1
|
Zhang S, Cheng L, Su Y, Qian Z, Wang Z, Chen C, Li R, Zhang A, He J, Mao J, Wang H, Chen J. AGBL4 promotes malignant progression of glioblastoma via modulation of MMP-1 and inflammatory pathways. Front Immunol 2024; 15:1420182. [PMID: 39007144 PMCID: PMC11246717 DOI: 10.3389/fimmu.2024.1420182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM), the most common primary malignant brain tumor, is notorious for its aggressive growth and dismal prognosis. This study aimed to elucidate the molecular underpinnings of GBM, particularly focusing on the role of AGBL4 and its connection to inflammatory pathways, to discover viable therapeutic targets. Methods Single-cell sequencing was utilized to examine the expression levels of AGBL4 and functional assays were performed to assess the effects of AGBL4 modulation. Results Our findings identified the significant upregulation of AGBL4 in GBM, which correlated with adverse clinical outcomes. Functional assays demonstrated that AGBL4 knockdown inhibited GBM cell proliferation, migration, and invasion and influenced inflammatory response pathways, while AGBL4 overexpression promoted these activities. Further investigation revealed that AGBL4 exerted its oncogenic effects through modulation of MMP-1, establishing a novel regulatory axis critical for GBM progression and inflammation. Discussion Both AGBL4 and MMP-1 may be pivotal molecular targets, offering new avenues for targeted therapy in GBM management.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lilin Cheng
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Hefei, Anhui, China
| | - Zhen Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rong Li
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Aikang Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiawei He
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiangxin Mao
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Rodriguez-Calado S, Van Damme P, Avilés FX, Candiota AP, Tanco S, Lorenzo J. Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. Int J Mol Sci 2023; 24:ijms24021273. [PMID: 36674791 PMCID: PMC9867282 DOI: 10.3390/ijms24021273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.
Collapse
Affiliation(s)
- Sergi Rodriguez-Calado
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| |
Collapse
|
3
|
Malod-Dognin N, Ceddia G, Gvozdenov M, Tomić B, Dunjić Manevski S, Djordjević V, Pržulj N. A phenotype driven integrative framework uncovers molecular mechanisms of a rare hereditary thrombophilia. PLoS One 2023; 18:e0284084. [PMID: 37098010 PMCID: PMC10128975 DOI: 10.1371/journal.pone.0284084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Antithrombin resistance is a rare subtype of hereditary thrombophilia caused by prothrombin gene variants, leading to thrombotic disorders. Recently, the Prothrombin Belgrade variant has been reported as a specific variant that leads to antithrombin resistance in two Serbian families with thrombosis. However, due to clinical data scarcity and the inapplicability of traditional genome-wide association studies (GWAS), a broader perspective on molecular and phenotypic mechanisms associated with the Prothrombin Belgrade variant is yet to be uncovered. Here, we propose an integrative framework to address the lack of genomic samples and support the genomic signal from the full genome sequences of five heterozygous subjects by integrating it with subjects' phenotypes and the genes' molecular interactions. Our goal is to identify candidate thrombophilia-related genes for which our subjects possess germline variants by focusing on the resulting gene clusters of our integrative framework. We applied a Non-negative Matrix Tri-Factorization-based method to simultaneously integrate different data sources, taking into account the observed phenotypes. In other words, our data-integration framework reveals gene clusters involved with this rare disease by fusing different datasets. Our results are in concordance with the current literature about antithrombin resistance. We also found candidate disease-related genes that need to be further investigated. CD320, RTEL1, UCP2, APOA5 and PROZ participate in healthy-specific or disease-specific subnetworks involving thrombophilia-annotated genes and are related to general thrombophilia mechanisms according to the literature. Moreover, the ADRA2A and TBXA2R subnetworks analysis suggested that their variants may have a protective effect due to their connection with decreased platelet activation. The results show that our method can give insights into antithrombin resistance even if a small amount of genetic data is available. Our framework is also customizable, meaning that it applies to any other rare disease.
