1
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024. [PMID: 39345014 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Edward J Hollox
- Department of Genetics, Genomics and Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Aung A, Irvine DJ. Modulating Antigen Availability in Lymphoid Organs to Shape the Humoral Immune Response to Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:171-178. [PMID: 38166252 PMCID: PMC10768795 DOI: 10.4049/jimmunol.2300500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 01/04/2024]
Abstract
Primary immune responses following vaccination are initiated in draining lymph nodes, where naive T and B cells encounter Ag and undergo coordinated steps of activation. For humoral immunity, the amount of Ag present over time, its localization to follicles and follicular dendritic cells, and the Ag's structural state all play important roles in determining the subsequent immune response. Recent studies have shown that multiple elements of vaccine design can impact Ag availability in lymphoid tissues, including the choice of adjuvant, physical form of the immunogen, and dosing kinetics. These vaccine design elements affect the transport of Ag to lymph nodes, Ag's localization in the tissue, the duration of Ag availability, and the structural integrity of the Ag. In this review, we discuss these findings and their implications for engineering more effective vaccines, particularly for difficult to neutralize pathogens.
Collapse
Affiliation(s)
- Aereas Aung
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
The cellular biology of plasma cells: Unmet challenges and opportunities. Immunol Lett 2023; 254:6-12. [PMID: 36646289 DOI: 10.1016/j.imlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Plasma cells and the antibodies they secrete are paramount for protection against infection but can also be implicated in diseases including autoantibody-mediated disease and multiple myeloma. Plasma cell terminal differentiation relies on a transcriptional switch and on important morphological changes. The cellular and molecular mechanisms underlying these processes are partly understood and how plasma cells manage to survive for long periods of time while secreting large quantities of antibodies remains unclear. In this review we aim to put in perspective what is known about plasma cell cellular biology to highlight the challenges faced by this field of research but also to illustrate how new opportunities may arise from the study of the fundamental mechanisms sustaining plasma cell survival and function.
Collapse
|
4
|
Two major genes associated with autoimmune arthritis, Ncf1 and Fcgr2b, additively protect mice by strengthening T cell tolerance. Cell Mol Life Sci 2022; 79:482. [PMID: 35963953 PMCID: PMC9375767 DOI: 10.1007/s00018-022-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
A breach of T cell tolerance is considered as a major step in the pathogenesis of rheumatoid arthritis. In collagen-induced arthritis (CIA) model, immunization with type II collagen (COL2) leads to arthritis in mice through T cells responding to the immunodominant COL2259–273 peptide. T cells could escape from thymus negative selection because endogenous COL2259–273 peptide only weakly binds to the major histocompatibility complex class II (MHCII) molecule Aq. To investigate the regulation of T cell tolerance, we used a new mouse strain BQ.Col2266E with homozygous D266E mutations in the Col2 gene leading to a replacement of the endogenous aspartic acid (D) to glutamic acid (E) at position 266 of the COL2259–273 peptide, resulting in stronger binding to Aq. We also established BQ.Col2264R mice carrying an additional K264R mutation changed the lysine (K) at position 264 to eliminate the major TCR recognition site. The BQ.Col2266E mice were fully resistant to CIA, while the BQ.Col2264R mice developed severe arthritis. Furthermore, we studied two of the most important non-MHCII genes associated with CIA, i.e., Ncf1 and Fcgr2b. Deficiency of either gene induced arthritis in BQ.Col2266E mice, and the downstream effects differ as Ncf1 deficiency reduced Tregs and was likely to decrease expression of autoimmune regulator (AIRE) while Fcgr2b did not. In conclusion, the new human-mimicking mouse model has strong T cell tolerance to COL2, which can be broken by deficiency of Fcgr2b or Ncf1, allowing activation of autoreactive T cells and development of arthritis.
Collapse
|
5
|
Barlev AN, Malkiel S, Kurata-Sato I, Dorjée AL, Suurmond J, Diamond B. FcɣRIIB regulates autoantibody responses by limiting marginal zone B cell activation. J Clin Invest 2022; 132:157250. [PMID: 35819855 PMCID: PMC9435648 DOI: 10.1172/jci157250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
FcɣRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcɣRIIB expression on B cell activation and plasma cell differentiation. Loss of FcɣRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcɣRIIB in both mouse and human. This high expression of FcɣRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium fluxin the absence of FcɣRIIB triggering. Marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice. Importantly, SLE patients exhibited decreased expression of FcɣRIIB, most strongly in MZ B cells. Thus, we present a model where high FcɣRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.
