1
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
2
|
Pusch FF, Dorado García H, Xu R, Gürgen D, Bei Y, Brückner L, Röefzaad C, von Stebut J, Bardinet V, Chamorro Gonzalez R, Eggert A, Schulte JH, Hundsdörfer P, Seifert G, Haase K, Schäfer BW, Wachtel M, Kühl AA, Ortiz MV, Wengner AM, Scheer M, Henssen AG. Elimusertib has Antitumor Activity in Preclinical Patient-Derived Pediatric Solid Tumor Models. Mol Cancer Ther 2024; 23:507-519. [PMID: 38159110 PMCID: PMC10985474 DOI: 10.1158/1535-7163.mct-23-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.
Collapse
Affiliation(s)
- Fabian F. Pusch
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heathcliff Dorado García
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robin Xu
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis Gürgen
- Experimental Pharmacology and Oncology (EPO), Berlin, Germany
| | - Yi Bei
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lotte Brückner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Claudia Röefzaad
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jennifer von Stebut
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Bardinet
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Rocío Chamorro Gonzalez
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Georg Seifert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kerstin Haase
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | | | | | - Anja A. Kühl
- iPATH.Berlin—Core Unit Immunopathology for Experimental Models, Charité Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | | | - Monika Scheer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Serafim RB, Cardoso C, Storti CB, da Silva P, Qi H, Parasuram R, Navegante G, Peron JPS, Silva WA, Espreafico EM, Paçó-Larson ML, Price BD, Valente V. HJURP is recruited to double-strand break sites and facilitates DNA repair by promoting chromatin reorganization. Oncogene 2024; 43:804-820. [PMID: 38279062 DOI: 10.1038/s41388-024-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.
Collapse
Affiliation(s)
- Rodolfo B Serafim
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
| | - Cibele Cardoso
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Camila B Storti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Patrick da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geovana Navegante
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Jean Pierre S Peron
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wilson A Silva
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Enilza M Espreafico
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Maria L Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Valeria Valente
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil.
| |
Collapse
|
4
|
Pingali MS, Singh A, Anurag Anand A, Gupta SK, Sahoo AK, Varadwaj PK, Samanta SK. Identification of naturally occurring compounds as alternatives to radiation therapy for treatment of small cell lung cancer. J Biomol Struct Dyn 2023:1-12. [PMID: 37811765 DOI: 10.1080/07391102.2023.2265505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Radiation resistance is one of the major problems in the treatment of small cell lung cancer (SCLC). Most of these patients are given radiation as first-line treatment and it was observed that the initial response in these patients is very good. However, they show relapse in a few months which is also associated with resistance to treatment. Thus, targeting the mechanism by which these cells develop resistance could be an important strategy to improve the survival chances of these patients. From the RNA-Seq data analysis, it was identified that CHEK1 gene was overexpressed. Chk1 protein which is encoded by the CHEK1 gene is an important protein that is involved in radiation resistance in SCLC. It is known to favour the cells to deal with replicative stress. CHEK1 is the major cause for developing radiation resistance in SCLC. Thus, natural compounds that could also serve as potential inhibitors for Chk1 were explored. Accordingly; the compounds were screened based on ADME, docking and MM-GBSA scores. MD simulations were performed for the selected protein-ligand complexes and the results were compared to the co-crystallised ligand, 3-(indol-2-yl)indazole. The results showed that compound INC000033832986 could be a natural alternative to the commercial ligand for the prevention of SCLC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Shivapriya Pingali
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Sachin Kumar Gupta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| |
Collapse
|
5
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
6
|
Tan K, Song Y, Xu M, You Z. Clinical evidence for a role of E2F1-induced replication stress in modulating tumor mutational burden and immune microenvironment. DNA Repair (Amst) 2023; 129:103531. [PMID: 37453246 DOI: 10.1016/j.dnarep.2023.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
DNA replication stress (RS) is frequently induced by oncogene activation and is believed to promote tumorigenesis. However, clinical evidence for the role of oncogene-induced RS in tumorigenesis remains scarce, and the mechanisms by which RS promotes cancer development remain incompletely understood. By performing a series of bioinformatic analyses on the oncogene E2F1, other RS-inducing factors, and replication fork processing factors in TCGA cancer database using previously established tools, we show that hyperactivity of E2F1 likely promotes the expression of several of these factors in virtually all types of cancer to induce RS and cytosolic self-DNA production. In addition, the expression of these factors positively correlates with that of ATR and Chk1 that govern the cellular response to RS, the tumor mutational load, and tumor infiltration of immune-suppressive CD4+Th2 cells and myeloid-derived suppressor cells (MDSCs). Consistently, high expression of these factors is associated with poor patient survival. Our study provides new insights into the role of E2F1-induced RS in tumorigenesis and suggests therapeutic approaches for E2F1-overexpressing cancers by targeting genomic instability, cytosolic self-DNA and the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ke Tan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yizhe Song
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Suzuki MM, Iijima K, Ogami K, Shinjo K, Murofushi Y, Xie J, Wang X, Kitano Y, Mamiya A, Kibe Y, Nishimura T, Ohka F, Saito R, Sato S, Kobayashi J, Yao R, Miyata K, Kataoka K, Suzuki HI, Kondo Y. TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation. Nat Commun 2023; 14:4521. [PMID: 37607907 PMCID: PMC10444773 DOI: 10.1038/s41467-023-40243-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Oncogene-induced DNA replication stress (RS) and consequent pathogenic R-loop formation are known to impede S phase progression. Nonetheless, cancer cells continuously proliferate under such high-stressed conditions through incompletely understood mechanisms. Here, we report taurine upregulated gene 1 (TUG1) long noncoding RNA (lncRNA), which is highly expressed in many types of cancers, as an important regulator of intrinsic R-loop in cancer cells. Under RS conditions, TUG1 is rapidly upregulated via activation of the ATR-CHK1 signaling pathway, interacts with RPA and DHX9, and engages in resolving R-loops at certain loci, particularly at the CA repeat microsatellite loci. Depletion of TUG1 leads to overabundant R-loops and enhanced RS, leading to substantial inhibition of tumor growth. Our data reveal a role of TUG1 as molecule important for resolving R-loop accumulation in cancer cells and suggest targeting TUG1 as a potent therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Miho M Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Jingqi Xie
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Xuebing Wang
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Mamiya
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuji Kibe
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Tatsunori Nishimura
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Junya Kobayashi
- School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Ryoji Yao
- Department of Cell Biology, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tono-machi, Kawasaki-ku, Kanagawa, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
8
|
Igarashi T, Mazevet M, Yasuhara T, Yano K, Mochizuki A, Nishino M, Yoshida T, Yoshida Y, Takamatsu N, Yoshimi A, Shiraishi K, Horinouchi H, Kohno T, Hamamoto R, Adachi J, Zou L, Shiotani B. An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress. Nat Commun 2023; 14:4991. [PMID: 37591859 PMCID: PMC10435487 DOI: 10.1038/s41467-023-40578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Marianne Mazevet
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaaki Yasuhara
- Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Nishino
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Akihide Yoshimi
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, 567-0085, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
9
|
Marchioni A, Tonelli R, Samarelli AV, Cappiello GF, Andreani A, Tabbì L, Livrieri F, Bosi A, Nori O, Mattioli F, Bruzzi G, Marchioni D, Clini E. Molecular Biology and Therapeutic Targets of Primitive Tracheal Tumors: Focus on Tumors Derived by Salivary Glands and Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:11370. [PMID: 37511133 PMCID: PMC10379311 DOI: 10.3390/ijms241411370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Primary tracheal tumors are rare, constituting approximately 0.1-0.4% of malignant diseases. Squamous cell carcinoma (SCC) and adenoid cystic carcinoma (ACC) account for about two-thirds of these tumors. Despite most primary tracheal cancers being eligible for surgery and/or radiotherapy, unresectable, recurrent and metastatic tumors may require systemic treatments. Unfortunately, the poor response to available chemotherapy as well as the lack of other real therapeutic alternatives affects the quality of life and outcome of patients suffering from more advanced disease. In this condition, target therapy against driver mutations could constitute an alternative to chemotherapy, and may help in disease control. The past two decades have seen extraordinary progress in developing novel target treatment options, shifting the treatment paradigm for several cancers such as lung cancer. The improvement of knowledge regarding the genetic and biological alterations, of major primary tracheal tumors, has opened up new treatment perspectives, suggesting the possible role of biological targeted therapies for the treatment of these rare tumors. The purpose of this review is to outline the state of knowledge regarding the molecular biology, and the preliminary data on target treatments of the main primary tracheal tumors, focusing on salivary-gland-derived cancers and squamous cell carcinoma.