Collapse
Affiliation(s)
- Noël Malod-Dognin
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Computer Science, University College London, London, United Kingdom
| | - Gaia Ceddia
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Maja Gvozdenov
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Branko Tomić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Sofija Dunjić Manevski
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Valentina Djordjević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Nataša Pržulj
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Computer Science, University College London, London, United Kingdom
- ICREA, Barcelona, Spain
| |
Collapse
|
4
|
Freitag M, Schwertz H. A New Role of NAP1L1 in Megakaryocytes and Human Platelets. Int J Mol Sci 2022; 23:ijms232314694. [PMID: 36499021 PMCID: PMC9737020 DOI: 10.3390/ijms232314694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Platelets (PLTs) are anucleate and considered incapable of nuclear functions. Contrastingly, nuclear proteins were detected in human PLTs. For most of these proteins, it is unclear if nuclear or alternatively assigned functions are performed, a question we wanted to address for nuclear assembly protein 1like 1 (NAP1L1). Using a wide array of molecular methods, including RNAseq, co-IP, overexpression and functional assays, we explored expression pattern and functionality of NAP1L1 in PLTs, and CD34+-derived megakaryocytes (MKs). NAP1L1 is expressed in PLTs and MKs. Co-IP experiments revealed that dihydrolipolylysine-residue acetyltransferase (DLAT encoded protein PDC-E2, ODP2) dynamically interacts with NAP1L1. PDC-E2 is part of the mitochondrial pyruvate-dehydrogenase (PDH) multi-enzyme complex, playing a crucial role in maintaining cellular respiration, and promoting ATP-synthesis via the respiratory chain. Since altered mitochondrial function is a hallmark of infectious syndromes, we analyzed PDH activity in PLTs from septic patients demonstrating increased activity, paralleling NAP1L1 expression levels. MKs PDH activity decreased following an LPS-challenge. Furthermore, overexpression of NAP1L1 significantly altered the ability of MKs to form proplatelet extensions, diminishing thrombopoiesis. These results indicate that NAP1L1 performs in other than nucleosome-assembly functions in PTLs and MKs, binding a key mitochondrial protein as a potential chaperone, and gatekeeper, influencing PDH activity and thrombopoiesis.
Collapse
Affiliation(s)
- Martin Freitag
- Department of Cardiac Surgery, Heart Center Leipzig-University Hospital, 04289 Leipzig, Germany
| | - Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Occupational Medicine at Billings Clinic Bozeman, Bozeman, MT 59715, USA
- Correspondence: or
| |
Collapse
|
5
|
Population Pharmacokinetic Modeling of Bedaquiline among Multidrug-Resistant Pulmonary Tuberculosis Patients from China. Antimicrob Agents Chemother 2022; 66:e0081122. [PMID: 36106884 PMCID: PMC9578397 DOI: 10.1128/aac.00811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bedaquiline has been widely used as a part of combination dosage regimens for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients with limited options. Although the effectiveness and safety of bedaquiline have been demonstrated in clinical trials, limited studies have investigated the significant pharmacokinetics and the impact of genotype on bedaquiline disposition. Here, we developed a population pharmacokinetic model of bedaquiline to describe the concentration-time data from Chinese adult patients diagnosed with MDR-TB. A total of 246 observations were collected from 99 subjects receiving the standard recommended dosage. Bedaquiline disposition was well described by a one-compartment model with first-order absorption. Covariate modeling identified that gamma-glutamyl transferase (GGT) and the single-nucleotide polymorphism (SNP) rs319952 in the AGBL4 gene were significantly associated with the apparent clearance of bedaquiline. The clearance (CL/F) was found to be 1.4 L/h lower for subjects with allele GG in SNP rs319952 than for subjects with alleles AG and AA and to decrease by 30% with a doubling in GGT. The model-based simulations were designed to assess the impact of GGT/SNP rs319952 on bedaquiline exposure and showed that patients with genotype GG in SNP rs319952 and GGT ranging from 10 to 50 U/L achieved the targeted maximum serum concentration at steady state (Cmax,ss). However, when GGT was increased to 100 U/L, Cmax,ss was 1.68-fold higher than the highest concentration pursued. The model developed provides the consideration of genetic polymorphism and hepatic function for bedaquiline dosage in MDR-TB adult patients.
Collapse
|
6
|
Guo X, Wang R, Ma R, Fan X, Gao Y, Zhang X, Yuchi Z, Wu HY. Facile purification of active recombinant mouse cytosolic carboxypeptidase 6 from Escherichia coli. Protein Expr Purif 2022; 197:106112. [DOI: 10.1016/j.pep.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
|
7
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Wu HY, Rong Y, Bansal PK, Wei P, Guo H, Morgan JI. TTLL1 and TTLL4 polyglutamylases are required for the neurodegenerative phenotypes in pcd mice. PLoS Genet 2022; 18:e1010144. [PMID: 35404950 PMCID: PMC9022812 DOI: 10.1371/journal.pgen.1010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Polyglutamylation is a dynamic posttranslational modification where glutamate residues are added to substrate proteins by 8 tubulin tyrosine ligase-like (TTLL) family members (writers) and removed by the 6 member Nna1/CCP family of carboxypeptidases (erasers). Genetic disruption of polyglutamylation leading to hyperglutamylation causes neurodegenerative phenotypes in humans and animal models; the best characterized being the Purkinje cell degeneration (pcd) mouse, a mutant of the gene encoding Nna1/CCP1, the prototypic eraser. Emphasizing the functional importance of the balance between glutamate addition and elimination, loss of TTLL1 prevents Purkinje cell degeneration in pcd. However, whether Ttll1 loss protects other vulnerable neurons in pcd, or if elimination of other TTLLs provides protection is largely unknown. Here using a mouse genetic rescue strategy, we characterized the contribution of Ttll1, 4, 5, 7, or 11 to the degenerative phenotypes in cerebellum, olfactory bulb and retinae of pcd mutants. Ttll1 deficiency attenuates Purkinje cell loss and function and reduces olfactory bulb mitral cell death and retinal photoreceptor degeneration. Moreover, degeneration of photoreceptors in pcd is preceded by impaired rhodopsin trafficking to the rod outer segment and likely represents the causal defect leading to degeneration as this too is rescued by elimination of TTLL1. Although TTLLs have similar catalytic properties on model substrates and several are highly expressed in Purkinje cells (e.g. TTLL5 and 7), besides TTLL1 only TTLL4 deficiency attenuated degeneration of Purkinje and mitral cells in pcd. Additionally, TTLL4 loss partially rescued photoreceptor degeneration and impaired rhodopsin trafficking. Despite their common properties, the polyglutamylation profile changes promoted by TTLL1 and TTLL4 deficiencies in pcd mice are very different. We also report that loss of anabolic TTLL5 synergizes with loss of catabolic Nna1/CCP1 to promote photoreceptor degeneration. Finally, male infertility in pcd is not rescued by loss of any Ttll. These data provide insight into the complexity of polyglutamate homeostasis and function in vivo and potential routes to ameliorate disorders caused by disrupted polyglutamylation.