Collapse
Affiliation(s)
- Ashley N Barlev
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Izumi Kurata-Sato
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Annemarie L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
6
|
Vaartjes D, Klaczkowska D, Cragg MS, Nandakumar KS, Bäckdahl L, Holmdahl R. Genetic dissection of a major haplotype associated with arthritis reveal FcγR2b and FcγR3 to act additively. Eur J Immunol 2021; 51:682-693. [PMID: 33244759 PMCID: PMC7984332 DOI: 10.1002/eji.202048605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
A haplotype with tightly linked Fc gamma receptor (FcγR) genes is known as a major locus controlling immune responses and autoimmune diseases, including arthritis. Here, we split a congenic fragment derived from the NOD mouse (Cia9) to study its effect on immune response and arthritis in mice. We found that arthritis susceptibility was indeed controlled by the FcγR gene cluster and a recombination between the FcγR2b and FcγR3 loci gave us the opportunity to separately study their impact. We identified the NOD-derived FcγR2b and FcγR3 alleles as disease-promoting for arthritis development without impact on antibody secretion. We further found that macrophage-mediated phagocytosis was directly correlated to FcγR3 expression in the congenic mice. In conclusion, we positioned FcγR2b and FcγR3 alleles as disease regulatory and showed that their genetic polymorphisms independently and additively control innate immune cell activation and arthritis.
Collapse
Affiliation(s)
- Daniëlle Vaartjes
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dorota Klaczkowska
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Mark S Cragg
- Antibody and Vaccine GroupCentre for Cancer ImmunologyUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Kutty Selva Nandakumar
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Liselotte Bäckdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, Dudziak D, Harrer T, Gessner A, Nimmerjahn F. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. eLife 2020; 9:55319. [PMID: 32613944 PMCID: PMC7438111 DOI: 10.7554/elife.55319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogen-specific antibody responses need to be tightly regulated to generate protective but limit self-reactive immune responses. While loss of humoral tolerance has been associated with microbial infections, the pathways involved in balancing protective versus autoreactive antibody responses in humans are incompletely understood. Studies in classical mouse model systems have provided evidence that balancing of immune responses through inhibitory receptors is an important quality control checkpoint. Genetic differences between inbred mouse models and the outbred human population and allelic receptor variants not present in mice; however, argue for caution when directly translating these findings to the human system. By studying Borrelia burgdorferi infection in humanized mice reconstituted with human hematopoietic stem cells from donors homozygous for a functional or a non-functional FcγRIIb allele, we show that the human inhibitory FcγRIIb is a critical checkpoint balancing protective and autoreactive immune responses, linking infection with induction of autoimmunity in the human immune system.
Collapse
Affiliation(s)
- Heike Danzer
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim Glaesner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany
| | - Anne Baerenwaldt
- Laboratory for Cancer Immunotherapy, University Hospital Basel, Basel, Switzerland
| | - Carmen Reitinger
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Harrer
- Medical Department 3, University Hospital Erlangen, Erlangen, Germany
| | - André Gessner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Bonaud A, Clare S, Bisio V, Sowerby JM, Yao S, Ostergaard H, Balabanian K, Smith KGC, Espéli M. Leupaxin Expression Is Dispensable for B Cell Immune Responses. Front Immunol 2020; 11:466. [PMID: 32269569 PMCID: PMC7109257 DOI: 10.3389/fimmu.2020.00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/22/2022] Open
Abstract
The generation of a potent humoral immune response by B cells relies on the integration of signals induced by the B cell receptor, toll-like receptors and both negative and positive co-receptors. Several reports also suggest that integrin signaling plays an important role in this process. How integrin signaling is regulated in B cells is however still partially understood. Integrin activity and function are controlled by several mechanisms including regulation by molecular adaptors of the paxillin family. In B cells, Leupaxin (Lpxn) is the most expressed member of the family and in vitro studies suggest that it could dampen BCR signaling. Here, we report that Lpxn expression is increased in germinal center B cells compared to naïve B cells. Moreover, Lpxn deficiency leads to decreased B cell differentiation into plasma cells in vitro. However, Lpxn seems dispensable for the generation of a potent B cell immune response in vivo. Altogether our results suggest that Lpxn is dispensable for T-dependent and T-independent B cell immune responses.
