. According to the results of miRNA sequencing, the miRNA closely related to the expression of c-myc was hsa-mir-4723-5p. QRT PCR showed that the expression of hsa-mir-4723-5p was down regulated in TNBC cell line MDA-MB-231 with low expression of c-myc, which was positively correlated with the expression. The target genes of hsa-mir-4723-5p were predicted according to mirdb and mirwalk database. A total of 112 target genes were obtained, and 107 target genes were related to hsa-mir-4723-5p. Through mirdb and mirwalk databases, it was found that the target gene TRAF4 of hsa-mir-4723-5p may be related to cancer pathway and affect tumor metastasis. In conclusion, the hsa-miR-4723-5p regulated by c-myc may be involved.
Collapse
Affiliation(s)
- Xi-Xin Jin
- Department of Breast, Head and Neck Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| | - Chao Gao
- Department of Breast, Head and Neck Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| | - Wen-Xin Wei
- Department of Breast, Head and Neck Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| | - Chong Jiao
- Department of Breast, Head and Neck Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| | - Li Li
- Department of Gynecology and surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| | - Bin-Lin Ma
- Department of Breast, Head and Neck Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| | - Chao Dong
- Department of Breast, Head and Neck Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinijiang, China
| |
Collapse
|
39
|
Koh MZ, Ho WY, Yeap SK, Ali NM, Yong CY, Boo L, Alitheen NB. Exosomal-microRNA transcriptome profiling of Parental and CSC-like MDA-MB-231 cells in response to cisplatin treatment. Pathol Res Pract 2022; 233:153854. [PMID: 35398617 DOI: 10.1016/j.prp.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC, where its effectiveness remains challenged by frequent occurrence of cisplatin resistance. Since acquirement of drug resistance often being associated with presence of cancer stem cells (CSCs), investigation has been conducted, suggesting CSC-like subpopulation to be more resistant to cisplatin than their parental counterpart. On the other hand, plethora evidences showed the transmission of exosomal-miRNAs are capable of promoting drug resistance in breast cancers. In this study, we aim to elucidate the differential expression of exosomal-microRNAs profile and reveal the potential target genes in correlation to cisplatin resistance associated with CSC-like subpopulation by using TNBC cell line (MDA-MB-231). Utilizing next generation sequencing and Nanostring techniques, cisplatin-induced dysregulation of exosomal-miRNAs were evaluated in maximal for CSC-like subpopulation as compared to parental cells. Intriguingly, more oncogenic exosomal-miRNAs profile was detected from treated CSC-like subpopulation, which may correlate to enhancement of drug resistance and maintenance of CSCs. In treated CSC-like subpopulation, unique clusters of exosomal-miRNAs namely miR-221-3p, miR-196a-5p, miR-17-5p and miR-126-3p were predicted to target on six genes (ATXN1, LATS1, GSK3β, ITGA6, JAG1 and MYC), aligned with previous finding which demonstrated dysregulation of these genes in treated CSC-like subpopulation. Our results highlight the potential correlation of exosomal-miRNAs and their target genes as well as novel perspectives of the corresponding pathways that may be essential to contribute to the attenuated cytotoxicity of cisplatin in CSC-like subpopulation.
Collapse
Affiliation(s)
- May Zie Koh
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia.
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia.
| | - Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia.
| | - Chean Yeah Yong
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia.
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
40
|
Cyclin-Dependent Kinase Synthetic Lethality Partners in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23073555. [PMID: 35408915 PMCID: PMC8998982 DOI: 10.3390/ijms23073555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal mediators and effectors of the DNA damage response (DDR) that regulate both the pathway components and proteins involved in repair processes. Synthetic lethality (SL) describes a situation in which two genes are linked in such a way that the lack of functioning of just one maintains cell viability, while depletion of both triggers cell death. Synthetic lethal interactions involving CDKs are now emerging, and this can be used to selectively target tumor cells with DNA repair defects. In this review, SL interactions of CDKs with protooncogene products MYC, poly (ADP-ribose) polymerase (PARP-1), and cellular tumor antigen p53 (TP53) are discussed. The individual roles of each of the SL partners in DDR are described.