Collapse
Affiliation(s)
- Hui-Yuan Wu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Parmil K. Bansal
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peng Wei
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hong Guo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
9
|
Kimmerlin Q, Strassel C, Eckly A, Lanza F. The tubulin code in platelet biogenesis. Semin Cell Dev Biol 2022; 137:63-73. [PMID: 35148939 DOI: 10.1016/j.semcdb.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably β1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.
Collapse
Affiliation(s)
- Quentin Kimmerlin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| |
Collapse
|
10
|
Torrino S, Bertero T. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand. Trends Cell Biol 2022; 32:624-636. [DOI: 10.1016/j.tcb.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
11
|
Del Pilar C, Lebrón-Galán R, Pérez-Martín E, Pérez-Revuelta L, Ávila-Zarza CA, Alonso JR, Clemente D, Weruaga E, Díaz D. The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Front Cell Neurosci 2021; 15:773696. [PMID: 34916910 PMCID: PMC8671039 DOI: 10.3389/fncel.2021.773696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.
Collapse
Affiliation(s)
- Carlos Del Pilar
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Ester Pérez-Martín
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Pérez-Revuelta
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmelo Antonio Ávila-Zarza
- IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Applied Statistics Group, Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón Alonso
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Eduardo Weruaga
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - David Díaz
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
12
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
13
|
Wang R, Lin L, Zheng Y, Cao P, Yuchi Z, Wu HY. Identification of 2-PMPA as a novel inhibitor of cytosolic carboxypeptidases. Biochem Biophys Res Commun 2020; 533:1393-1399. [PMID: 33092792 DOI: 10.1016/j.bbrc.2020.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
Cytosolic carboxypeptidases (CCPs) comprise a unique subfamily of M14 carboxypeptidases and are erasers of the reversible protein posttranslational modification- polyglutamylation. Potent inhibitors for CCPs may serve as leading compounds targeting imbalanced polyglutamylation. However, no efficient CCP inhibitor has yet been reported. Here, we showed that 2-phosphonomethylpentanedioic acid (2-PMPA), a potent inhibitor of the distant M28 family member glutamate carboxypeptidase II (GCPII), rather than the typical M14 inhibitor 2-benzylsuccinic acid, could efficiently inhibit CCP activities. 2-PMPA inhibited the recombinant Nna1 (a.k.a. CCP1) for hydrolyzing a synthetic peptide in a mixed manner, with Ki and Ki' being 0.11 μM and 0.24 μM respectively. It inhibited Nna1 for deglutamylating tubulin, the best-known polyglutamylated protein, with an IC50 of 0.21 mM. Homology modeling predicted that the R-form of 2-PMPA is more favorable to bind Nna1, unlike that GCPII prefers to S-form. This work for the first time identified a potent inhibitor for CCP family.