Collapse
Affiliation(s)
- Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Anna Valeria Samarelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Gaia Francesca Cappiello
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Alessandro Andreani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Francesco Livrieri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Annamaria Bosi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Ottavia Nori
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | | | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Otolaryngology Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Daniele Marchioni
- Otolaryngology Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| |
Collapse
|
10
|
Segeren HA, Westendorp B. Mechanisms used by cancer cells to tolerate drug-induced replication stress. Cancer Lett 2022; 544:215804. [PMID: 35750276 DOI: 10.1016/j.canlet.2022.215804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Activation of oncogenes in cancer cells forces cell proliferation, leading to DNA replication stress (RS). As a consequence, cancer cells heavily rely on the intra S-phase checkpoint for survival. This fundamental principle formed the basis for the development of inhibitors against key players of the intra S-phase checkpoint, ATR and CHK1. These drugs are often combined with chemotherapeutic drugs that interfere with DNA replication to exacerbate RS and exhaust the intra S-phase checkpoint in cancer cells. However, drug resistance impedes efficient clinical use, suggesting that some cancer cells tolerate severe RS. In this review, we describe how an increased nucleotide pool, boosted stabilization and repair of stalled forks and firing of dormant origins fortify the RS response in cancer cells. Notably, the vast majority of the genes that confer RS tolerance are regulated by the E2F and NRF2 transcription factors. These transcriptional programs are frequently activated in cancer cells, allowing simultaneous activation of multiple tolerance avenues. We propose that the E2F and NRF2 transcriptional programs can be used as biomarker to select patients for treatment with RS-inducing drugs and as novel targets to kill RS-tolerant cancer cells. Together, this review aims to provide a framework to maximally exploit RS as an Achilles' heel of cancer cells.
Collapse
Affiliation(s)
- Hendrika A Segeren
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene 2022; 41:2719-2733. [PMID: 35393546 PMCID: PMC9076537 DOI: 10.1038/s41388-022-02291-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells often experience high basal levels of DNA replication stress (RS), for example due to hyperactivation of oncoproteins like MYC or RAS. Therefore, cancer cells are considered to be sensitive to drugs that exacerbate the level of RS or block the intra S-phase checkpoint. Consequently, RS-inducing drugs including ATR and CHK1 inhibitors are used or evaluated as anti-cancer therapies. However, drug resistance and lack of biomarkers predicting therapeutic efficacy limit efficient use. This raises the question what determines sensitivity of individual cancer cells to RS. Here, we report that oncogenic RAS does not only enhance the sensitivity to ATR/CHK1 inhibitors by directly causing RS. Instead, we observed that HRASG12V dampens the activation of the P53-dependent transcriptional response to drug-induced RS, which in turn confers sensitivity to RS. We demonstrate that inducible expression of HRASG12V sensitized cells to ATR and CHK1 inhibitors. Using RNA-sequencing of FACS-sorted cells we discovered that P53 signaling is the sole transcriptional response to RS. However, oncogenic RAS attenuates the transcription of P53 and TGF-β pathway components which consequently dampens P53 target gene expression. Accordingly, live cell imaging showed that HRASG12V exacerbates RS in S/G2-phase, which could be rescued by stabilization of P53. Thus, our results demonstrate that transcriptional control of P53 target genes is the prime determinant in the response to ATR/CHK1 inhibitors and show that hyperactivation of the MAPK pathway impedes this response. Our findings suggest that the level of oncogenic MAPK signaling could predict sensitivity to intra-S-phase checkpoint inhibition in cancers with intact P53.
Collapse
|
12
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
13
|
Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther 2022; 30:1006-1017. [PMID: 35121107 PMCID: PMC8899703 DOI: 10.1016/j.ymthe.2022.01.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The correct duplication and transfer of genetic material to daughter cells is the major event of cell division. Dysfunction of DNA replication or chromosome segregation presents challenges in cancer initiation and development as well as opportunities for cancer treatment. Cyclic GMP-AMP synthase (cGAS) of the innate immune system detects cytoplasmic DNA and mediates downstream immune responses through the molecule stimulator of interferon genes (STING). However, how cytosolic DNA sensor cGAS participates in guaranteeing accurate cell division and preventing tumorigenesis is still unclear. Recent evidence indicates malfunction of cGAS/STING pathway in cancer progression. Cell cycle-targeted therapy synergizes with immunotherapy via cGAS/STING activation, leading to promising therapeutic benefit. Here, we review the interactions between cell cycle regulation and cGAS/STING signaling, thus enabling us to understand the role of cGAS/STING in cancer initiation, development, and treatment.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jue-Qiong Xu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| |
Collapse
|
14
|
Guerrero Llobet S, Bhattacharya A, Everts M, Kok K, van der Vegt B, Fehrmann RSN, van Vugt MATM. An mRNA expression-based signature for oncogene-induced replication-stress. Oncogene 2022; 41:1216-1224. [PMID: 35091678 PMCID: PMC7612401 DOI: 10.1038/s41388-021-02162-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022]
Abstract
Oncogene-induced replication stress characterizes many aggressive cancers. Several treatments are being developed that target replication stress, however, identification of tumors with high levels of replication stress remains challenging. We describe a gene expression signature of oncogene-induced replication stress. A panel of triple-negative breast cancer (TNBC) and non-transformed cell lines were engineered to overexpress CDC25A, CCNE1 or MYC, which resulted in slower replication kinetics. RNA sequencing analysis revealed a set of 52 commonly upregulated genes. In parallel, mRNA expression analysis of patient-derived tumor samples (TCGA, n = 10,592) also revealed differential gene expression in tumors with amplification of oncogenes that trigger replication stress (CDC25A, CCNE1, MYC, CCND1, MYB, MOS, KRAS, ERBB2, and E2F1). Upon integration, we identified a six-gene signature of oncogene-induced replication stress (NAT10, DDX27, ZNF48, C8ORF33, MOCS3, and MPP6). Immunohistochemical analysis of NAT10 in breast cancer samples (n = 330) showed strong correlation with expression of phospho-RPA (R = 0.451, p = 1.82 × 10-20) and γH2AX (R = 0.304, p = 2.95 × 10-9). Finally, we applied our oncogene-induced replication stress signature to patient samples from TCGA (n = 8,862) and GEO (n = 13,912) to define the levels of replication stress across 27 tumor subtypes, identifying diffuse large B cell lymphoma, ovarian cancer, TNBC and colorectal carcinoma as cancer subtypes with high levels of oncogene-induced replication stress.
Collapse
Affiliation(s)
- Sergi Guerrero Llobet
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Kok
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
A catalytic-independent function of human DNA polymerase Kappa controls the stability and abundance of the Checkpoint Kinase 1. Mol Cell Biol 2021; 41:e0009021. [PMID: 34398682 DOI: 10.1128/mcb.00090-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase kappa (Pol κ) has been well documented thus far for its specialized DNA synthesis activity during translesion replication, progression of replication forks through regions difficult to replicate, restart of stalled forks and replication checkpoint efficiency. Pol κ is also required for the stabilization of stalled forks although the mechanisms are poorly understood. Here we unveiled an unexpected role for Pol κ in controlling the stability and abundance of Chk1, an important actor for the replication checkpoint and fork stabilization. We found that loss of Pol κ decreased the Chk1 protein level in the nucleus of four human cell lines. Pol κ and not the other Y-family polymerase members is required to maintain the Chk1 protein pool all along the cell cycle. We showed that Pol κ depletion affected the protein stability of Chk1 and protected it from proteasome degradation. Importantly, we also observed that the fork restart defects observed in Pol κ-depleted cells could be overcome by the re-expression of Chk1. Strikingly, this new function of Pol κ does not require its catalytic activity. We propose that Pol κ could contribute to the protection of stalled forks through Chk1 stability.