Collapse
Affiliation(s)
- Amélie Bonaud
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
| | - Simon Clare
- Wellcome Trust Genome, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Valeria Bisio
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
| | - John M. Sowerby
- The Department of Medicine, Cambridge Biomedical, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Jeffrey Cheah Biomedical Centre Cambridge Biomedical, Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Shugang Yao
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Hanne Ostergaard
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Karl Balabanian
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
| | - Kenneth G. C. Smith
- The Department of Medicine, Cambridge Biomedical, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Jeffrey Cheah Biomedical Centre Cambridge Biomedical, Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Marion Espéli
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
| |
Collapse
|
9
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
10
|
Stoler-Barak L, Biram A, Davidzohn N, Addadi Y, Golani O, Shulman Z. B cell dissemination patterns during the germinal center reaction revealed by whole-organ imaging. J Exp Med 2019; 216:2515-2530. [PMID: 31492809 PMCID: PMC6829594 DOI: 10.1084/jem.20190789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Antibody-mediated long-lasting protection from harmful pathogens depends on collaboration of immune cells within immunological niches. Stoler-Barak et al. introduce an approach that enables the visualization of all the germinal center niches and activated B cells within intact lymph nodes. Germinal centers (GCs) are sites wherein B cells proliferate and mutate their immunoglobulins in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). Here, we mapped the location of single B cells in the context of intact lymph nodes (LNs) throughout the GC response, and examined the role of BCR affinity in dictating their position. Imaging of entire GC structures and proximal single cells by light-sheet fluorescence microscopy revealed that individual B cells that previously expressed AID are located within the LN cortex, in an area close to the GC LZ. Using in situ photoactivation, we demonstrated that B cells migrate from the LZ toward the GC outskirts, while DZ B cells are confined to the GC. B cells expressing very-low-affinity BCRs formed GCs but were unable to efficiently disperse within the follicles. Our findings reveal that BCR affinity regulates B cell positioning during the GC response.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Bagchi-Chakraborty J, Francis A, Bray T, Masters L, Tsiantoulas D, Nus M, Harrison J, Broekhuizen M, Leggat J, Clatworthy MR, Espéli M, Smith KG, Binder CJ, Mallat Z, Sage AP. B Cell Fcγ Receptor IIb Modulates Atherosclerosis in Male and Female Mice by Controlling Adaptive Germinal Center and Innate B-1-Cell Responses. Arterioscler Thromb Vasc Biol 2019; 39:1379-1389. [PMID: 31092015 PMCID: PMC6636804 DOI: 10.1161/atvbaha.118.312272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/22/2019] [Indexed: 02/02/2023]
Abstract
Objective- Investigate the impact of modulating B cell FcγRIIb (Fcγ receptor IIb) expression on atherosclerosis. Approach and Results- Western diet-induced atherosclerosis was assessed in Ldlr-/- or Apoe-/- mice with B cell-specific overexpression of FcγRIIb or with an FcγRIIb promoter mutation that alters FcγRIIb expression in germinal center (GC) B cells. In males, overexpression of FcγRIIb on B cells severely reduced activated, class switched B cell responses, as indicated by reductions in GC B cells, plasma cells, and serum IgG but not IgM antibodies. Male mice overexpressing FcγRIIb developed less atherosclerosis, suggesting a pathogenic role for GC B cell IgG responses. In support of this hypothesis, male mice with a promoter polymorphism-driven reduction in FcγRIIb on GC B cells but not plasma cells have a converse phenotype of enhanced GC responses and IgG2c antibodies and enhanced atherosclerosis. IgG2c significantly enhanced TNF (tumor necrosis factor) secretion by CD11b+ CD11c+ cells expressing the high-affinity receptor FcγRIV. In females, overexpression of FcγRIIb on B cells not only reduced GC B cell responses but also substantially reduced B-1 cells and IgM antibodies, which translated into acceleration of atherosclerosis. Promoter-driven reduction in FcγRIIb did not alter GC B cell responses in females and, therefore, had no impact on atherosclerosis. Conclusions- B cell FcγRIIb differentially alters proatherogenic adaptive GC B cell and atheroprotective innate B-1 responses in male and female mice fed a western diet. Our results highlight the importance of a better understanding and ability to selectively target B cell responses in future immunotherapeutic approaches against human cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Jayashree Bagchi-Chakraborty
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Anna Francis
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Toni Bray
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Leanne Masters
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Dimitrios Tsiantoulas
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Meritxell Nus
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - James Harrison
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Michelle Broekhuizen
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Jennifer Leggat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Marion Espéli
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France (M.E.)
| | - Kenneth G.C. Smith
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (C.J.B.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, France (Z.M.)
| | - Andrew P. Sage
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
12
|
Espéli M, Bashford-Rogers R, Sowerby JM, Alouche N, Wong L, Denton AE, Linterman MA, Smith KGC. FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human. Nat Commun 2019; 10:1970. [PMID: 31036800 PMCID: PMC6488660 DOI: 10.1038/s41467-019-09434-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Several tolerance checkpoints exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but in contrast promotes autoreactive B cell expansion in the germinal center and serum autoantibody production, even in response to exogenous, non-self antigens. Our data thus show that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints, and suggest that B cell tolerance requires the control of bystander germinal center B cells with low or no affinity for the immunizing antigen. The inhibitory receptor, FcγRIIb, is reported to limit autoimmune B cell response. Here the authors show that FcγRIIb has a dual role in both human and mouse, with reduced FcγRIIb expression or function associated with enhanced pre-immune B cell tolerance, yet defective control of mature autoreactive B cells in the germinal center.
Collapse
Affiliation(s)
- Marion Espéli
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France.
| | - Rachael Bashford-Rogers
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Nagham Alouche
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France
| | - Limy Wong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK
| | - Alice E Denton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Michelle A Linterman
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Kenneth G C Smith
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK.