Collapse
Affiliation(s)
- Ruixue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lianyun Lin
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yiqiang Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Xiong Z, Xia P, Zhu X, Geng J, Wang S, Ye B, Qin X, Qu Y, He L, Fan D, Du Y, Tian Y, Fan Z. Glutamylation of deubiquitinase BAP1 controls self-renewal of hematopoietic stem cells and hematopoiesis. J Exp Med 2020; 217:jem.20190974. [PMID: 31699823 PMCID: PMC7041701 DOI: 10.1084/jem.20190974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/27/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Xiong et al. show that CCP3 performs deglutamylation of BAP1 to stabilize BAP1, which eliminates H2AK119Ub from Hoxa1 promoter and initiates Hoxa1 expression, leading to enhanced HSC self-renewal. All hematopoietic lineages are derived from a limited pool of hematopoietic stem cells (HSCs). Although the mechanisms underlying HSC self-renewal have been extensively studied, little is known about the role of protein glutamylation and deglutamylation in hematopoiesis. Here, we show that carboxypeptidase CCP3 is most highly expressed in BM cells among CCP members. CCP3 deficiency impairs HSC self-renewal and hematopoiesis. Deubiquitinase BAP1 is a substrate for CCP3 in HSCs. BAP1 is glutamylated at Glu651 by TTLL5 and TTLL7, and BAP1-E651A mutation abrogates BAP1 glutamylation. BAP1 glutamylation accelerates its ubiquitination to trigger its degradation. CCP3 can remove glutamylation of BAP1 to promote its stability, which enhances Hoxa1 expression, leading to HSC self-renewal. Bap1E651A mice produce higher numbers of LT-HSCs and peripheral blood cells. Moreover, TTLL5 and TTLL7 deficiencies sustain BAP1 stability to promote HSC self-renewal and hematopoiesis. Therefore, glutamylation and deglutamylation of BAP1 modulate HSC self-renewal and hematopoiesis.
Collapse
Affiliation(s)
- Zhen Xiong
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Geng
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiwen Qin
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Qu
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Yang Z, Wang H, Zhang N, Xing T, Zhang W, Wang G, Li C, Yu C. Chaetocin Abrogates the Self-Renewal of Bladder Cancer Stem Cells via the Suppression of the KMT1A-GATA3-STAT3 Circuit. Front Cell Dev Biol 2020; 8:424. [PMID: 32626701 PMCID: PMC7311639 DOI: 10.3389/fcell.2020.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer stem cells (BCSCs) have the abilities of self-renewal, differentiation, and metastasis; confer drug resistance; and exhibit high tumorigenicity. We previously identified that the KMT1A–GATA3–STAT3 axis drives the self-renewal of BCSCs. However, the therapeutic effect of targeting KMT1A in BCSCs remains unknown. In this study, we confirmed that the expression of KMT1A was remarkably higher in BCSCs (3–5-fold) than those in bladder cancer non-stem cells or normal bladder epithelial cells. Among the six KMT1A inhibitors, chaetocin significantly suppressed the cell propagation (inhibition ratio: 65%–88%, IC50 = 24.4–32.5 nM), induced apoptosis (2–5-fold), and caused G1 phase cell cycle arrest (68.9 vs 55.5%) of bladder cancer (BC) cells, without influencing normal bladder epithelial cells. More importantly, chaetocin abrogated the self-renewal of BCSCs (inhibition ratio: 80.1%) via the suppression of the KMT1A–GATA3–STAT3 circuit and other stemness-related pathways. Finally, intravesical instillation of chaetocin remarkably inhibited the growth of xenograft tumors (inhibition ratio: 71–82%) and prolonged the survival of tumor-bearing mice (70 vs 53 days). In sum, chaetocin abrogated the stemness maintenance and tumor growth of BCSCs via the suppression of the KMT1A–GATA3–STAT3 circuit. Chaetocin is an effective inhibitor targeting KMT1A in BCSCs and could be a promising therapeutic strategy for BC.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haifeng Wang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Nan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
16
|
Association of FAM65B, AGBL4, and CUX2 genetic polymorphisms with susceptibility to antituberculosis drug-induced hepatotoxicity: validation study in a Chinese Han population. Pharmacogenet Genomics 2019; 29:84-90. [PMID: 30720667 DOI: 10.1097/fpc.0000000000000370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Antituberculosis (anti-TB) drug-induced hepatotoxicity (ATDH) is a serious adverse drug reaction, and its pathogenic mechanism has not been elucidated thoroughly to date. A recent genome-wide association study reported that seven single-nucleotide polymorphisms (SNPs) in the family with sequence similarity 65, member B gene (FAM65B), ATP/GTP-binding protein-like 4 gene (AGBL4), and cut-like homeobox 2 gene (CUX2) were associated strongly with ATDH in Ethiopian patients. We validated this relationship in a Chinese Han anti-TB treatment population. PATIENTS AND METHODS A 1 : 2 matched case-control study was carried out of 235 ATDH cases and 470 controls. Multivariate conditional logistic regression analysis was used to estimate the association between genotypes and risk of ATDH by odds ratios with 95% confidence intervals, and weight and hepatoprotectant use were used as covariates. RESULTS Patients with a polymorphism at rs10946737 in the FAM65B gene were at an increased risk of moderate and severe liver injury under the dominant model (adjusted odds ratio=2.147, 95% confidence interval: 1.067-4.323, P=0.032). No other genotypes or genetic risk scores were found to be significantly related to ATDH. CONCLUSION This is the first study to explore and validate the relationships between seven SNPs in the FAM65B, AGBL4, and CUX2 genes and ATDH in a Chinese population. On the basis of this case-control study, SNP rs10946737 in FAM65B may be associated with susceptibility to ATDH in Chinese Han anti-TB treatment patients. Further research is warranted to explain the role of the FAM65B gene and its contribution toward individual differences in susceptibility to ATDH.