Collapse
|
16
|
Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE, Azad A, Thompson DJ, Knoblochova L, Abe H, Tarry-Adkins JL, Gonzalez JM, Fontanillas P, Claringbould A, Bakker OB, Sulem P, Walters RG, Terao C, Turon S, Horikoshi M, Lin K, Onland-Moret NC, Sankar A, Hertz EPT, Timshel PN, Shukla V, Borup R, Olsen KW, Aguilera P, Ferrer-Roda M, Huang Y, Stankovic S, Timmers PRHJ, Ahearn TU, Alizadeh BZ, Naderi E, Andrulis IL, Arnold AM, Aronson KJ, Augustinsson A, Bandinelli S, Barbieri CM, Beaumont RN, Becher H, Beckmann MW, Benonisdottir S, Bergmann S, Bochud M, Boerwinkle E, Bojesen SE, Bolla MK, Boomsma DI, Bowker N, Brody JA, Broer L, Buring JE, Campbell A, Campbell H, Castelao JE, Catamo E, Chanock SJ, Chenevix-Trench G, Ciullo M, Corre T, Couch FJ, Cox A, Crisponi L, Cross SS, Cucca F, Czene K, Smith GD, de Geus EJCN, de Mutsert R, De Vivo I, Demerath EW, Dennis J, Dunning AM, Dwek M, Eriksson M, Esko T, Fasching PA, Faul JD, Ferrucci L, Franceschini N, Frayling TM, Gago-Dominguez M, Mezzavilla M, García-Closas M, Gieger C, Giles GG, Grallert H, Gudbjartsson DF, Gudnason V, Guénel P, Haiman CA, Håkansson N, Hall P, Hayward C, He C, He W, Heiss G, Høffding MK, Hopper JL, Hottenga JJ, Hu F, Hunter D, Ikram MA, Jackson RD, Joaquim MDR, John EM, Joshi PK, Karasik D, Kardia SLR, Kartsonaki C, Karlsson R, Kitahara CM, Kolcic I, Kooperberg C, Kraft P, Kurian AW, Kutalik Z, La Bianca M, LaChance G, Langenberg C, Launer LJ, Laven JSE, Lawlor DA, Le Marchand L, Li J, Lindblom A, Lindstrom S, Lindstrom T, Linet M, Liu Y, Liu S, Luan J, Mägi R, Magnusson PKE, Mangino M, Mannermaa A, Marco B, Marten J, Martin NG, Mbarek H, McKnight B, Medland SE, Meisinger C, Meitinger T, Menni C, Metspalu A, Milani L, Milne RL, Montgomery GW, Mook-Kanamori DO, Mulas A, Mulligan AM, Murray A, Nalls MA, Newman A, Noordam R, Nutile T, Nyholt DR, Olshan AF, Olsson H, Painter JN, Patel AV, Pedersen NL, Perjakova N, Peters A, Peters U, Pharoah PDP, Polasek O, Porcu E, Psaty BM, Rahman I, Rennert G, Rennert HS, Ridker PM, Ring SM, Robino A, Rose LM, Rosendaal FR, Rossouw J, Rudan I, Rueedi R, Ruggiero D, Sala CF, Saloustros E, Sandler DP, Sanna S, Sawyer EJ, Sarnowski C, Schlessinger D, Schmidt MK, Schoemaker MJ, Schraut KE, Scott C, Shekari S, Shrikhande A, Smith AV, Smith BH, Smith JA, Sorice R, Southey MC, Spector TD, Spinelli JJ, Stampfer M, Stöckl D, van Meurs JBJ, Strauch K, Styrkarsdottir U, Swerdlow AJ, Tanaka T, Teras LR, Teumer A, Þorsteinsdottir U, Timpson NJ, Toniolo D, Traglia M, Troester MA, Truong T, Tyrrell J, Uitterlinden AG, Ulivi S, Vachon CM, Vitart V, Völker U, Vollenweider P, Völzke H, Wang Q, Wareham NJ, Weinberg CR, Weir DR, Wilcox AN, van Dijk KW, Willemsen G, Wilson JF, Wolffenbuttel BHR, Wolk A, Wood AR, Zhao W, Zygmunt M, Chen Z, Li L, Franke L, Burgess S, Deelen P, Pers TH, Grøndahl ML, Andersen CY, Pujol A, Lopez-Contreras AJ, Daniel JA, Stefansson K, Chang-Claude J, van der Schouw YT, Lunetta KL, Chasman DI, Easton DF, Visser JA, Ozanne SE, Namekawa SH, Solc P, Murabito JM, Ong KK, Hoffmann ER, Murray A, Roig I, Perry JRB. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 2021; 596:393-397. [PMID: 34349265 PMCID: PMC7611832 DOI: 10.1038/s41586-021-03779-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jazib Hussain
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Martínez-Marchal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Hironori Abe
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Javier Martin Gonzalez
- Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Olivier B Bakker
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | | | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sandra Turon
- Transgenic Animal Unit, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Aditya Sankar
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Peter Thrane Hertz
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pascal N Timshel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rehannah Borup
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristina W Olsen
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Reproductive Medicine, Department of Obstetrics and Gynaecology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Paula Aguilera
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla -Universidad Pablo de Olavide, Seville, Spain
| | - Mònica Ferrer-Roda
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elnaz Naderi
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kristan J Aronson
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Caterina M Barbieri
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robin N Beaumont
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Murielle Bochud
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie E Buring
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Archie Campbell
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Marina Ciullo
- Institute of Genetics and Biophysics - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Tanguy Corre
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Italy
| | - Kamila Czene
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eco J C N de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, University of Minnesotta, Minneapolis, MN, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tõnu Esko
- Population and Medical Genetics, Broad Institute, Cambridge, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy M Frayling
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Chunyan He
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
- The Cancer Prevention and Control Research Program, University of Kentucky Markey Cancer Center, Lexington, KY, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Miya K Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jouke J Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Frank Hu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mohammad A Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Rebecca D Jackson
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Micaella D R Joaquim
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - David Karasik
- Harvard Medical School, Boston, MA, USA
- Hebrew SeniorLife Institute for Aging Research, Boston, MA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christiana Kartsonaki
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Martina La Bianca
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Genevieve LaChance
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jingmei Li
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - YongMei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Wake Forest, NC, USA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Medicine, Brown University, Providence, RI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Brumat Marco
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Insititute, Brisbane, Queensland, Australia
| | - Hamdi Mbarek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Insititute, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Central Hospital of Augsburg, MONICA/KORA Myocardial Infarction Registry, Augsburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Antonella Mulas
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Anna M Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Alison Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Anne Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics - CNR, Naples, Italy
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Jodie N Painter
- QIMR Berghofer Medical Research Insititute, Brisbane, Queensland, Australia
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Perjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
- Gen-Info Ltd, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | | | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Paul M Ridker
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Rossouw
- Women's Health Initiative Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Cinzia F Sala
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Serena Sanna
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David Schlessinger
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Saleh Shekari
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Amruta Shrikhande
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Blair H Smith
- Division of Population and Health Genomics, University of Dundee, Dundee, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Meir Stampfer
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Doris Stöckl
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Obstetrics and Gynaecology, Campus Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Unnur Þorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Toniolo
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Traglia
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Jessica Tyrrell
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, USA
| | - Amber N Wilcox
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew R Wood
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Liming Li
- School of Public Health, Peking University Health Science Center, Beijing, P.R. China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, P.R. China
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Patrick Deelen
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Louise Grøndahl
- Reproductive Medicine, Department of Obstetrics and Gynaecology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Pujol
- Transgenic Animal Unit, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Andres J Lopez-Contreras
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla -Universidad Pablo de Olavide, Seville, Spain
| | - Jeremy A Daniel
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Daniel I Chasman
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA, USA
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anna Murray
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Song X, Wang L, Wang T, Hu J, Wang J, Tu R, Su H, Jiang J, Qing G, Liu H. Synergistic targeting of CHK1 and mTOR in MYC-driven tumors. Carcinogenesis 2021; 42:448-460. [PMID: 33206174 DOI: 10.1093/carcin/bgaa119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Deregulation of v-myc avian myelocytomatosis viral oncogene homolog (MYC) occurs in a broad range of human cancers and often predicts poor prognosis and resistance to therapy. However, directly targeting oncogenic MYC remains unsuccessful, and indirectly inhibiting MYC emerges as a promising approach. Checkpoint kinase 1 (CHK1) is a protein kinase that coordinates the G2/M cell cycle checkpoint and protects cancer cells from excessive replicative stress. Using c-MYC-mediated T-cell acute lymphoblastic leukemia (T-acute lymphoblastic leukemia) and N-MYC-driven neuroblastoma as model systems, we reveal that both c-MYC and N-MYC directly bind to the CHK1 locus and activate its transcription. CHIR-124, a selective CHK1 inhibitor, impairs cell viability and induces remarkable synergistic lethality with mTOR inhibitor rapamycin in MYC-overexpressing cells. Mechanistically, rapamycin inactivates carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD), the essential enzyme for the first three steps of de novo pyrimidine synthesis, and deteriorates CHIR-124-induced replicative stress. We further demonstrate that dual treatments impede T-acute lymphoblastic leukemia and neuroblastoma progression in vivo. These results suggest simultaneous targeting of CHK1 and mTOR as a novel and powerful co-treatment modality for MYC-mediated tumors.