| |
Collapse
|
13
|
Weisenburger T, von Neubeck B, Schneider A, Ebert N, Schreyer D, Acs A, Winkler TH. Epistatic Interactions Between Mutations of Deoxyribonuclease 1-Like 3 and the Inhibitory Fc Gamma Receptor IIB Result in Very Early and Massive Autoantibodies Against Double-Stranded DNA. Front Immunol 2018; 9:1551. [PMID: 30026744 PMCID: PMC6041390 DOI: 10.3389/fimmu.2018.01551] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/22/2018] [Indexed: 01/02/2023] Open
Abstract
Autoantibodies against double-stranded DNA (anti-dsDNA) are a hallmark of systemic lupus erythematosus (SLE). It is well documented that anti-dsDNA reactive B lymphocytes are normally controlled by immune self-tolerance mechanisms operating at several levels. The evolution of high levels of IgG anti-dsDNA in SLE is dependent on somatic hypermutation and clonal selection, presumably in germinal centers from non-autoreactive B cells. Twin studies as well as genetic studies in mice indicate a very strong genetic contribution for the development of anti-dsDNA as well as SLE. Only few single gene defects with a monogenic Mendelian inheritance have been described so far that are directly responsible for the development of anti-dsDNA and SLE. Recently, among other mutations, rare null-alleles for the deoxyribonuclease 1 like 3 (DNASE1L3) and the Fc gamma receptor IIB (FCGR2B) have been described in SLE patients and genetic mouse models. Here, we demonstrate that double Dnase1l3- and FcgR2b-deficient mice in the C57BL/6 background exhibit a very early and massive IgG anti-dsDNA production. Already at 10 weeks of age, autoantibody production in double-deficient mice exceeds autoantibody levels of diseased 9-month-old NZB/W mice, a long established multigenic SLE mouse model. In single gene-deficient mice, autoantibody levels were moderately elevated at early age of the mice. Premature autoantibody production was accompanied by a spontaneous hyperactivation of germinal centers, early expansions of T follicular helper cells, and elevated plasmablasts in the spleen. Anti-dsDNA hybridomas generated from double-deficient mice show significantly elevated numbers of arginines in the CDR3 regions of the heavy-chain as well as clonal expansions and diversification of B cell clones with moderate numbers of somatic mutations. Our findings show a strong epistatic interaction of two SLE-alleles which prevent early and high-level anti-dsDNA autoantibody production. Both genes apparently synergize to keep in check excessive germinal center reactions evolving into IgG anti-dsDNA antibody producing B cells.
Collapse
Affiliation(s)
- Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Bettina von Neubeck
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Schneider
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadja Ebert
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Schreyer
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
15
|
Veiga-Fernandes H, Freitas AA. The S(c)ensory Immune System Theory. Trends Immunol 2017; 38:777-788. [DOI: 10.1016/j.it.2017.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 01/21/2023]
|
16
|
Jhou JP, Chen SJ, Huang HY, Lin WW, Huang DY, Tzeng SJ. Upregulation of FcγRIIB by resveratrol via NF-κB activation reduces B-cell numbers and ameliorates lupus. Exp Mol Med 2017; 49:e381. [PMID: 28960214 PMCID: PMC5628277 DOI: 10.1038/emm.2017.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Resveratrol, an anti-inflammatory agent, can inhibit pro-inflammatory mediators by activating Sirt1, which is a class III histone deacetylase. However, whether resveratrol can regulate inhibitory or anti-inflammatory molecules has been less studied. FcγRIIB, a receptor for IgG, is an essential inhibitory receptor of B cells for blocking B-cell receptor-mediated activation and for directly inducing apoptosis of B cells. Because mice deficient in either Sirt1 or FcγRIIB develop lupus-like diseases, we investigated whether resveratrol can alleviate lupus through FcγRIIB. We found that resveratrol enhanced the expression of FcγRIIB in B cells, resulting in a marked depletion of plasma cells in the spleen and notably in the bone marrow, thereby decreasing serum autoantibody titers in MRL/lpr mice. The upregulation of FcγRIIB by resveratrol involved an increase of Sirt1 protein and deacetylation of p65 NF-κB (K310). Moreover, increased binding of phosphor-p65 NF-κB (S536) but decreased association of acetylated p65 NF-κB (K310) and phosphor-p65 NF-κB (S468) to the −480 promoter region of Fcgr2b gene was responsible for the resveratrol-mediated enhancement of FcγRIIB gene transcription. Consequently, B cells, especially plasma cells, were considerably reduced in MRL/lpr mice, leading to improvement of nephritis and prolonged survival. Taken together, we provide evidence that pharmacological upregulation of FcγRIIB expression in B cells via resveratrol can selectively reduce B cells, decrease serum autoantibodies and ameliorate lupus nephritis. Our findings lead us to propose FcγRIIB as a new target for therapeutic exploitation, particularly for lupus patients whose FcγRIIB expression levels in B cells are downregulated.
Collapse
Affiliation(s)
- Jyun-Pei Jhou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Se-Jie Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ho-Yin Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiang-Jong Tzeng
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Bannard O, Cyster JG. Germinal centers: programmed for affinity maturation and antibody diversification. Curr Opin Immunol 2017; 45:21-30. [DOI: 10.1016/j.coi.2016.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
18
|
Arthritis models: usefulness and interpretation. Semin Immunopathol 2017; 39:469-486. [PMID: 28349194 DOI: 10.1007/s00281-017-0622-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Animal models of arthritis are used to better understand pathophysiology of a disease or to seek potential therapeutic targets or strategies. Focusing on models currently used for studying rheumatoid arthritis, we show here in which extent models were invaluable to enlighten different mechanisms such as the role of innate immunity, T and B cells, vessels, or microbiota. Moreover, models were the starting point of in vivo application of cytokine-blocking strategies such as anti-TNF or anti-IL-6 treatments. The most popular models are the different types of collagen-induced arthritis and arthritis in KBN mice. As spontaneous arthritides, human TNF-α transgenic mice are a reliable model. It is mandatory to use animal models in the respect of ethical procedure, particularly regarding the number of animals and the control of pain. Moreover, design of experiments should be of the highest level, animal models of arthritis being dedicated to exploration of well-based novelties, and never used for confirmation or replication of already proven concepts. The best interpretations of data in animal models of arthritis suppose integrated research, including translational studies from animals to humans.