Collapse
|
17
|
Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol 2018; 144:33-74. [PMID: 29804676 DOI: 10.1016/bs.mcb.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitosis is an essential process that takes place in all eukaryotes and involves the equal division of genetic material from a parental cell into two identical daughter cells. During mitosis, chromosome movement and segregation are orchestrated by a specialized structure known as the mitotic spindle, composed of a bipolar array of microtubules. The fundamental structure of microtubules comprises of α/β-tubulin heterodimers that associate head-to-tail and laterally to form hollow filaments. In vivo, microtubules are modified by abundant and evolutionarily conserved tubulin posttranslational modifications (PTMs), giving these filaments the potential for a wide chemical diversity. In recent years, the concept of a "tubulin code" has emerged as an extralayer of regulation governing microtubule function. A range of tubulin isoforms, each with a diverse set of PTMs, provides a readable code for microtubule motors and other microtubule-associated proteins. This chapter focuses on the complexity of tubulin PTMs with an emphasis on detyrosination and summarizes the methods currently used in our laboratory to experimentally manipulate these modifications and study their impact in mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Danilo Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Ye B, Liu B, Hao L, Zhu X, Yang L, Wang S, Xia P, Du Y, Meng S, Huang G, Qin X, Wang Y, Yan X, Li C, Hao J, Zhu P, He L, Tian Y, Fan Z. Klf4 glutamylation is required for cell reprogramming and early embryonic development in mice. Nat Commun 2018; 9:1261. [PMID: 29593216 PMCID: PMC5871780 DOI: 10.1038/s41467-018-03008-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Temporal and spatial-specific regulation of pluripotency networks is largely dependent on the precise modifications of core transcription factors. Misregulation of glutamylation is implicated in severe physiological abnormalities. However, how glutamylation regulates cell reprogramming and pluripotency networks remains elusive. Here we show that cytosolic carboxypeptidases 1 (CCP1) or CCP6 deficiency substantially promotes induced pluripotent cell (iPSC) induction and pluripotency of embryonic stem cells (ESCs). Klf4 polyglutamylation at Glu381 by tubulin tyrosine ligase-like 4 (TTLL4) and TTLL1 during cell reprogramming impedes its lysine 48-linked ubiquitination and sustains Klf4 stability. Klf4-E381A knockin mice display impaired blastocyst development and embryonic lethality. Deletion of TTLL4 or TTLL1 abrogates cell reprogramming and early embryogenesis. Thus, Klf4 polyglutamylation plays a critical role in the regulation of cell reprogramming and pluripotency maintenance. Embryonic stem cell pluripotency depends upon precise regulation by a core transcription network. Here the authors show that polyglutamylation mediated stabilization of the transcription factor Klf4 by TTLL1 and TTLL4 promotes reprogramming, pluripotency and preimplantation embryonic development.
Collapse
Affiliation(s)
- Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Hao
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhu
- Laboratory Animal Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shu Meng
- Laboratory Animal Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiwen Qin
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanying Wang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinlong Yan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chong Li
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junfeng Hao
- Laboratory Animal Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyun He
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Tian
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. Nat Commun 2017; 8:1518. [PMID: 29138493 PMCID: PMC5686073 DOI: 10.1038/s41467-017-01788-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Lymphoid lineage commitment is an important process in haematopoiesis, which forms the immune system to protect the host from pathogen invasion. However, how multipotent progenitors (MPP) switch into common lymphoid progenitors (CLP) or common myeloid progenitors (CMP) during this process remains elusive. Here we show that PCI domain-containing protein 2 (Pcid2) is highly expressed in MPPs. Pcid2 deletion in the haematopoietic system causes skewed lymphoid lineage specification. In MPPs, Pcid2 interacts with the Zinc finger HIT-type containing 1 (ZNHIT1) to block Snf2-related CREBBP activator protein (SRCAP) activity and prevents the deposition of histone variant H2A.Z and transcription factor PU.1 to key lymphoid fate regulator genes. Furthermore, Znhit1 deletion also abrogates H2A/H2A.Z exchange in MPPs. Thus Pcid2 controls lymphoid lineage commitment through the regulation of SRCAP remodelling activity.