Collapse
Affiliation(s)
- Xiaoxue Song
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Liyuan Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Tianci Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Juncheng Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Jingchao Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Rongfu Tu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Hexiu Su
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Jue Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Guoliang Qing
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
18
|
Xin C, Chao Z, Xian W, Zhonggao W, Tao L. The phosphorylation of CHK1 at Ser345 regulates the phenotypic switching of vascular smooth muscle cells both in vitro and in vivo. Atherosclerosis 2020; 313:50-59. [PMID: 33027721 DOI: 10.1016/j.atherosclerosis.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS DNA damage and repair have been shown to be associated with carotid artery restenosis and atherosclerosis. The proliferation and migration of vascular smooth muscle cells (VSMCs) is the main cause of artery stenosis. This study aims to define the relationship between DNA damage and VSMCs proliferation. METHODS A rat carotid artery injury model was established, and human and rat VSMCs cultured in vitro. H2O2 was used to induce DNA damage in vitro. The selected CHK1 inhibitor, LY2603618, was used to inhibit CHK1 phosphorylation both in vivo and in vitro. γH2AX, αSMA and phosphorylated CHK1 were detected both in rat carotid artery and cultured VSMCs from different groups. Hyperplasia ratio of rat carotid artery intimal was measured. RESULTS DNA double-strand breaks occur in the rat carotid artery after injury. DNA damage induces CHK1 phosphorylation and down-regulates αSMA expression in VSMCs both in vitro and in vivo. The inhibition of CHK1 phosphorylation rescues αSMA expression in VSMCs both in vitro and in vivo, and rat carotid intimal hyperplasia after injury was suppressed. CONCLUSIONS Our data demonstrated that phosphorylation of CHK1 under DNA damage stress modulates VSMCs phenotypic switching. CHK1 inhibition may be a potential therapeutic strategy for intima hyperplasia treatment.
Collapse
Affiliation(s)
- Chen Xin
- General Department of Xuan Wu Hospital Capital Medical University, Beijing, 100053, China; Vascular Surgery Department of Xuan Wu Hospital Capital Medical University, Institute of Vascular Sutgery, Capital Medical University, Beijing, 100053, China
| | - Zhang Chao
- Vascular Surgery Department of Xuan Wu Hospital Capital Medical University, Institute of Vascular Sutgery, Capital Medical University, Beijing, 100053, China
| | - Wang Xian
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Wang Zhonggao
- General Department of Xuan Wu Hospital Capital Medical University, Beijing, 100053, China.
| | - Luo Tao
- Vascular Surgery Department of Xuan Wu Hospital Capital Medical University, Institute of Vascular Sutgery, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
19
|
Qiu Z, Fa P, Liu T, Prasad CB, Ma S, Hong Z, Chan ER, Wang H, Li Z, He K, Wang QE, Williams TM, Yan C, Sizemore ST, Narla G, Zhang J. A Genome-Wide Pooled shRNA Screen Identifies PPP2R2A as a Predictive Biomarker for the Response to ATR and CHK1 Inhibitors. Cancer Res 2020; 80:3305-3318. [PMID: 32522823 PMCID: PMC7518641 DOI: 10.1158/0008-5472.can-20-0057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 01/18/2023]
Abstract
There is currently a lack of precise predictive biomarkers for patient selection in clinical trials of inhibitors targeting replication stress (RS) response proteins ATR and CHK1. The objective of this study was to identify novel predictive biomarkers for the response to these agents in treating non-small cell lung cancer (NSCLC). A genome-wide loss-of-function screen revealed that tumor suppressor PPP2R2A, a B regulatory subunit of protein phosphatase 2 (PP2A), determines sensitivity to CHK1 inhibition. A synthetic lethal interaction between PPP2R2A deficiency and ATR or CHK1 inhibition was observed in NSCLC in vitro and in vivo and was independent of p53 status. ATR and CHK1 inhibition resulted in significantly increased levels of RS and altered replication dynamics, particularly in PPP2R2A-deficient NSCLC cells. Mechanistically, PPP2R2A negatively regulated translation of oncogene c-Myc protein. c-Myc activity was required for PPP2R2A deficiency-induced alterations of replication initiation/RS and sensitivity to ATR/CHK1 inhibitors. We conclude that PPP2R2A deficiency elevates RS by upregulating c-Myc activity, rendering cells reliant on the ATR/CHK1 axis for survival. Our studies show a novel synthetic lethal interaction and identify PPP2R2A as a potential new predictive biomarker for patient stratification in the clinical use of ATR and CHK1 inhibitors. SIGNIFICANCE: This study reveals new approaches to specifically target PPP2R2A-deficient lung cancer cells and provides a novel biomarker that will significantly improve treatment outcome with ATR and CHK1 inhibitors.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Checkpoint Kinase 1/antagonists & inhibitors
- DNA Damage
- DNA Replication
- Drug Resistance, Neoplasm
- Female
- Gene Knockdown Techniques
- Genes, p53
- Genome-Wide Association Study
- Heterografts
- Humans
- Lung Neoplasms/chemistry
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Mice
- Mice, Nude
- Protein Phosphatase 2/deficiency
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Small Interfering
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Chandra B Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Shanhuai Ma
- University of Rochester, Rochester, New York
| | - Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Kai He
- Department of Internal Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio.
| |
Collapse
|
20
|
Muralidharan SV, Nilsson LM, Lindberg MF, Nilsson JA. Small molecule inhibitors and a kinase-dead expressing mouse model demonstrate that the kinase activity of Chk1 is essential for mouse embryos and cancer cells. Life Sci Alliance 2020; 3:3/8/e202000671. [PMID: 32571801 PMCID: PMC7335382 DOI: 10.26508/lsa.202000671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
The study use small molecule inhibitors and a kinase-dead expressing mouse model to demonstrate that the kinase activity of Chk1 is essential for mouse embryos and cancer cells. Chk1 kinase is downstream of the ATR kinase in the sensing of improper replication. Previous cell culture studies have demonstrated that Chk1 is essential for replication. Indeed, Chk1 inhibitors are efficacious against tumors with high-level replication stress such as Myc-induced lymphoma cells. Treatment with Chk1 inhibitors also combines well with certain chemotherapeutic drugs, and effects associate with the induction of DNA damage and reduction of Chk1 protein levels. Most studies of Chk1 function have relied on the use of inhibitors. Whether or not a mouse or cancer cells could survive if a kinase-dead form of Chk1 is expressed has not been investigated before. Here, we generate a mouse model that expresses a kinase-dead (D130A) allele in the mouse germ line. We find that this mouse is overtly normal and does not have problems with erythropoiesis with aging as previously been shown for a mouse expressing one null allele. However, similar to a null allele, homozygous kinase-dead mice cannot be generated, and timed pregnancies of heterozygous mice suggest lethality of homozygous blastocysts at around the time of implantation. By breeding the kinase-dead Chk1 mouse with a conditional allele, we are able to demonstrate that expression of only one kinase-dead allele, but no wild-type allele, of Chek1 is lethal for Myc-induced cancer cells. Finally, treatment of melanoma cells with tumor-infiltrating T cells or CAR-T cells is effective even if Chk1 is inhibited, suggesting that Chk1 inhibitors can be safely administered in patients where immunotherapy is an essential component of the arsenal against cancer.
Collapse
Affiliation(s)
- Somsundar V Muralidharan
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences at University of Gothenburg, Gothenburg, Sweden
| | - Lisa M Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences at University of Gothenburg, Gothenburg, Sweden
| | - Mattias F Lindberg
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences at University of Gothenburg, Gothenburg, Sweden
| | - Jonas A Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Cassidy KB, Bang S, Kurokawa M, Gerber SA. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J 2020; 287:1985-1999. [PMID: 31713291 PMCID: PMC7226928 DOI: 10.1111/febs.15132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/19/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
Collapse
Affiliation(s)
- Katelyn B. Cassidy
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Manabu Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Department of Biological Sciences, Kent State University, Kent, OH 44242
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| | - Scott A. Gerber
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| |
Collapse
|
22
|
Albers E, Avram A, Sbroggio M, Fernandez-Capetillo O, Lopez-Contreras AJ. Supraphysiological protection from replication stress does not extend mammalian lifespan. Aging (Albany NY) 2020; 12:5612-5624. [PMID: 32253367 PMCID: PMC7185120 DOI: 10.18632/aging.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2020] [Indexed: 12/05/2022]
Abstract
Replication Stress (RS) is a type of DNA damage generated at the replication fork, characterized by single-stranded DNA (ssDNA) accumulation, and which can be caused by a variety of factors. Previous studies have reported elevated RS levels in aged cells. In addition, mouse models with a deficient RS response show accelerated aging. However, the relevance of endogenous or physiological RS, compared to other sources of genomic instability, for the normal onset of aging is unknown. We have performed long term survival studies of transgenic mice with extra copies of the Chk1 and/or Rrm2 genes, which we previously showed extend the lifespan of a progeroid ATR-hypomorphic model suffering from high levels of RS. In contrast to their effect in the context of progeria, the lifespan of Chk1, Rrm2 and Chk1/Rrm2 transgenic mice was similar to WT littermates in physiological settings. Most mice studied died due to tumors -mainly lymphomas- irrespective of their genetic background. Interestingly, a higher but not statistically significant percentage of transgenic mice developed tumors compared to WT mice. Our results indicate that supraphysiological protection from RS does not extend lifespan, indicating that RS may not be a relevant source of genomic instability on the onset of normal aging.