Collapse
|
19
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
20
|
Biajoux V, Natt J, Freitas C, Alouche N, Sacquin A, Hemon P, Gaudin F, Fazilleau N, Espéli M, Balabanian K. Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization. Cell Rep 2016; 17:193-205. [DOI: 10.1016/j.celrep.2016.08.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
|
21
|
DeFranco AL. Germinal centers and autoimmune disease in humans and mice. Immunol Cell Biol 2016; 94:918-924. [PMID: 27562062 DOI: 10.1038/icb.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are involved in the pathogenesis of many autoimmune diseases. Although the mechanisms underlying the antibody response to infection or vaccination are reasonably well understood, we still have a poor understanding of the nature of autoimmune antibody responses. The most well studied are the anti-nuclear antibody responses characteristic of systemic lupus erythematosus and studies over the past decade or so have demonstrated a critical role for signaling by TLR7 and/or TLR9 in B cells to promote these responses. These Toll-like receptors (TLRs) can promote T-cell-independent extrafollicular antibody responses with a heavy-chain class switch and a low degree of somatic mutation, but they can also strongly boost the germinal center response that gives rise to high-affinity antibodies and long-lived plasma cells. TLRs have been shown to enhance affinity maturation in germinal center responses to produce high-affinity neutralizing antibodies in several virus infection models of mice. Although more data are needed, it appears that anti-nuclear antibodies in mouse models of lupus and in lupus patients can be generated by either pathway, provided there are genetic susceptibility alleles that compromise B-cell tolerance at one or another stage. Limited data in other autoimmune diseases suggest that the germinal center response may be the predominant pathway leading to autoantibodies in those diseases. A better understanding of the mechanisms of autoantibody production may ultimately be helpful in the development of targeted therapeutics for lupus or other autoimmune diseases.
Collapse
Affiliation(s)
- Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
23
|
Abstract
In this Minireview, we discuss basic aspects of germinal center biology in the context of immunity to influenza infection and speculate on how the simultaneous evolutionary races of virus and antibody may impact our efforts to design a universal influenza vaccine.
Collapse
Affiliation(s)
- Gabriel D Victora
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Committee on Immunology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Viney M, Lazarou L, Abolins S. The laboratory mouse and wild immunology. Parasite Immunol 2015; 37:267-73. [PMID: 25303494 DOI: 10.1111/pim.12150] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/03/2014] [Indexed: 01/29/2023]
Abstract
The laboratory mouse, Mus musculus domesticus, has been the workhorse of the very successful laboratory study of mammalian immunology. These studies--discovering how the mammalian immune system can work--have allowed the development of the field of wild immunology that is seeking to understand how the immune responses of wild animals contributes to animals' fitness. Remarkably, there have hardly been any studies of the immunology of wild M. musculus domesticus (or of rats, another common laboratory model), but the general finding is that these wild animals are more immunologically responsive, compared with their laboratory domesticated comparators. This difference probably reflects the comparatively greater previous exposure to antigens of these wild-caught animals. There are now excellent prospects for laboratory mouse immunology to make major advances in the field of wild immunology.
