1
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 PMCID: PMC7616870 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, Peter Gorer Dept of Immunobiology, King’s College London, and CRUK City of London Cancer Centre, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Celli S, Watanabe M, Hodes RJ. Tumor suppressor p53 controls thymic NKT17 development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608967. [PMID: 39372758 PMCID: PMC11451625 DOI: 10.1101/2024.08.21.608967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor suppressor p53 antagonizes tumorigenesis, notably including the suppression of T cell lymphomas while its role on physiological T cell biology including thymic T cell development has not been fully understood. Invariant natural killer T (iNKT) cells develop in the thymus as innate-like αβ-T cells which consist of NKT1, NKT2 and NKT17 subsets. We found that the tumor suppressor p53 regulates specifically thymic NKT17 development. p53 is highly expressed in NKT17 relative to other T cell populations. Loss of p53 in the T cell lineage resulted in increased thymic NKT17 cell number with retention of lineage specific cytokine production, while development of NKT1, NKT2 and conventional T cells was not affected. Of interest, γH2AX expression was higher in NKT17 than NKT1 and NKT2 at steady state, and it was further increased in p53-deficient NKT17, suggesting that NKT17 development involves selectively greater DNA damage or genomic instability and that p53 expression might be in response to these damage signals. Taken together, our results indicated that the tumor suppressor p53 is active in selectively controlling thymic NKT17 development, with absence of p53 leading to an increase in thymic NKT17 cells expressing high levels of DNA damage response.
Collapse
|
3
|
Donzel M, Bonjour M, Combes JD, Broussais F, Sesques P, Traverse-Glehen A, de Martel C. Lymphomas associated with Epstein-Barr virus infection in 2020: Results from a large, unselected case series in France. EClinicalMedicine 2022; 54:101674. [PMID: 36204003 PMCID: PMC9531037 DOI: 10.1016/j.eclinm.2022.101674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Background Despite mounting evidence for a causal role in an increasing number of lymphoma subtypes, very few studies have systematically tested the entire spectrum of Hodgkin and non-Hodgkin lymphomas for the presence of Epstein-Barr virus (EBV). Here, we describe the prevalence of EBV in a large, unselected series of patients diagnosed with any type of lymphoma during 2020, in the pathology department of a single University Hospital in France. Methods A total of 756 lymphoma cases (89% new diagnoses and 11% relapses), were registered in the department between Jan 1 and Sept 30, 2020 and 616 were successfully tested for EBV presence in tumour cells by EBV-encoding RNA in-situ hybridisation, using double-blinded assessment and a scoring system designed in accordance with the current state of knowledge in the literature. Findings A strong association with EBV was described in 27/87 (31%) classic Hodgkin lymphomas, 12/223 (5%) diffuse large B-cell lymphomas, and 18/71 (25%) NK and T-cell lymphomas: 4 extranodal NK/T-cell lymphomas, nasal type, 14 angioimmunoblastic T-cell lymphomas (48%). In Hodgkin and NK and T-cell lymphomas, there was a statistically significant association between EBER positivity and relapse (p < 0·01). Among other subtypes, a potential association with EBV (≥10% stained cells) was found in 2/97 (2%) follicular lymphomas, both of grades 1-2, 1/19 (5%) chronic lymphocytic leukaemia (CLL), 1/9 lymphoplasmacytic lymphomas (11%), and 2/47 (4%) marginal zone lymphomas. Interpretation When applied to the distribution of lymphomas in France as described in the Lymphopath database, our data suggested that at least 8% of all combined Hodgkin and non-Hodgkin lymphomas are associated with EBV. Funding International Agency for Research on Cancer (IARC/WHO).