Collapse
Affiliation(s)
- Eliene Albers
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Avram
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Mauro Sbroggio
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | - Andres J Lopez-Contreras
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Xie L, Jia L, Qu J, Chen D, Lv Y, Li H, Zheng J. Expression and prognostic significance of the P53-related DNA damage repair proteins checkpoint kinase 1 (CHK1) and growth arrest and DNA-damage-inducible 45 alpha (GADD45A) in human oral squamous cell carcinoma. Eur J Oral Sci 2020; 128:128-135. [PMID: 32154612 DOI: 10.1111/eos.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
DNA damage repair is a key factor in the maintenance of cell genome stability, plays an important role in the regulation of tumour evolution, and can affect the prognosis of cancer patients. This study aimed to detect the protein expression of the DNA damage repair protein P53 and its upstream and downstream regulators, CHK1, GADD45A, and MDM2, in oral squamous cell carcinoma (OSCC), in order to analyse the association between the expression of these proteins and overall survival, and to assess their prognostic implications for OSCC patients. The expression of the above proteins was detected by immunohistochemistry in 80 human OSCC tissue samples and in non-cancerous tissue samples. Compared to that in the non-cancerous tissue, the expression of CHK1, GADD45A, and MDM2 in OSCC tissue was significantly increased. The protein expression of the tumour suppressor gene P53 was also increased. Patients with high CHK1 and MDM2 expression levels had a reduced survival time and a poor prognosis, whereas patients with high GADD45A expression levels had a good prognosis. Our results indicate that high CHK1 expression is an independent risk factor for poor OSCC prognosis, and that CHK1 may be a potential target for OSCC clinical treatment.
Collapse
Affiliation(s)
- Liping Xie
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Limin Jia
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jinyue Qu
- Department of Stomatology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Harbin Medical University, Harbin, China
| | - Yanhong Lv
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Haixia Li
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Jinhua Zheng
- Department of Anatomy, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Cartel M, Didier C. Regulation of CHK1 by the Ubiquitin-Proteasome System. FEBS J 2020; 287:1982-1984. [PMID: 31904911 DOI: 10.1111/febs.15173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Abstract
The checkpoint kinase 1 (CHK1) is a master regulator of genome integrity in vertebrate cells. Despite its important cell cycle functions, its regulation is still incompletely understood. Cassidy et al. provide novel insights on the regulation of the CHK1 abundance by the HECT E3 ligase HUWE1 during unperturbed cell cycle as well as in response to replicative stress. These results may help us to apprehend the underlying mechanism of tumorigenesis.
Collapse
Affiliation(s)
- Maëlle Cartel
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL 5294, Université de Toulouse, France.,Équipe Labellisée 2016, Ligue Nationale Contre le Cancer, Toulouse, France
| | - Christine Didier
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL 5294, Université de Toulouse, France.,Équipe Labellisée 2016, Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
25
|
Bianco JN, Bergoglio V, Lin YL, Pillaire MJ, Schmitz AL, Gilhodes J, Lusque A, Mazières J, Lacroix-Triki M, Roumeliotis TI, Choudhary J, Moreaux J, Hoffmann JS, Tourrière H, Pasero P. Overexpression of Claspin and Timeless protects cancer cells from replication stress in a checkpoint-independent manner. Nat Commun 2019; 10:910. [PMID: 30796221 PMCID: PMC6385232 DOI: 10.1038/s41467-019-08886-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
Oncogene-induced replication stress (RS) promotes cancer development but also impedes tumor growth by activating anti-cancer barriers. To determine how cancer cells adapt to RS, we have monitored the expression of different components of the ATR-CHK1 pathway in primary tumor samples. We show that unlike upstream components of the pathway, the checkpoint mediators Claspin and Timeless are overexpressed in a coordinated manner. Remarkably, reducing the levels of Claspin and Timeless in HCT116 cells to pretumoral levels impeded fork progression without affecting checkpoint signaling. These data indicate that high level of Claspin and Timeless increase RS tolerance by protecting replication forks in cancer cells. Moreover, we report that primary fibroblasts adapt to oncogene-induced RS by spontaneously overexpressing Claspin and Timeless, independently of ATR signaling. Altogether, these data indicate that enhanced levels of Claspin and Timeless represent a gain of function that protects cancer cells from of oncogene-induced RS in a checkpoint-independent manner.
Collapse
Affiliation(s)
- Julien N Bianco
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Valérie Bergoglio
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037, Toulouse, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037, Toulouse, France
| | - Anne-Lyne Schmitz
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France
| | - Julia Gilhodes
- Clinical trials Office - Biostatistics Unit, Institute Claudius Regaud, Institute Universitaire du Cancer Toulouse-Oncopole (IUCT-O), 31100, Toulouse, France
| | - Amelie Lusque
- Clinical trials Office - Biostatistics Unit, Institute Claudius Regaud, Institute Universitaire du Cancer Toulouse-Oncopole (IUCT-O), 31100, Toulouse, France
| | - Julien Mazières
- Thoracic Oncology Department, Toulouse University Hospital, University Paul Sabatier, 31062, Toulouse, France
| | | | | | | | - Jérôme Moreaux
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France
| | - Jean-Sébastien Hoffmann
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037, Toulouse, France
| | - Hélène Tourrière
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France.
| |
Collapse
|
26
|
Abstract
Cell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription factors used for reprogramming alter genomic contents and result in genetic mutations. Additionally, defective mitochondria functioning such as excessive mitochondrial fission leads to the limitation of pluripotency and ultimately reduces the efficiency of reprogramming. These problems including genomic instability and impaired mitochondrial dynamics should be resolved to apply cell reprograming in clinical research and to address efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been known to control the chromatin state of the telomere and influence mitochondria function in cells. Recently, several studies reported that Sirtuins could control for genomic instability in cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell reprogramming. And we propose that the manipulation of Sirtuins may improve defects that result from the steps of cell reprogramming.
Collapse
Affiliation(s)
- Jaein Shin
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BKplus21 team), Dongguk University, Seoul 04620, Korea
| | - Junyeop Kim
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BKplus21 team), Dongguk University, Seoul 04620, Korea
| | - Hanseul Park
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BKplus21 team), Dongguk University, Seoul 04620, Korea
| | - Jongpil Kim
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering (BKplus21 team), Dongguk University, Seoul 04620, and Department of Chemistry, Dongguk University, Seoul 04620, Korea
| |
Collapse
|
27
|
Ebili HO, Iyawe VO, Adeleke KR, Salami BA, Banjo AA, Nolan C, Rakha E, Ellis I, Green A, Agboola AOJ. Checkpoint Kinase 1 Expression Predicts Poor Prognosis in Nigerian Breast Cancer Patients. Mol Diagn Ther 2018; 22:79-90. [PMID: 29075961 DOI: 10.1007/s40291-017-0302-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Checkpoint kinase 1 (CHEK1), a DNA damage sensor and cell death pathway stimulator, is regarded as an oncogene in tumours, where its activities are considered essential for tumourigenesis and the survival of cancer cells treated with chemotherapy and radiotherapy. In breast cancer, CHEK1 expression has been associated with an aggressive tumour phenotype, the triple-negative breast cancer subtype, an aberrant response to tamoxifen, and poor prognosis. However, the relevance of CHEK1 expression has, hitherto, not been investigated in an indigenous African population. We therefore aimed to investigate the clinicopathological, biological, and prognostic significance of CHEK1 expression in a cohort of Nigerian breast cancer cases. MATERIAL AND METHODS Tissue microarrays of 207 Nigerian breast cancer cases were tested for CHEK1 expression using immunohistochemistry. The clinicopathological, molecular, and prognostic characteristics of CHEK1-positive tumours were determined using the Chi-squared test and Kaplan-Meier and Cox regression analyses in SPSS Version 16. RESULTS Nuclear expression of CHEK1 was present in 61% of breast tumours and was associated with tumour size, triple-negative cancer, basal-like phenotype, the epithelial-mesenchymal transition, p53 over-expression, DNA homologous repair pathway dysfunction, and poor prognosis. CONCLUSIONS The rate expression of CHEK1 is high in Nigerian breast cancer cases and is associated with an aggressive phenotype and poor prognosis.