Collapse
Affiliation(s)
- M Viney
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
25
|
Ng HP, Zhu X, Harmon EY, Lennartz MR, Nagarajan S. Reduced Atherosclerosis in apoE-inhibitory FcγRIIb-Deficient Mice Is Associated With Increased Anti-Inflammatory Responses by T Cells and Macrophages. Arterioscler Thromb Vasc Biol 2015; 35:1101-12. [PMID: 25792447 PMCID: PMC4409543 DOI: 10.1161/atvbaha.115.305290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Fcγ receptors (FcγRs) are classified as activating (FcγRI, III, and IV) and inhibitory (FcγRII) receptors. We have reported that deletion of activating FcγRs in apolipoprotein E (apoE) single knockout mice attenuated atherosclerosis. In this report, we investigated the hypothesis that deficiency of inhibitory FcγRIIb exacerbates atherosclerosis. APPROACH AND RESULTS ApoE-FcγRIIb double knockout mice, congenic to the C57BL/6 (apoE-FcγRIIbB6 (-/-)), were generated and atherosclerotic lesions were assessed. In contrary to our hypothesis, when compared with apoE single knockout mice, arterial lesions were significantly decreased in apoE-FcγRIIbB6 (-/-) male and female mice fed chow or high-fat diets. Chimeric mice generated by transplanting apoE-FcγRIIbB6 (-/-) marrow into apoE single knockout mice also developed reduced lesions. CD4(+) T cells from apoE-FcγRIIbB6 (-/-) mice produced higher levels of interleukin-10 and transforming growth factor-β than their apoE single knockout counterparts. As our findings conflict with a previous report using apoE-FcγRIIb129/B6 (-/-) mice on a mixed genetic background, we investigated whether strain differences contributed to the anti-inflammatory response. Macrophages from FcγRIIb129/B6 (-/-) mice on a mixed genetic background produced more interleukin-1β and MCP-1 (monocyte chemoattractant protein-1) in response to immune complexes, whereas congenic FcγRIIbB6 (-/-) mice generated more interleukin-10 and significantly less interleukin-1β. Interestingly, the expression of lupus-associated slam genes, located in proximity to fcgr2b in mouse chromosome 1, is upregulated only in mixed FcγRIIb129/B6 (-/-) mice. CONCLUSIONS Our findings demonstrate a detrimental role for FcγRIIb signaling in atherosclerosis and the contribution of anti-inflammatory cytokine responses in the attenuated lesions observed in apoE-FcγRIIbB6 (-/-) mice. As 129/sv genome-derived lupus-associated genes have been implicated in lupus phenotype in FcγRIIb129/B6 (-/-) mice, our findings suggest possible epistatic mechanism contributing to the decreased lesions.
Collapse
Affiliation(s)
- Hang Pong Ng
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Xinmei Zhu
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Erin Y Harmon
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Michelle R Lennartz
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Shanmugam Nagarajan
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.).
| |
Collapse
|
26
|
Natt J, Espéli M. Assessing T follicular helper cell function in vivo: antigen-specific B cell response to hapten and affinity maturation. Methods Mol Biol 2015; 1291:87-101. [PMID: 25836304 DOI: 10.1007/978-1-4939-2498-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The mechanisms controlling affinity maturation have been extensively studied over the last 20 years and the central role of T follicular helper cells (Tfh) in this process has now been clearly established. In order to analyze how Tfh impact on affinity maturation several models have been developed. This chapter aims to present three different techniques to evaluate antigen-specific B cell response and affinity maturation using the NP system: Flow cytometric single cell sorting and sequence analysis, ELISA and ELISpot. They have the advantages of being applicable on all types of mice independently of the presence of a transgenic BCR and to give multiple readout of the antigen-specific immune response and affinity maturation. Although first developed more than 20 years ago, these techniques are still considered to be the gold standard for the analysis of affinity maturation in vivo.
Collapse
Affiliation(s)
- Jessica Natt
- INSERM UMR_S996, LabEx LERMIT, Université Paris-sud, 32 rue des Carnets, Clamart, 92140, France
| | | |
Collapse
|
27
|
Lee SY, Jung YO, Ryu JG, Kang CM, Kim EK, Son HJ, Yang EJ, Ju JH, Kang YS, Park SH, Kim HY, Cho ML. Intravenous immunoglobulin attenuates experimental autoimmune arthritis by inducing reciprocal regulation of Th17 and Treg cells in an interleukin-10-dependent manner. Arthritis Rheumatol 2014; 66:1768-78. [PMID: 24644005 DOI: 10.1002/art.38627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 03/11/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Intravenous immunoglobulin (IVIG) is used as a therapeutic agent in various autoimmune diseases. The aims of this study were to investigate the therapeutic effects of IVIG on collagen-induced arthritis (CIA) and identify the mechanism responsible for any therapeutic effects. METHODS IVIG was administered to mice with CIA, and the in vivo effects were determined. Th17 and Treg cell frequencies were analyzed by flow cytometry, and cytokine levels in the supernatant were measured by enzyme-linked immunosorbent assay. Subpopulations of T cells and B cells in the spleen were assessed by confocal microscopy. RESULTS The arthritis severity score and incidence of arthritis were lower in mice treated with IVIG compared with untreated mice. Histopathologic analysis showed less joint damage in mice treated with IVIG. The expression of proinflammatory cytokines, specific type II collagen antibodies, and osteoclast markers was significantly reduced in mice treated with IVIG. Administration of IVIG induced increased FoxP3 expression and inhibited Th17 cell development. The number of FoxP3+ Treg cells was increased, and the number of Th17 cells was decreased in the spleens of mice treated with IVIG. The number of FoxP3+ follicular helper T cells was increased, and subsequent maturation of germinal center B cells was inhibited by IVIG. In addition, IVIG up-regulated interleukin-10 (IL-10) and Fcγ receptor IIB expression. The treatment effects of IVIG on arthritis were lost in IL-10-knockout mice. CONCLUSION These results showed that IVIG has therapeutic effects by modulating CD4+ T cell differentiation. The therapeutic effects of IVIG are dependent on IL-10.