Collapse
|
41
|
Kunder R, Velyunskiy M, Dunne SF, Cho BK, Kanojia D, Begg L, Orriols AM, Fleming-Trujillo E, Vadlamani P, Vialichka A, Bolin R, Perrino JN, Roth D, Clutter MR, Zielinski-Mozny NA, Goo YA, Cristofanilli M, Mendillo ML, Vassilopoulos A, Horiuchi D. Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem Biol 2022; 29:358-372.e5. [PMID: 34525344 PMCID: PMC8901784 DOI: 10.1016/j.chembiol.2021.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Triple-negative breast cancer (TNBC) is the breast cancer subtype with the poorest clinical outcome. The PIM family of kinases has emerged as a factor that is both overexpressed in TNBC and associated with poor outcomes. Preclinical data suggest that TNBC with an elevated MYC expression is sensitive to PIM inhibition. However, clinical observations indicate that the efficacy of PIM inhibitors as single agents may be limited, suggesting the need for combination therapies. Our screening effort identifies PIM and the 20S proteasome inhibition as the most synergistic combination. PIM inhibitors, when combined with proteasome inhibitors, induce significant antitumor effects, including abnormal accumulation of poly-ubiquitinated proteins, increased proteotoxic stress, and the inability of NRF1 to counter loss in proteasome activity. Thus, the identified combination could represent a rational combination therapy against MYC-overexpressing TNBC that is readily translatable to clinical investigations.
Collapse
Affiliation(s)
- Ratika Kunder
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michelle Velyunskiy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Adlai E. Stevenson High School, Lincolnshire, IL 60069, USA
| | - Sara F Dunne
- High-Throughput Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Byoung-Kyu Cho
- Proteomics Center for Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Adrienne M Orriols
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Erica Fleming-Trujillo
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pranathi Vadlamani
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alesia Vialichka
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rosemary Bolin
- Center for Comparative Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica N Perrino
- Center for Comparative Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diane Roth
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew R Clutter
- High-Throughput Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Nicolette A Zielinski-Mozny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Comparative Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center for Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Massimo Cristofanilli
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute for Epigenetics, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Dai Horiuchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Nelson LJ, Castro KE, Xu B, Li J, Dinh NB, Thompson JM, Woytash J, Kipp KR, Razorenova OV. Synthetic lethality of cyclin-dependent kinase inhibitor Dinaciclib with VHL-deficiency allows for selective targeting of clear cell renal cell carcinoma. Cell Cycle 2022; 21:1103-1119. [PMID: 35240916 PMCID: PMC9037521 DOI: 10.1080/15384101.2022.2041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clear cell renal cell carcinoma (CC-RCC) remains one of the most deadly forms of kidney cancer despite recent advancements in targeted therapeutics, including tyrosine kinase and immune checkpoint inhibitors. Unfortunately, these therapies have not been able to show better than a 16% complete response rate. In this study we evaluated a cyclin-dependent kinase inhibitor, Dinaciclib, as a potential new targeted therapeutic for CC-RCC. In vitro, Dinaciclib showed anti-proliferative and pro-apoptotic effects on CC-RCC cell lines in Cell Titer Glo, Crystal Violet, FACS-based cell cycle analysis, and TUNEL assays. Additionally, these responses were accompanied by a reduction in phospho-Rb and pro-survival MCL-1 cell signaling responses, as well as the induction of caspase 3 and PARP cleavage. In vivo, Dinaciclib efficiently inhibited primary tumor growth in an orthotopic, patient-derived xenograft-based CC-RCC mouse model. Importantly, Dinaciclib targeted both CD105+ cancer stem cells (CSCs) and CD105− non-CSCs in vivo. Moreover, normal cell lines, as well as a CC-RCC cell line with re-expressed von-Hippel Lindau (VHL) tumor suppressor gene, were protected from Dinaciclib-induced cytotoxicity when not actively dividing, indicating an effective therapeutic window due to synthetic lethality of Dinaciclib treatment with VHL loss. Thus, Dinaciclib represents a novel potential therapeutic for CC-RCC.