Collapse
|
20
|
Liu B, Ye B, Zhu X, Huang G, Yang L, Zhu P, Du Y, Wu J, Meng S, Tian Y, Fan Z. IL-7Rα glutamylation and activation of transcription factor Sall3 promote group 3 ILC development. Nat Commun 2017; 8:231. [PMID: 28794449 PMCID: PMC5550436 DOI: 10.1038/s41467-017-00235-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3) promote lymphoid organogenesis and potentiate immune responses against bacterial infection. However, how ILC3 cells are developed and maintained is still unclear. Here, we show that carboxypeptidase CCP2 is highly expressed in common helper-like innate lymphoid progenitors, the progenitor of innate lymphoid cells, and CCP2 deficiency increases ILC3 numbers. Interleukin-7 receptor subunit alpha (IL-7Rα) is identified as a substrate of CCP2 for deglutamylation, and IL-7Rα polyglutamylation is catalyzed by polyglutamylases TTLL4 and TTLL13 in common helper-like innate lymphoid progenitors. IL-7Rα polyglutamylation triggers STAT5 activation to initiate transcription factor Sall3 expression in common helper-like innate lymphoid progenitors, which drives ILC3 cell differentiation. Moreover, Ttll4 -/- or Ttll13 -/- mice have reduced IL-7Rα polyglutamylation and Sall3 expression in common helper-like innate lymphoid progenitors. Importantly, mice with IL-7Rα E446A mutation have reduced Sall3 expression and ILC3 population. Thus, polyglutamylation and deglutamylation of IL-7Rα tightly controls the development and effector functions of ILC3s.Innate lymphoid cells (ILC) are important regulators of mucosal immunity, but how their development and homeostasis are modulated is still unclear. Here the authors show that the differentiation of group 3 ILCs is controlled by the glutamylation of IL-7Rα and the induction of transcription factor Sall3.
Collapse
Affiliation(s)
- Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Meng
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, Li C, Wen T. The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells. Clin Cancer Res 2017; 23:6673-6685. [PMID: 28765327 DOI: 10.1158/1078-0432.ccr-17-0882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Bladder cancer is one of the most common urinary malignancies worldwide characterized by a high rate of recurrence and no targeted therapy method. Bladder cancer stem cells (BCSCs) play a crucial role in tumor initiation, metastasis, and drug resistance. However, the regulatory signaling and self-renewal mechanisms of BCSCs remain largely unknown. Here, we identified a novel signal, the KMT1A-GATA3-STAT3 circuit, which promoted the self-renewal and tumorigenicity of human BCSCs.Experimental Design: In a discovery step, human BCSCs and bladder cancer non-stem cells (BCNSCs) isolated from primary bladder cancer samples #1 and #2, and the bladder cancer cell line EJ were analyzed by transcriptome microarray. In a validation step, 10 paired bladder cancer and normal tissues, different tumor cell lines, the public microarray datasets of human bladder cancer, and The Cancer Genome Atlas database were applied for the verification of gene expression.Results: KMT1A was highly expressed and responsible for the increase of tri-methylating lysine 9 of histone H3 (H3K9me3) modification in BCSCs compared with either BCNSCs or normal bladder tissue. GATA3 bound to the -1710∼-1530 region of STAT3 promoter and repressed its transcription. H3K9me3 modification on the -1351∼-1172bp region of the GATA3 promoter mediated by KMT1A repressed the transcription of GATA3 and upregulated the expression of STAT3. In addition, the activated STAT3 triggered self-renewal of BCSCs. Furthermore, depletion of KMT1A or STAT3 abrogated the formation of BCSC tumorspheres and xenograft tumors.Conclusions: KMT1A positively regulated the self-renewal and tumorigenicity of human BCSCs via KMT1A-GATA3-STAT3 circuit, in which KMT1A could be a promising target for bladder cancer therapy. Clin Cancer Res; 23(21); 6673-85. ©2017 AACR.
Collapse
Affiliation(s)
- Zhao Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kaisu Lin
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Beijing Jianlan Institute of Medicine, Beijing, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Wloga D, Joachimiak E, Louka P, Gaertig J. Posttranslational Modifications of Tubulin and Cilia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028159. [PMID: 28003186 DOI: 10.1101/cshperspect.a028159] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tubulin undergoes several highly conserved posttranslational modifications (PTMs) including acetylation, detyrosination, glutamylation, and glycylation. These PTMs accumulate on a subset of microtubules that are long-lived, including those in the basal bodies and axonemes. Tubulin PTMs are distributed nonuniformly. In the outer doublet microtubules of the axoneme, the B-tubules are highly enriched in the detyrosinated, polyglutamylated, and polyglycylated tubulin, whereas the A-tubules contain mostly unmodified tubulin. The nonuniform patterns of tubulin PTMs may functionalize microtubules in a position-dependent manner. Recent studies indicate that tubulin PTMs contribute to the assembly, disassembly, maintenance, and motility of cilia. In particular, tubulin glutamylation has emerged as a key PTM that affects ciliary motility through regulation of axonemal dynein arms and controls the stability and length of the axoneme.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
23
|
Liu B, Ye B, Yang L, Zhu X, Huang G, Zhu P, Du Y, Wu J, Qin X, Chen R, Tian Y, Fan Z. Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat Immunol 2017; 18:499-508. [PMID: 28319097 DOI: 10.1038/ni.3712] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) communicate with other hematopoietic and nonhematopoietic cells to regulate immunity, inflammation and tissue homeostasis. How ILC lineages develop and are maintained remains largely unknown. In this study we observed that a divergent long noncoding RNA (lncRNA), lncKdm2b, was expressed at high levels in intestinal group 3 ILCs (ILC3s). LncKdm2b deficiency in the hematopoietic system led to reductions in the number and effector functions of ILC3s. LncKdm2b expression sustained the maintenance of ILC3s by promoting their proliferation through activation of the transcription factor Zfp292. Mechanistically, lncKdm2b recruited the chromatin organizer Satb1 and the nuclear remodeling factor (NURF) complex onto the Zfp292 promoter to initiate its transcription. Deletion of Zfp292 or Bptf also abrogated the maintenance of ILC3s, leading to susceptibility to bacterial infection. Therefore, our findings reveal that lncRNAs may represent an additional layer of regulation of ILC development and function.