Collapse
Affiliation(s)
- Marie Donzel
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon-Sud, Pierre Bénite, France
| | - Maxime Bonjour
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon-Sud, Pierre Bénite, France
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jean-Damien Combes
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Florence Broussais
- Hospices Civils de Lyon, Service d'Hématologie, Hôpital Lyon-Sud, Pierre Bénite, France
| | - Pierre Sesques
- Hospices Civils de Lyon, Service d'Hématologie, Hôpital Lyon-Sud, Pierre Bénite, France
- Centre de Recherche en Cancérologie de Lyon; INSERM Unité Mixte de Recherche (UMR)-S1052; Centre National de la Recherche Scientifique UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon-Sud, Pierre Bénite, France
- Centre de Recherche en Cancérologie de Lyon; INSERM Unité Mixte de Recherche (UMR)-S1052; Centre National de la Recherche Scientifique UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
4
|
Torre P, Brescia A, Giurato G, D’Auria R, Rizzo F, Motta BM, Giudice V, Selleri C, Zeppa P, Caputo A, Casolaro V, Persico M. Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series. Cancers (Basel) 2022; 14:cancers14122921. [PMID: 35740587 PMCID: PMC9221487 DOI: 10.3390/cancers14122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Mucosal-associated invariant T (MAIT) cells are a subgroup of T lymphocytes whose role has recently been investigated in several types of diseases, including cancer. However, little is known about these cells in lymphomas. In this case series, we investigated the presence of MAIT cells in biopsies obtained from patients diagnosed with T-cell non-Hodgkin lymphomas, uncommon hematological malignancies with often not clearly defined etiopathology. Abstract Background: Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T lymphocytes expressing a semi-invariant α/β T-cell receptor (TCR). The physiological functions of these cells, which are particularly abundant in normal liver and mucosal sites, have become clear only in recent years, but their role in most human diseases is still unknown. Since the cellular origin and etiopathogenesis of most T-lymphomas are still elusive, we decided to explore the presence of MAIT cells in biopsies from these neoplasms. Methods: Sixteen biopsies obtained from patients with a T-cell lymphoma diagnosis were analyzed via immunofluorescence staining using an anti-Vα7.2 antibody and the MR1-antigen tetramer. Positive cases were subjected to a polymerase chain reaction for the detection of Vα7.2–Jα33, Vα7.2–Jα20, or Vα7.2–Jα12 rearrangements, followed by sequencing of the CDR3α region. Results: CD3+/Vα7.2+ and CD3+/MR1-Ag-tetramer+ cells were found in 4 of 16 samples analyzed. The identification of specific TCR rearrangements confirmed the presence of these cells in all four samples. PCR and sequencing results documented the presence of multiple clones of MAIT cells in each positive sample. Conclusions: MAIT cells are frequently found in T-cell lymphomas. More in-depth studies and a larger number of samples are needed to better clarify the contribution of MAIT cells to this rare neoplasm.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy;
| | - Annalisa Brescia
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (V.G.); (C.S.)
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (V.G.); (C.S.)
| | - Pio Zeppa
- Pathology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (P.Z.); (A.C.)
| | - Alessandro Caputo
- Pathology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (P.Z.); (A.C.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy;
- Correspondence:
| |
Collapse
|
5
|
Characteristics of T- and NK-cell Lymphomas After Renal Transplantation: A French National Multicentric Cohort Study. Transplantation 2021; 105:1858-1868. [PMID: 33560724 DOI: 10.1097/tp.0000000000003568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Posttransplant lymphoproliferative disorders (PTLDs) encompass a spectrum of heterogeneous entities. Because the vast majority of cases PTLD arise from B cells, available data on PTLD of T or NK phenotype (T/NK-cell PTLD) are scarce, which limits the quality of the management of these patients. METHODS All adult cases of PTLD diagnosed in France were prospectively recorded in the national registry between 1998 and 2007. Crosschecking the registry data with 2 other independent national databases identified 58 cases of T/NK-cell PTLD. This cohort was then compared with (i) the 395 cases of B-cell PTLD from the registry, and of (ii) a cohort of 148 T/NK-cell lymphomas diagnosed in nontransplanted patients. RESULTS T/NK-cell PTLD occurred significantly later after transplantation and had a worse overall survival than B-cell PTLD. Two subtypes of T/NK-cell PTLD were distinguished: (i) cutaneous (28%) and (ii) systemic (72%), the latter being associated with a worse prognosis. Compared with T/NK-cell lymphomas of nontransplanted patients, overall survival of systemic T/NK-cell PTLD was worse (hazard ratio: 2.64 [1.76-3.94]; P < 0.00001). CONCLUSIONS This difference, which persisted after adjustment on tumoral mass, histological subtype, and extension of the disease at diagnosis could be explained by the fact that transplanted patients were less intensively treated and responded less to chemotherapy.