Collapse
Affiliation(s)
- Luke J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kyleen E Castro
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Binzhi Xu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Junyi Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Nguyen B Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jordan M Thompson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jordan Woytash
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | | | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
43
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
44
|
Ihmaid SK, Aljuhani A, Alsehli M, Rezki N, Alawi A, Aldhafiri AJ, Salama SA, Ahmed HE, Aouad MR. Discovery of triaromatic flexible agents bearing 1,2,3-Triazole with selective and potent anti-breast cancer activity and CDK9 inhibition supported by molecular dynamics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Decker JT, Ma JA, Shea LD, Jeruss JS. Implications of TGFβ Signaling and CDK Inhibition for the Treatment of Breast Cancer. Cancers (Basel) 2021; 13:5343. [PMID: 34771508 PMCID: PMC8582459 DOI: 10.3390/cancers13215343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
TGFβ signaling enacts tumor-suppressive functions in normal cells through promotion of several cell regulatory actions including cell-cycle control and apoptosis. Canonical TGFβ signaling proceeds through phosphorylation of the transcription factor, SMAD3, at the C-terminus of the protein. During oncogenic progression, this tumor suppressant phosphorylation of SMAD3 can be inhibited. Overexpression of cyclins D and E, and subsequent hyperactivation of cyclin-dependent kinases 2/4 (CDKs), are often observed in breast cancer, and have been associated with poor prognosis. The noncanonical phosphorylation of SMAD3 by CDKs 2 and 4 leads to the inhibition of tumor-suppressive function of SMAD3. As a result, CDK overactivation drives oncogenic progression, and can be targeted to improve clinical outcomes. This review focuses on breast cancer, and highlights advances in the understanding of CDK-mediated noncanonical SMAD3 phosphorylation. Specifically, the role of aberrant TGFβ signaling in oncogenic progression and treatment response will be examined to illustrate the potential for therapeutic discovery in the context of cyclins/CDKs and SMAD3.
Collapse
Affiliation(s)
- Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| |
Collapse
|
46
|
Wei D, Wang H, Zeng Q, Wang W, Hao B, Feng X, Wang P, Song N, Kan W, Huang G, Zhou X, Tan M, Zhou Y, Huang R, Li J, Chen XH. Discovery of Potent and Selective CDK9 Degraders for Targeting Transcription Regulation in Triple-Negative Breast Cancer. J Med Chem 2021; 64:14822-14847. [PMID: 34538051 DOI: 10.1021/acs.jmedchem.1c01350] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with very limited treatment options due to the lack of efficient targeted therapies and thus still remains clinically challenging. Targeting transcription-associated cyclin-dependent kinases to remodel transcriptional regulation shows great promise in cancer therapy. Herein, we report the synthesis, optimization, and evaluation of new series of heterobifunctional molecules as highly selective and efficacious CDK9 degraders, enabling potent inhibition of TNBC cell growth and rapidly targeted degradation of CDK9. Moreover, the most potent CDK9 degrader (compound 45) induces cell apoptosis in vitro and inhibits tumor growth in the MDA-MB-231 TNBC model. Furthermore, the RNA-seq, immunohistochemistry assays demonstrate that the CDK9 degrader downregulates the downstream targets, such as MYC, at the transcriptional level, resulting apoptosis in TNBC cells. Our work establishes that 45 is a highly potent and efficacious CDK9 degrader for targeting transcription regulation, which represents an effective strategy and great potential as a new targeted therapy for TNBC.