Collapse
Affiliation(s)
- Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria.
| | - Victoria O Iyawe
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | - Kikelomo Rachel Adeleke
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | | | - Adekunbiola Aina Banjo
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | - Chris Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ayodeji Olayinka Johnson Agboola
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| |
Collapse
|
28
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
29
|
Wang Z, Førsund MS, Trope CG, Nesland JM, Holm R, Slipicevic A. Evaluation of CHK1 activation in vulvar squamous cell carcinoma and its potential as a therapeutic target in vitro. Cancer Med 2018; 7:3955-3964. [PMID: 29963769 PMCID: PMC6089182 DOI: 10.1002/cam4.1638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/05/2022] Open
Abstract
CHK1 is an important regulator of the cell cycle and DNA damage response, and its altered expression has been identified in various tumors. Chk1 inhibitors are currently being evaluated as monotherapy and as potentiators of chemotherapy in clinical settings. However, to our knowledge, no previous study has investigated either the activation status or the therapeutic potential of CHK1 targeting in vulvar cancer. Therefore, we examined the expression status of activated CHK1 forms pCHK1Ser345, pCHK1Ser317, pCHK1Ser296, and pCHK1Ser280 in 294 vulvar squamous cell carcinomas (VSCC) using immunohistochemistry and analyzed their relationships with various clinicopathological variables and clinical outcome. To aid translation of preclinical studies, we also assessed cell sensitivity to the Chk1 inhibition in two vulvar cancer cell lines. Compared to the levels of pCHK1Ser345, pCHK1Ser317, pCHK1Ser296, and pCHK1Ser280 in normal vulvar squamous epithelium, high nuclear pCHK1Ser345 expression was found in 57% of vulvar carcinomas, whereas low nuclear pCHK1Ser317, pCHK1Ser296, and pCHK1Ser280 expressions were observed in 58%, 64%, and 40% of the cases, respectively. Low levels of pCHK1Ser317 and pCHK1Ser280 in the nucleus correlated significantly with advanced tumor behaviors and aggressive features. None of pCHK1Ser345, pCHK1Ser317, pCHK1Ser296, and pCHK1Ser280 forms were identified as prognostic factors. In vitro inhibition of CHK1 by small molecular inhibitors or siRNA reduced viability by inducing DNA damage and apoptosis of vulvar cancer cell lines. In summary, we conclude that cellular functions regulated by CHK1 are phosphorylation/localization‐dependent and deregulation of CHK1 function occurs in VSCC and might contribute to tumorigenesis. Targeting CHK1 might represent as a useful antitumor strategy for the subgroup of VSCC harboring p53 mutations.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mette S Førsund
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Claes G Trope
- Department of Obstetrics and Gynecology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ruth Holm
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ana Slipicevic
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
30
|
Costanzo V, Bardelli A, Siena S, Abrignani S. Exploring the links between cancer and placenta development. Open Biol 2018; 8:180081. [PMID: 29950452 PMCID: PMC6030113 DOI: 10.1098/rsob.180081] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
The development of metastatic cancer is a multistage process, which often requires decades to complete. Impairments in DNA damage control and DNA repair in cancer cell precursors generate genetically heterogeneous cell populations. However, despite heterogeneity most solid cancers have stereotypical behaviours, including invasiveness and suppression of immune responses that can be unleashed with immunotherapy targeting lymphocyte checkpoints. The mechanisms leading to the acquisition of stereotypical properties remain poorly understood. Reactivation of embryonic development processes in cells with unstable genomes might contribute to tumour expansion and metastasis formation. However, it is unclear whether these events are linked to immune response modulation. Tumours and embryos have non-self-components and need to avoid immune responses in their microenvironment. In mammalian embryos, neo-antigens are of paternal origin, while in tumour cells DNA mismatch repair and replication defects generate them. Inactivation of the maternal immune response towards the embryo, which occurs at the placental-maternal interface, is key to ensuring embryonic development. This regulation is accomplished by the trophoblast, which mimics several malignant cell features, including the ability to invade normal tissues and to avoid host immune responses, often adopting the same cancer immunoediting strategies. A better understanding as to whether and how genotoxic stress promotes cancer development through reactivation of programmes occurring during early stages of mammalian placentation could help to clarify resistance to drugs targeting immune checkpoint and DNA damage responses and to develop new therapeutic strategies to eradicate cancer.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- IFOM, The FIRC Institute of Molecular Oncology, University of Milan Medical School, Milan, Italy
- Department of Oncology, University of Milan Medical School, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, University of Turin, Candiolo, Turin, Italy
- Department of Oncology, University of Turin, Candiolo, Turin, Italy
| | - Salvatore Siena
- Department of Oncology, University of Milan Medical School, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- University of Milan Medical School, Milan, Italy
| |
Collapse
|
31
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
32
|
Mayor-Ruiz C, Olbrich T, Drosten M, Lecona E, Vega-Sendino M, Ortega S, Dominguez O, Barbacid M, Ruiz S, Fernandez-Capetillo O. ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes Dev 2018; 32:568-576. [PMID: 29650524 PMCID: PMC5959239 DOI: 10.1101/gad.310086.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
Mayor-Ruiz et al. show that deletion of ERF rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. MEK inhibition in combination with a glycogen synthase kinase-3β (GSK3β) inhibitor, referred as the 2i condition, favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas. In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator of the response to RAS/MEK/ERK inhibition in mESCs.
Collapse
Affiliation(s)
- Cristina Mayor-Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Teresa Olbrich
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Maria Vega-Sendino
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sagrario Ortega
- Transgenic Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Orlando Dominguez
- Genomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sergio Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.,Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| |
Collapse
|
33
|
Flach J, Milyavsky M. Replication stress in hematopoietic stem cells in mouse and man. Mutat Res 2018; 808:74-82. [PMID: 29079268 DOI: 10.1016/j.mrfmmm.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 04/14/2023]
Abstract
Life-long blood regeneration relies on a rare population of self-renewing hematopoietic stem cells (HSCs). These cells' nearly unlimited self-renewal potential and lifetime persistence in the body signifies the need for tight control of their genome integrity. Their quiescent state, tightly linked with low metabolic activity, is one of the main strategies employed by HSCs to preserve an intact genome. On the other hand, HSCs need to be able to quickly respond to increased blood demands and rapidly increase their cellular output in order to fight infection-associated inflammation or extensive blood loss. This increase in proliferation rate, however, comes at the price of exposing HSCs to DNA damage inevitably associated with the process of DNA replication. Any interference with normal replication fork progression leads to a specialized molecular response termed replication stress (RS). Importantly, increased levels of RS are a hallmark feature of aged HSCs, where an accumulating body of evidence points to causative relationships between RS and the aging-associated impairment of the blood system's functional capacity. In this review, we present an overview of RS in HSCs focusing on its causes and consequences for the blood system of mice and men.
Collapse
Affiliation(s)
- Johanna Flach
- Department of Hematology and Medical Oncology & Institute of Molecular Oncology, University Medical Center Goettingen, Germany; Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
34
|
Nieto-Soler M, Morgado-Palacin I, Lafarga V, Lecona E, Murga M, Callen E, Azorin D, Alonso J, Lopez-Contreras AJ, Nussenzweig A, Fernandez-Capetillo O. Efficacy of ATR inhibitors as single agents in Ewing sarcoma. Oncotarget 2018; 7:58759-58767. [PMID: 27577084 PMCID: PMC5312273 DOI: 10.18632/oncotarget.11643] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 01/22/2023] Open
Abstract
Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas.