Collapse
|
28
|
Li X, Wu J, Ptacek T, Redden DT, Brown EE, Alarcón GS, Ramsey-Goldman R, Petri MA, Reveille JD, Kaslow RA, Kimberly RP, Edberg JC. Allelic-dependent expression of an activating Fc receptor on B cells enhances humoral immune responses. Sci Transl Med 2014; 5:216ra175. [PMID: 24353158 DOI: 10.1126/scitranslmed.3007097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
B cells are pivotal regulators of acquired immune responses, and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can substantially alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides immunoglobulin G (IgG)-mediated negative modulation through a tyrosine-based inhibition motif, which down-regulates B cell receptor-initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. We report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax vaccination in a human anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of unidirectional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell-targeted antibody-based therapy.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kao D, Lux A, Schwab I, Nimmerjahn F. Targeting B cells and autoantibodies in the therapy of autoimmune diseases. Semin Immunopathol 2014; 36:289-99. [PMID: 24777745 DOI: 10.1007/s00281-014-0427-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/01/2014] [Indexed: 12/19/2022]
Abstract
B cells and B cell-derived autoantibodies play a central role in the pathogenesis of many autoimmune diseases. Thus, depletion of B cells via monoclonal antibodies such as Rituximab is an obvious therapeutic intervention and has been used successfully in many instances. More recently, novel therapeutic options targeting either the autoantibody itself or resetting the threshold for B cell activation have become available and show promising immunomodulatory and anti-inflammatory effects in a variety of animal models. The aim of this review is to summarize these results and to provide an insight into the underlying molecular and cellular pathways of these novel therapeutic interventions targeting autoantibodies and B cells and to discuss their value for human therapy.
Collapse
Affiliation(s)
- Daniela Kao
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058, Erlangen, Germany
| | | | | | | |
Collapse
|
30
|
Clonal and cellular dynamics in germinal centers. Curr Opin Immunol 2014; 28:90-6. [PMID: 24681449 DOI: 10.1016/j.coi.2014.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 01/16/2023]
Abstract
Germinal centers (GCs) are the site of antibody affinity maturation, a process that involves complex clonal and cellular dynamics. Selection of B cells bearing higher-affinity immunoglobulins proceeds via a stereotyped pattern whereby B cells migrate cyclically between the GC's two anatomical compartments. This process occurs in a timeframe that is well suited to analysis by intravital microscopy, and much has been learned in recent years by use of these techniques. On a longer time scale, the diversity of B cell clones and variants within individual GCs is also thought to change as affinity maturation progresses; however, our understanding of clonal dynamics in individual GCs is limited. We discuss recent progress in the elucidation of clonal and cellular dynamics patterns.
Collapse
|
31
|
Li F, Smith P, Ravetch JV. Inhibitory Fcγ receptor is required for the maintenance of tolerance through distinct mechanisms. THE JOURNAL OF IMMUNOLOGY 2014; 192:3021-8. [PMID: 24563255 DOI: 10.4049/jimmunol.1302934] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inhibitory FcγR FcγRIIB is widely expressed on B cells, dendritic cells (DCs), and myeloid effector cells and modulates a variety of Ab-driven in vivo functions. Although it has been established that FcγRIIB plays an important role in the maintenance of peripheral tolerance, the responsible cell-specific FcγRIIB expression remains to be determined. In this study, we generated mice with selective deletion of FcγRIIB in B cells, DCs, and myeloid effector cells and evaluated these novel strains in models of tolerance and autoimmune diseases. Our results demonstrate that mice with selective deletion of FcγRIIB expression in B cells and DCs have increased Ab and T cell responses, respectively, and display enhanced susceptibility to disease in distinct models, suggesting that FcγRIIB expression in distinct cellular populations contributes to the maintenance of peripheral tolerance through different mechanisms.
Collapse
Affiliation(s)
- Fubin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | |
Collapse
|
32
|
Böhm S, Kao D, Nimmerjahn F. Sweet and sour: the role of glycosylation for the anti-inflammatory activity of immunoglobulin G. Curr Top Microbiol Immunol 2014; 382:393-417. [PMID: 25116110 DOI: 10.1007/978-3-319-07911-0_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The importance of immunoglobulin G (IgG) molecules for providing long-term sterile immunity as well as their major contribution to tissue inflammation during autoimmune diseases is generally accepted. In a similar manner, studies over the last years have elucidated many details of the molecular and cellular pathways underlying this protective activity in vivo, emphasizing the role of cellular recognizing the constant antibody fragment. In contrast, the active anti-inflammatory activity of IgG, despite being known and actually identified in human autoimmune patients more than 30 years ago, is much less defined. Recent evidence from several independent model systems suggests that IgG glycosylation is critical for the immunomodulatory activity of IgG and that both monomeric IgG as well as IgG immune complexes can diminish Fc receptor and complement dependent inflammatory processes. Moreover, there is increasing evidence that IgG molecules also modulate B and T cell responses, which may suggest that IgG is centrally involved in the establishment and maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Sybille Böhm
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058, Erlangen, Germany
| | | | | |
Collapse
|
33
|
Maizels RM, Nussey DH. Into the wild: digging at immunology's evolutionary roots. Nat Immunol 2013; 14:879-83. [PMID: 23959175 DOI: 10.1038/ni.2643] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The two pillars of modern immunology have been man and mouse; in both settings, investigators seek to reduce complexity and control environmental conditions. However, the world outside the laboratory is immensely variable; this is not 'noise' but represents the genetic and environmental framework in which the immune system evolved and functions. Placing the ever-growing understanding of immunological mechanisms in wider real-world contexts is a massive but fundamentally important challenge.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, UK.