Collapse
Affiliation(s)
- Dan Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlin Wang
- College of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghe Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xule Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guifang Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan, Guangdong 528400, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Li
- College of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan, Guangdong 528400, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiao-Hua Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
47
|
Hassan MS, Cwidak N, Johnson C, Däster S, Eppenberger-Castori S, Awasthi N, Li J, Schwarz MA, von Holzen U. Therapeutic Potential of the Cyclin-Dependent Kinase Inhibitor Flavopiridol on c-Myc Overexpressing Esophageal Cancer. Front Pharmacol 2021; 12:746385. [PMID: 34621175 PMCID: PMC8490822 DOI: 10.3389/fphar.2021.746385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tumors with elevated c-Myc expression often exhibit a highly aggressive phenotype, and c-Myc amplification has been shown to be frequent in esophageal cancer. Emerging data suggests that synthetic lethal interactions between c-Myc pathway activation and small molecules inhibition involved in cell cycle signaling can be therapeutically exploited to preferentially kill tumor cells. We therefore investigated whether exploiting elevated c-Myc expression is effective in treating esophageal cancer with the CDK inhibitor flavopiridol. We found frequent overexpression of c-Myc in human esophageal cancer cell lines and tissues. c-Myc overexpression correlated with accelerated esophageal cancer subcutaneous xenograft tumor growth. Esophageal cancer cells with elevated c-Myc expression were found preferentially more sensitive to induction of apoptosis by the CDK inhibition flavopiridol compared to esophageal cancer cells with lower c-Myc expression. In addition, we observed that flavopiridol alone or in combination with the chemotherapeutic agent nanoparticle albumin-bound paclitaxel (NPT) or in combinations with the targeted agent BMS-754807 significantly inhibited esophageal cancer cell proliferation and subcutaneous xenograft tumor growth while significantly enhancing overall mice survival. These results indicate that aggressive esophageal cancer cells with elevated c-Myc expression are sensitive to the CDK inhibitor flavopiridol, and that flavopiridol alone or in combination can be a potential therapy for c-Myc overexpressing esophageal cancer.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States.,Harper Cancer Research Institute, South Bend, IN, United States
| | - Nicholas Cwidak
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States
| | - Chloe Johnson
- University of Notre Dame, Notre Dame, IN, United States
| | | | | | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States.,Harper Cancer Research Institute, South Bend, IN, United States
| | - Jun Li
- Harper Cancer Research Institute, South Bend, IN, United States.,University of Notre Dame, Notre Dame, IN, United States
| | - Margaret A Schwarz
- Harper Cancer Research Institute, South Bend, IN, United States.,Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, United States
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States.,Harper Cancer Research Institute, South Bend, IN, United States.,University of Basel, Basel, Switzerland.,Goshen Center for Cancer Care, Goshen, IN, United States
| |
Collapse
|
48
|
Espejo-Freire AP, Elliott A, Rosenberg A, Costa PA, Barreto-Coelho P, Jonczak E, D’Amato G, Subhawong T, Arshad J, Diaz-Perez JA, Korn WM, Oberley MJ, Magee D, Dizon D, von Mehren M, Khushman MM, Hussein AM, Leu K, Trent JC. Genomic Landscape of Angiosarcoma: A Targeted and Immunotherapy Biomarker Analysis. Cancers (Basel) 2021; 13:4816. [PMID: 34638300 PMCID: PMC8507700 DOI: 10.3390/cancers13194816] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
We performed a retrospective analysis of angiosarcoma (AS) genomic biomarkers and their associations with the site of origin in a cohort of 143 cases. Primary sites were head and neck (31%), breast (22%), extremity (11%), viscera (20%), skin at other locations (8%), and unknown (9%). All cases had Next Generation Sequencing (NGS) data with a 592 gene panel, and 53 cases had Whole Exome Sequencing (WES) data, which we used to study the microenvironment phenotype. The immunotherapy (IO) response biomarkers Tumor Mutation Burden (TMB), Microsatellite Instability (MSI), and PD-L1 status were the most frequently encountered alteration, present in 36.4% of the cohort and 65% of head and neck AS (H/N-AS) (p < 0.0001). In H/N-AS, TMB-High was seen in 63.4% of cases (p < 0.0001) and PDL-1 positivity in 33% of cases. The most common genetic alterations were TP53 (29%), MYC amplification (23%), ARID1A (17%), POT1 (16%), and ATRX (13%). H/N-AS cases had predominantly mutations in TP53 (50.0%, p = 0.0004), POT1 (40.5%, p < 0.0001), and ARID1A (33.3%, p = 0.5875). In breast AS, leading alterations were MYC amplification (63.3%, p < 0.0001), HRAS (16.1%, p = 0.0377), and PIK3CA (16.1%, p = 0.2352). At other sites, conclusions are difficult to generate due to the small number of cases. A microenvironment with a high immune signature, previously associated with IO response, was evenly distributed in 13% of the cases at different primary sites. Our findings can facilitate the design and optimization of therapeutic strategies for AS.