Collapse
Affiliation(s)
- Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiwen Qin
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runsheng Chen
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Role of Cytosolic Carboxypeptidase 5 in Neuronal Survival and Spermatogenesis. Sci Rep 2017; 7:41428. [PMID: 28128286 PMCID: PMC5269731 DOI: 10.1038/srep41428] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 12/05/2022] Open
Abstract
Proteins may undergo a type of posttranslational modification – polyglutamylation, where a glutamate residue is enzymatically linked to the γ-carboxyl group of a glutamate in the primary sequence of proteins and additional glutamates are then sequentially added via α-carboxyl–linkages to the growing glutamate side chain. Nna1 (a.k.a. CCP1) defines the 6-member cytosolic carboxypeptidase (CCP) family that metabolizes polyglutamate side chain and its loss results in neurodegeneration and male infertility. Whereas most CCPs catalyze hydrolysis of α-carboxyl-linked glutamates, CCP5 uniquely metabolizes the γ-carboxyl linked, branch point glutamate. Using purified recombinant mouse CCP5, we confirmed that it metabolized γ-carboxyl-linked glutamate of synthetic substrates and tubulin. Despite this unique feature and its indispensible functions in lower species, we found that unlike Nna1, CCP5 is not essential for neuronal survival in mouse. CCP5 deficiency does cause male infertility. However, the mechanism by which this occurs is distinct from that of Nna1 loss. Instead, it is phenotypically reminiscent of the infertility of olt mice. Our findings suggest that Nna1 and CCP5 do not work coordinately in the same pathway in either the nervous system or spermatogenesis. This is the first study addressing the function of CCP5 in mammals.
Collapse
|
25
|
Ijaz F, Hatanaka Y, Hatanaka T, Tsutsumi K, Iwaki T, Umemura K, Ikegami K, Setou M. Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4. Mol Biol Cell 2016; 28:535-544. [PMID: 27974641 PMCID: PMC5305260 DOI: 10.1091/mbc.e16-02-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023] Open
Abstract
Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase-like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs.
Collapse
Affiliation(s)
- Faryal Ijaz
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center
| | - Yasue Hatanaka
- Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan
| | | | - Koji Tsutsumi
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center
| | - Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center .,Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center .,Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan.,Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.,Riken Center for Molecular Imaging Science, Kobe, Hyogo 650-0047, Japan.,Department of Anatomy, University of Hong Kong, Hong Kong.,Division of Neural Systematics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
26
|
Wu S, Yang Z, Ye R, An D, Li C, Wang Y, Wang Y, Huang Y, Liu H, Li F, He L, Sun D, Yu Y, Li Q, Huang P, Zhang M, Zhao X, Bi T, Zhuang X, Zhang L, Lu J, Sun X, Zhou F, Liu C, Yang G, Hou Y, Fan Z, Cai Z. Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing. Oncotarget 2016; 7:2629-45. [PMID: 26625313 PMCID: PMC4823060 DOI: 10.18632/oncotarget.6380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Bladder cancer (BC) is distinguished by high rate of recurrence after surgery, but the underlying mechanisms remain poorly understood. Here we performed the whole-exome sequencing of 37 BC individuals including 20 primary and 17 recurrent samples in which the primary and recurrent samples were not from the same patient. We uncovered that MLL, EP400, PRDM2, ANK3 and CHD5 exclusively altered in recurrent BCs. Specifically, the recurrent BCs and bladder cancer cells with MLL mutation displayed increased histone H3 tri-methyl K4 (H3K4me3) modification in tissue and cell levels and showed enhanced expression of GATA4 and ETS1 downstream. What's more, MLL mutated bladder cancer cells obtained with CRISPR/Cas9 showed increased ability of drug-resistance to epirubicin (a chemotherapy drug for bladder cancer) than wild type cells. Additionally, the BC patients with high expression of GATA4 and ETS1 significantly displayed shorter lifespan than patients with low expression. Our study provided an overview of the genetic basis of recrudescent bladder cancer and discovered that genetic alterations of MLL were involved in BC relapse. The increased modification of H3K4me3 and expression of GATA4 and ETS1 would be the promising targets for the diagnosis and therapy of relapsed bladder cancer.