Collapse
Affiliation(s)
- Maria Nieto-Soler
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Morgado-Palacin
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Daniel Azorin
- Department of Pathology, Hospital Universitario Niño Jesus, Madrid, Spain
| | - Javier Alonso
- Pediatric Solid Tumor Laboratory, Institute of Rare Disease Research, ISCIII, Madrid, Spain
| | - Andres J Lopez-Contreras
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Denmark
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Yang X, Pan Y, Qiu Z, Du Z, Zhang Y, Fa P, Gorityala S, Ma S, Li S, Chen C, Wang H, Xu Y, Yan C, Ruth K, Ma Z, Zhang J. RNF126 as a Biomarker of a Poor Prognosis in Invasive Breast Cancer and CHEK1 Inhibitor Efficacy in Breast Cancer Cells. Clin Cancer Res 2018; 24:1629-1643. [PMID: 29326282 DOI: 10.1158/1078-0432.ccr-17-2242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 01/20/2023]
Abstract
Purpose: (i) To investigate the expression of the E3 ligase, RNF126, in human invasive breast cancer and its links with breast cancer outcomes; and (ii) to test the hypothesis that RNF126 determines the efficacy of inhibitors targeting the cell-cycle checkpoint kinase, CHEK1.Experimental Design: A retrospective analysis by immunohistochemistry (IHC) compared RNF126 staining in 110 invasive breast cancer and 78 paired adjacent normal tissues with clinicopathologic data. Whether RNF126 controls CHEK1 expression was determined by chromatin immunoprecipitation and a CHEK1 promoter driven luciferase reporter. Staining for these two proteins by IHC using tissue microarrays was also conducted. Cell killing/replication stress induced by CHEK1 inhibition was evaluated in cells, with or without RNF126 knockdown, by MTT/colony formation, replication stress biomarker immunostaining and DNA fiber assays.Results: RNF126 protein expression was elevated in breast cancer tissue samples. RNF126 was associated with a poor clinical outcome after multivariate analysis and was an independent predictor. RNF126 promotes CHEK1 transcript expression. Critically, a strong correlation between RNF126 and CHEK1 proteins was identified in breast cancer tissue and cell lines. The inhibition of CHEK1 induced a greater cell killing and a higher level of replication stress in breast cancer cells expressing RNF126 compared to RNF126 depleted cells.Conclusions: RNF126 protein is highly expressed in invasive breast cancer tissue. The high expression of RNF126 is an independent predictor of a poor prognosis in invasive breast cancer and is considered a potential biomarker of a cancer's responsiveness to CHEK1 inhibitors. CHEK1 inhibition targets breast cancer cells expressing higher levels of RNF126 by enhancing replication stress. Clin Cancer Res; 24(7); 1629-43. ©2018 AACR.
Collapse
Affiliation(s)
- Xiaosong Yang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - You Pan
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yao Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Pengyan Fa
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Shanhuai Ma
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shunqiang Li
- Division of Oncology Breast Oncology Section, Washington University Medical School, St. Louis, Missouri
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Keri Ruth
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Zhefu Ma
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Department of Breast Surgery & Plastic Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio. .,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Zhang Y, Lai J, Du Z, Gao J, Yang S, Gorityala S, Xiong X, Deng O, Ma Z, Yan C, Susana G, Xu Y, Zhang J. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget 2017; 7:34688-702. [PMID: 27167194 PMCID: PMC5085184 DOI: 10.18632/oncotarget.9156] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/31/2023] Open
Abstract
Radiotherapy (RT) remains a standard therapeutic modality for breast cancer patients. However, intrinsic or acquired resistance limits the efficacy of RT. Here, we demonstrate that CHK1 inhibitor AZD7762 alone significantly inhibited the growth of radioresistant breast cancer cells (RBCC). Given the critical role of ATR/CHK1 signaling in suppressing oncogene-induced replication stress (RS), we hypothesize that CHK1 inhibition leads to the specific killing for RBCC due to its abrogation in the suppression of RS induced by oncogenes. In agreement, the expression of oncogenes c-Myc/CDC25A/c-Src/H-ras/E2F1 and DNA damage response (DDR) proteins ATR/CHK1/BRCA1/CtIP were elevated in RBCC. AZD7762 exposure led to significantly higher levels of RS in RBCC, compared to the parental cells. The mechanisms by which CHK1 inhibition led to specific increase of RS in RBCC were related to the interruptions in the replication fork dynamics and the homologous recombination (HR). In summary, RBCC activate oncogenic pathways and thus depend upon mechanisms controlled by CHK1 signaling to maintain RS under control for survival. Our study provided the first example where upregulating RS by CHK1 inhibitor contributes to the specific killing of RBCC, and highlight the importance of the CHK1 as a potential target for treatment of radioresistant cancer cells.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Breast Surgery, Shanxi Academy of Medical Sciences, The Affiliated Shanxi Dayi Hospital of Shanxi Medical University, Shanxi, 030032, PR China
| | - Jinzhi Lai
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jinnan Gao
- Department of Breast Surgery, Shanxi Academy of Medical Sciences, The Affiliated Shanxi Dayi Hospital of Shanxi Medical University, Shanxi, 030032, PR China
| | - Shuming Yang
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shashank Gorityala
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiahui Xiong
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ou Deng
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Zhefu Ma
- Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | | | - Gonzalo Susana
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Yan Xu
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
37
|
Schuler F, Weiss JG, Lindner SE, Lohmüller M, Herzog S, Spiegl SF, Menke P, Geley S, Labi V, Villunger A. Checkpoint kinase 1 is essential for normal B cell development and lymphomagenesis. Nat Commun 2017; 8:1697. [PMID: 29167438 PMCID: PMC5700047 DOI: 10.1038/s41467-017-01850-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for intrinsic cell cycle control and coordination of cell cycle progression in response to DNA damage. Despite its essential function, CHK1 has been identified as a target to kill cancer cells and studies using Chk1 haploinsufficient mice initially suggested a role as tumor suppressor. Here, we report on the key role of CHK1 in normal B-cell development, lymphomagenesis and cell survival. Chemical CHK1 inhibition induces BCL2-regulated apoptosis in primary as well as malignant B-cells and CHK1 expression levels control the timing of lymphomagenesis in mice. Moreover, total ablation of Chk1 in B-cells arrests their development at the pro-B cell stage, a block that, surprisingly, cannot be overcome by inhibition of mitochondrial apoptosis, as cell cycle arrest is initiated as an alternative fate to limit the spread of damaged DNA. Our findings define CHK1 as essential in B-cell development and potent target to treat blood cancer.
Collapse
Affiliation(s)
- Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Johannes G Weiss
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Silke E Lindner
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Michael Lohmüller
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Simon F Spiegl
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Philipp Menke
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria. .,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria.
| |
Collapse
|
38
|
David L, Manenti S, Récher C, Hoffmann JS, Didier C. Targeting ATR/CHK1 pathway in acute myeloid leukemia to overcome chemoresistance. Mol Cell Oncol 2017; 4:e1289293. [PMID: 29057300 DOI: 10.1080/23723556.2017.1289293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/18/2022]
Abstract
Resistance of acute myeloid leukemia to current therapies leads to frequent relapses. Identification of molecular mechanisms involved in chemoresistance constitutes a key challenge to define new therapeutic concepts. Here, we show that the ATR/CHK1 pathway, essential in maintaining genomic stability, is involved in resistance and proliferation characteristics of leukemic cells.
Collapse
Affiliation(s)
- Laure David
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Stéphane Manenti
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Christian Récher
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Jean-Sébastien Hoffmann
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Christine Didier
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
39
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
40
|
Herlihy AE, de Bruin RAM. The Role of the Transcriptional Response to DNA Replication Stress. Genes (Basel) 2017; 8:E92. [PMID: 28257104 PMCID: PMC5368696 DOI: 10.3390/genes8030092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.
Collapse
Affiliation(s)
- Anna E Herlihy
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Robertus A M de Bruin
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
- The UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Liu Z, Yanagisawa K, Griesing S, Iwai M, Kano K, Hotta N, Kajino T, Suzuki M, Takahashi T. TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas. Oncogene 2017; 36:3740-3748. [PMID: 28192407 DOI: 10.1038/onc.2016.524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023]
Abstract
TTF-1, also known as NKX2-1, is a transcription factor that has indispensable roles in both lung development and physiology. We and others have reported that TTF-1 frequently exhibits high expression with increased copy number in lung adenocarcinomas, and also has a role as a lineage-survival oncogene through transcriptional activation of crucial target genes including ROR1 and LMO3. In the present study, we employed a global proteomic search for proteins that interact with TTF-1 in order to provide a more comprehensive picture of this still enigmatic lineage-survival oncogene. Our results unexpectedly revealed a function independent of its transcriptional activity, as TTF-1 was found to interact with DDB1 and block its binding to CHK1, which in turn attenuated ubiquitylation and subsequent degradation of CHK1. Furthermore, TTF-1 overexpression conferred resistance to cellular conditions under DNA replication stress (RS) and prevented an increase in consequential DNA double-strand breaks, as reflected by attenuated induction of pCHK2 and γH2AX. Our findings suggest that the novel non-transcriptional function of TTF-1 identified in this study may contribute to lung adenocarcinoma development by conferring tolerance to DNA RS, which is known to be inherently elicited by activation of various oncogenes.
Collapse
Affiliation(s)
- Z Liu
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Griesing
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Iwai
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Kano
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - N Hotta
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
42
|
Abstract
Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.