| | | |
Collapse
|
34
|
Sun JB, Xiang Z, Smith KGC, Holmgren J. Important role for FcγRIIB on B lymphocytes for mucosal antigen-induced tolerance and Foxp3+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4412-22. [PMID: 24038083 DOI: 10.4049/jimmunol.1301324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FcγRIIB, the only FcγR expressed on B cells, is important in the maintenance of immunological tolerance to self-Ags. In this study, we investigated the role of FcγRIIB in Ag-specific CD4 T cell tolerance induced by mucosally administered Ag (OVA) coupled to cholera toxin B subunit (Ag/CTB) or given alone. We found that sublingual administration of Ag/CTB conjugate or intragastric administration of a >100-fold higher dose of Ag alone efficiently suppressed parenteral immunization-induced Ag-specific T cell proliferation and delayed-type hypersensitivity responses in FcγRIIB-expressing wild-type (WT), but not FcγRIIB(-/-), mice. Such mucosally induced tolerance (oral tolerance) associated with induction of Ag-specific Foxp3(+) regulatory T cells was restored in FcγRIIB(-/-) mice by adoptive transfer of either WT B cells or WT dendritic cells before the mucosal Ag/CTB treatment; it was even more pronounced in μMT mice that received FcγRIIB-overexpressing B cells before treatment. Furthermore, cell transfer in either WT or μMT mice of WT but not FcγRIIB(-/-) B cells pretreated for 1 h in vitro with Ag/CTB conjugate induced Ag-specific immunological tolerance, which was further enhanced by adoptive transfer of WT B cells pretreated with anti-Ag IgG immune complexed Ag/CTB. We conclude that FcγRIIB expression on B cells, in addition to dendritic cells, is important for mucosal induction of Ag-specific immune tolerance.
Collapse
Affiliation(s)
- Jia-Bin Sun
- University of Gothenburg Vaccine Institute, SE405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
35
|
Naturally secreted immunoglobulins limit B1 and MZ B-cell numbers through a microbiota-independent mechanism. Blood 2013; 122:209-18. [DOI: 10.1182/blood-2012-08-447136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Key Points
The study of AID−/−µS−/− mice reveals a microbiota-independent negative feedback control of MZ and B1 cell numbers by naturally secreted Ig.
Collapse
|
36
|
Zhou XJ, Cheng FJ, Qi YY, Zhao YF, Hou P, Zhu L, Lv JC, Zhang H. FCGR2B and FCRLB gene polymorphisms associated with IgA nephropathy. PLoS One 2013; 8:e61208. [PMID: 23593433 PMCID: PMC3625155 DOI: 10.1371/journal.pone.0061208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
Background IgA nephropathy (IgAN) is a complex syndrome characterized by deposition of IgA and IgA containing immune complexes (ICs) composed of IgG and complement C3 proteins in the mesangial area of glomeruli. The low-affinity receptors for the Fc region of IgG (FcγRs) are involved in autoantibody/immune complex-induced organ injury as well as ICs clearance. The aim of the study was to associate multiple polymorphisms within FCGR gene locus with IgAN in a large Chinese cohort. Patients and Methods 60 single nucleotide polymorphisms (SNPs) spanning a 400 kb range within FCGR gene locus were analyzed in 2100 DNA samples from patients with biopsy proven IgAN and healthy age- and sex-matched controls from the same population in Chinese. Results Among the 60 SNPs investigated, 15 gene polymorphisms within FCGR gene locus (25%) were associated with susceptibility to IgAN. The most significantly associated SNPs within individual genes were FCGR2B rs12118043 (p = 8.74*10−3, OR 0.76, 95% CI 0.62–0.93), and FCRLB rs4657093 (p = 2.28*10−3, OR 0.77, 95% CI 0.65–0.91). Both conditional analysis and linkage disequilibrium analysis suggested they were independent signals associated with IgAN. Associations between FCGR2B rs12118043 and proteinuria (p = 3.65×10−2) as well as gross hematuria (p = 4.53×10−2), between FCRLB rs4657093 and levels of serum creatinine (p = 2.67×10−2) as well as eGFR (p = 5.41*10−3) were also observed. Electronic cis-expression quantative trait loci analysis supported their possible functional significance, with protective genotypes correlating lower gene expressions. Conclusion Our data from genetic associations and expression associations revealed potentially pathogenic roles of Fc receptor gene polymorphisms in IgAN.
Collapse
Affiliation(s)
- Xu-jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Fa-juan Cheng
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Yuan-yuan Qi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Yan-feng Zhao
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Ping Hou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Li Zhu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Ji-cheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Bordon Y. B cell responses: Born to be (a bit) wild. Nat Rev Immunol 2012; 12:808-9. [PMID: 23154225 DOI: 10.1038/nri3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|