Collapse
Affiliation(s)
- Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China.,Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhao Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Ye
- BGI-Shenzhen, Shenzhen, China
| | - Dan An
- BGI-Shenzhen, Shenzhen, China
| | - Chong Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yitian Wang
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Anhui Medical University, Hefei, China
| | - Yongqiang Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Huang
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | | | - Luyun He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Da Sun
- BGI-Shenzhen, Shenzhen, China
| | - Yuan Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | | | | | - Jingxiao Lu
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaojuan Sun
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guosheng Yang
- Guangdong Second People's Hospital, Guangzhou, China
| | | | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Cai
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Li C, Wang J, Hao J, Dong B, Li Y, Zhu X, Ding J, Ren S, Zhao H, Wu S, Tian Y, Wang GQ. Reduced cytosolic carboxypeptidase 6 (CCP6) level leads to accumulation of serum polyglutamylated DNAJC7 protein: A potential biomarker for renal cell carcinoma early detection. Oncotarget 2016; 7:22385-96. [PMID: 26993597 PMCID: PMC5008367 DOI: 10.18632/oncotarget.8107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is frequently diagnosed at advanced stages of disease, although early diagnosis has much favorable prognosis. This study assessed aberrant expression of cytosolic carboxypeptidase 6 (CCP6) leading to accumulation of serum polyglutamylated DNAJC7 as a biomarker for early RCC detection. A total of 835 RCCs, 143 chronic nephritis, 170 kidney stones and 415 health controls were collected for qRT-PCR, immunohistochemistry and Western blot analysis of CCP6 expression and mass spectrometry of DNAJC7 and polyglutamylated DNAJC7. The data showed that CCP6 expression was significantly decreased in 30 RCC tissues and that mass spectrometric and pull-down analysis identified DNAJC7 as a substrate of CCP6 and showed upregulated polyglutamylated-DNAJC7 (polyE-DNAJC7) in sera of RCC patients. The electrochemiluminescence immunoassay of large-scale serum samples from multi-institutes further confirmed the remarkable increase of polyE-DNAJC7 in 805 RCCs compared to that of 385 healthy controls (p < 0.001), 128 patients with chronic nephritis (p < 0.001), and 153 with kidney stone (p < 0.001). Serum level of DNAJC7-polyE protein was also associated with advanced RCC stage and grade in 805 patients. The data from the current study for the first time demonstrated increased serum polyglutamylated DNAJC7 as a potential biomarker for RCC early detection and association with advanced tumor stages and grade, which provides support of further polyglutamylation research in RCC.
Collapse
Affiliation(s)
- Chong Li
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China.,Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, China
| | - Jihan Wang
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Junfeng Hao
- Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100083, China
| | - Xiaoxiao Zhu
- Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Ding
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Shuangchun Ren
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Heping Zhao
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, China
| | - Yong Tian
- Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Qing Wang
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
29
|
PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep 2016; 6:22090. [PMID: 26915315 PMCID: PMC4768146 DOI: 10.1038/srep22090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Particularly, a large number of patients with CRC also have liver metastasis. Currently, there are just a few targeted drugs against these two kinds of tumors which can only benefit a very small population of patients. Therefore, the need of more effective therapeutic drugs or strategies for these two types of cancers is urgent. PS341 (Bortezomib) is the first proteasome inhibitor drug which has been approved in clinical treatment for multiple myeloma. Here we demonstrated that PS341 negatively regulated HCC and CRC both in vitro and in vivo, including the inhibition of cell proliferation, epithelial-mesenchymal transition (EMT), the expression of stemness-related genes, cell migration and invasiveness. Mechanically, PS341 upregulated the expression of FOXO3, which inhibited the transcriptional activation of CTNNB1. The downregualtion of CTNNB1 led to apoptosis, cell cycle arrest, and the inhibition of migration, invasion, self-renewal and tumor formation of these two cancer types. In sum, our findings shed light on the PS341 mediated targeted therapy against both HCC and CRC in the future.
Collapse
|
30
|
Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, Tian Y, Fan Z. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 2016; 17:369-78. [PMID: 26829768 DOI: 10.1038/ni.3356] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses.
Collapse
Affiliation(s)
- Pengyan Xia
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Animal Research Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen Xiong
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Goldfarb A. A Mad(2) modification modulating megakaryopoiesis. J Exp Med 2014; 211:2326-7. [PMID: 25403804 PMCID: PMC4235635 DOI: 10.1084/jem.21112insight2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|