Collapse
Affiliation(s)
- Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
43
|
Goullet de Rugy T, Bashkurov M, Datti A, Betous R, Guitton-Sert L, Cazaux C, Durocher D, Hoffmann JS. Excess Polθ functions in response to replicative stress in homologous recombination-proficient cancer cells. Biol Open 2016; 5:1485-1492. [PMID: 27612511 PMCID: PMC5087683 DOI: 10.1242/bio.018028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA polymerase theta (Polθ) is a specialized A-family DNA polymerase that functions in processes such as translesion synthesis (TLS), DNA double-strand break repair and DNA replication timing. Overexpression of POLQ, the gene encoding Polθ, is a prognostic marker for an adverse outcome in a wide range of human cancers. While increased Polθ dosage was recently suggested to promote survival of homologous recombination (HR)-deficient cancer cells, it remains unclear whether POLQ overexpression could be also beneficial to HR-proficient cancer cells. By performing a short interfering (si)RNA screen in which genes encoding druggable proteins were knocked down in Polθ-overexpressing cells as a means to uncover genetic vulnerabilities associated with POLQ overexpression, we could not identify genes that were essential for viability in Polθ-overexpressing cells in normal growth conditions. We also showed that, upon external DNA replication stress, Polθ expression promotes cell survival and limits genetic instability. Finally, we report that POLQ expression correlates with the expression of a set of HR genes in breast, lung and colorectal cancers. Collectively, our data suggest that Polθ upregulation, besides its importance for survival of HR-deficient cancer cells, may be crucial also for HR-proficient cells to better tolerate DNA replication stress, as part of a global gene deregulation response, including HR genes. Summary: Our work suggests that Polθ upregulation may be crucial for homologous recombination (HR)-proficient cells to better tolerate DNA replication stress, as part of a global gene deregulation response, including HR genes.
Collapse
Affiliation(s)
- T Goullet de Rugy
- UMR1037, Le Centre de Recherches en Cancérologie de Toulouse (CRCT), 2 Avenue Hubert, Curien CS 53717, Toulouse 31037, Cedex 1, France UMR1037, CRCT, Université Toulouse, III-Paul Sabatier, Toulouse F-31000, France Equipe Labellisée Ligue Contre le Cancer, Toulouse F-31000, France
| | - M Bashkurov
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - A Datti
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5 Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06121-06135, Italy
| | - R Betous
- UMR1037, Le Centre de Recherches en Cancérologie de Toulouse (CRCT), 2 Avenue Hubert, Curien CS 53717, Toulouse 31037, Cedex 1, France UMR1037, CRCT, Université Toulouse, III-Paul Sabatier, Toulouse F-31000, France Equipe Labellisée Ligue Contre le Cancer, Toulouse F-31000, France
| | - L Guitton-Sert
- UMR1037, Le Centre de Recherches en Cancérologie de Toulouse (CRCT), 2 Avenue Hubert, Curien CS 53717, Toulouse 31037, Cedex 1, France UMR1037, CRCT, Université Toulouse, III-Paul Sabatier, Toulouse F-31000, France Equipe Labellisée Ligue Contre le Cancer, Toulouse F-31000, France
| | - C Cazaux
- UMR1037, Le Centre de Recherches en Cancérologie de Toulouse (CRCT), 2 Avenue Hubert, Curien CS 53717, Toulouse 31037, Cedex 1, France UMR1037, CRCT, Université Toulouse, III-Paul Sabatier, Toulouse F-31000, France Equipe Labellisée Ligue Contre le Cancer, Toulouse F-31000, France
| | - D Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - J S Hoffmann
- UMR1037, Le Centre de Recherches en Cancérologie de Toulouse (CRCT), 2 Avenue Hubert, Curien CS 53717, Toulouse 31037, Cedex 1, France UMR1037, CRCT, Université Toulouse, III-Paul Sabatier, Toulouse F-31000, France Equipe Labellisée Ligue Contre le Cancer, Toulouse F-31000, France
| |
Collapse
|
44
|
Morgado-Palacin I, Day A, Murga M, Lafarga V, Anton ME, Tubbs A, Chen HT, Ergan A, Anderson R, Bhandoola A, Pike KG, Barlaam B, Cadogan E, Wang X, Pierce AJ, Hubbard C, Armstrong SA, Nussenzweig A, Fernandez-Capetillo O. Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of MLL-rearranged AML. Sci Signal 2016; 9:ra91. [PMID: 27625305 DOI: 10.1126/scisignal.aad8243] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias.
Collapse
Affiliation(s)
- Isabel Morgado-Palacin
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Amanda Day
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Matilde Murga
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Marta Elena Anton
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Anthony Tubbs
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Hua Tang Chen
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Aysegul Ergan
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Rhonda Anderson
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | | | | | | | - Xi Wang
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | - Chad Hubbard
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Scott A Armstrong
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Solna, Sweden
| |
Collapse
|
45
|
David L, Fernandez-Vidal A, Bertoli S, Grgurevic S, Lepage B, Deshaies D, Prade N, Cartel M, Larrue C, Sarry JE, Delabesse E, Cazaux C, Didier C, Récher C, Manenti S, Hoffmann JS. CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal 2016; 9:ra90. [PMID: 27625304 DOI: 10.1126/scisignal.aac9704] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognostic marker associated with shorter overall, event-free, and relapse-free survivals and determined that the expression of CHEK1 can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression of DNA replication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoring CHEK1 expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.
Collapse
Affiliation(s)
- Laure David
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Anne Fernandez-Vidal
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Sarah Bertoli
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059 Toulouse, Cedex 9, France
| | - Srdana Grgurevic
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Benoît Lepage
- Université Paul Sabatier, Toulouse, France. Département d'Epidémiologie, Economie de la Santé et Santé Publique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1027, Epidémiologie et analyses en santé publique: Risques, maladies chroniques et handicaps, Faculté de médecine, Toulouse, France
| | - Dominique Deshaies
- Département d'Epidémiologie, Economie de la Santé et Santé Publique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Naïs Prade
- Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Maëlle Cartel
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Clément Larrue
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Jean-Emmanuel Sarry
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Christophe Cazaux
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Christine Didier
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Christian Récher
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059 Toulouse, Cedex 9, France.
| | - Stéphane Manenti
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France.
| | - Jean-Sébastien Hoffmann
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
46
|
Liu X, Zhou ZW, Wang ZQ. The DNA damage response molecule MCPH1 in brain development and beyond. Acta Biochim Biophys Sin (Shanghai) 2016; 48:678-85. [PMID: 27197793 DOI: 10.1093/abbs/gmw048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Microcephalin (MCPH1) is identified as being responsible for the neurodevelopmental disorder primary microcephaly type 1, which is characterized by a smaller-than-normal brain size and mental retardation. MCPH1 has originally been identified as an important regulator of telomere integrity and of cell cycle control. Genetic and cellular studies show that MCPH1 controls neurogenesis by coordinating the cell cycle and the centrosome cycle and thereby regulating the division mode of neuroprogenitors to prevent the exhaustion of the progenitor pool and thereby microcephaly. In addition to its role in neurogenesis, MCPH1 plays a role in gonad development. MCPH1 also functions as a tumor suppressor in several human cancers as well as in mouse models. Here, we review the role of MCPH1 in DNA damage response, cell cycle control, chromosome condensation and chromatin remodeling. We also summarize the studies on the biological functions of MCPH1 in brain size determination and in pathologies, including infertility and cancer.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhong-Wei Zhou
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
47
|
USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 2016; 23:270-7. [PMID: 26950370 DOI: 10.1038/nsmb.3185] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
Abstract
Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7 inhibitors as anticancer agents.
Collapse
|
48
|
Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, Agell N. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res 2016; 44:4745-62. [PMID: 26939887 PMCID: PMC4889930 DOI: 10.1093/nar/gkw132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity.
Collapse
Affiliation(s)
- Amaia Ercilla
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Alba Llopis
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sonia Feu
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| |
Collapse
|
49
|
Muñoz S, Méndez J. DNA replication stress: from molecular mechanisms to human disease. Chromosoma 2016; 126:1-15. [PMID: 26797216 DOI: 10.1007/s00412-016-0573-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
50
|
von Joest M, Búa Aguín S, Li H. Genomic stability during cellular reprogramming: Mission impossible? Mutat Res 2016; 788:12-6. [PMID: 26851988 DOI: 10.1016/j.mrfmmm.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 01/01/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from adult somatic cells is one of the most exciting discoveries in recent biomedical research. It holds tremendous potential in drug discovery and regenerative medicine. However, a series of reports highlighting genomic instability in iPSCs raises concerns about their clinical application. Although the mechanisms cause genomic instability during cellular reprogramming are largely unknown, several potential sources have been suggested. This review summarizes current knowledge on this active research field and discusses the latest efforts to alleviate the genomic insults during cellular reprogramming to generate iPSCs with enhanced quality and safety.
Collapse
Affiliation(s)
- Mathieu von Joest
- Cellular Plasticity and Disease Modelling group, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Sabela Búa Aguín
- Cellular Plasticity and Disease Modelling group, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Han Li
- Cellular Plasticity and Disease Modelling group, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|