Collapse
Affiliation(s)
- Andrea P. Espejo-Freire
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.P.E.-F.); (P.A.C.); (P.B.-C.); (E.J.); (G.D.)
| | - Andrew Elliott
- Department of Clinical and Translational Research, Caris Life Sciences, Phoenix, AZ 85040, USA;
| | - Andrew Rosenberg
- Department of Pathology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.R.); (J.A.D.-P.)
| | - Philippos Apolinario Costa
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.P.E.-F.); (P.A.C.); (P.B.-C.); (E.J.); (G.D.)
| | - Priscila Barreto-Coelho
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.P.E.-F.); (P.A.C.); (P.B.-C.); (E.J.); (G.D.)
| | - Emily Jonczak
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.P.E.-F.); (P.A.C.); (P.B.-C.); (E.J.); (G.D.)
| | - Gina D’Amato
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.P.E.-F.); (P.A.C.); (P.B.-C.); (E.J.); (G.D.)
| | - Ty Subhawong
- Department of Radiology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Junaid Arshad
- Department of Medicine, Medical Oncology, The University of Arizona College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | - Julio A. Diaz-Perez
- Department of Pathology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.R.); (J.A.D.-P.)
| | - William M. Korn
- Department of Medical Affairs, Caris Life Sciences, Phoenix, AZ 85040, USA;
| | - Matthew J. Oberley
- Department of Pathology and Genetics, Caris Life Sciences, Phoenix, AZ 85040, USA;
| | - Daniel Magee
- Department of Cognitive Computing, Caris Life Sciences, Phoenix, AZ 85040, USA;
| | - Don Dizon
- Department of Medical Oncology and Gynecologic Medical Oncology, Lifespan Cancer Institute, Rode Island Hospital, Providence, RI 02903, USA;
| | - Margaret von Mehren
- Department of Hematology & Oncology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA;
| | - Moh’d M. Khushman
- O’Neal Comprehensive Cancer Center, Department of Medicine, Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Atif Mahmoud Hussein
- Department of Hematology & Oncology, Memorial Health Care System, Memorial Cancer Institute, Hollywood, FL 33021, USA;
| | - Kirsten Leu
- Medical Oncology, Nebraska Cancer Specialists, Omaha, NE 68114, USA;
| | - Jonathan C. Trent
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.P.E.-F.); (P.A.C.); (P.B.-C.); (E.J.); (G.D.)
| |
Collapse
|
49
|
Cyclin-dependent kinases-based synthetic lethality: Evidence, concept, and strategy. Acta Pharm Sin B 2021; 11:2738-2748. [PMID: 34589394 PMCID: PMC8463275 DOI: 10.1016/j.apsb.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Synthetic lethality is a proven effective antitumor strategy that has attracted great attention. Large-scale screening has revealed many synthetic lethal genetic phenotypes, and relevant small-molecule drugs have also been implemented in clinical practice. Increasing evidence suggests that CDKs, constituting a kinase family predominantly involved in cell cycle control, are synthetic lethal factors when combined with certain oncogenes, such as MYC, TP53, and RAS, which facilitate numerous antitumor treatment options based on CDK-related synthetic lethality. In this review, we focus on the synthetic lethal phenotype and mechanism related to CDKs and summarize the preclinical and clinical discoveries of CDK inhibitors to explore the prospect of CDK inhibitors as antitumor compounds for strategic synthesis lethality in the future.
Collapse
|
50
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|