Collapse
|
6
|
Carras S, Chartoire D, Mareschal S, Heiblig M, Marçais A, Robinot R, Urb M, Pommier RM, Julia E, Chebel A, Verney A, Bertheau C, Bardel E, Fezelot C, Courtois L, Lours C, Bouska A, Sharma S, Lefebvre C, Rouault JP, Sibon D, Ferrari A, Iqbal J, de Leval L, Gaulard P, Traverse-Glehen A, Sujobert P, Blery M, Salles G, Walzer T, Bachy E, Genestier L. Chronic T cell receptor stimulation unmasks NK receptor signaling in peripheral T cell lymphomas via epigenetic reprogramming. J Clin Invest 2021; 131:e139675. [PMID: 34043588 DOI: 10.1172/jci139675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcomes. The T cell receptor (TCR) is emerging as a key driver of T lymphocyte transformation. However, the role of chronic TCR activation in lymphomagenesis and in lymphoma cell survival is still poorly understood. Using a mouse model, we report that chronic TCR stimulation drove T cell lymphomagenesis, whereas TCR signaling did not contribute to PTCL survival. The combination of kinome, transcriptome, and epigenome analyses of mouse PTCLs revealed a NK cell-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and SYK. Activating NKRs were functional in PTCLs and dependent on SYK activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKRs and downstream SYK/mTOR activity for their survival. We studied a large collection of human primary samples and identified several PTCLs recapitulating the phenotype described in this model by their expression of SYK and the NKR, suggesting a similar mechanism of lymphomagenesis and establishing a rationale for clinical studies targeting such molecules.
Collapse
Affiliation(s)
- Sylvain Carras
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Dimitri Chartoire
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Sylvain Mareschal
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Maël Heiblig
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Antoine Marçais
- INSERM U1111, CNRS UMR 5308, Centre International de Recherche en Infectiologie, Lyon, France
| | - Rémy Robinot
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Mirjam Urb
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Roxane M Pommier
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas" Centre Léon Bérard, Lyon, France
| | - Edith Julia
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Amel Chebel
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Aurélie Verney
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Emilie Bardel
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Caroline Fezelot
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Lucien Courtois
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Camille Lours
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christine Lefebvre
- Department of Genetics of Hematological Malignancies, Grenoble University Hospital, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Institute for Advanced Biosciences, Grenoble, France
| | - Jean-Pierre Rouault
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Sibon
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anthony Ferrari
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas" Centre Léon Bérard, Lyon, France
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France.,Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri-Mondor, Créteil, France
| | - Alexandra Traverse-Glehen
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Pathology, Hospices Civils de Lyon, Lyon, France
| | - Pierre Sujobert
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Laboratory of Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | - Gilles Salles
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Walzer
- INSERM U1111, CNRS UMR 5308, Centre International de Recherche en Infectiologie, Lyon, France
| | - Emmanuel Bachy
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Laurent Genestier
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
7
|
Tsagaratou A. Deciphering the multifaceted roles of TET proteins in T-cell lineage specification and malignant transformation. Immunol Rev 2021; 300:22-36. [PMID: 33410200 DOI: 10.1111/imr.12940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
TET proteins are DNA demethylases that can oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC) and other oxidized mC bases (oxi-mCs). Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we focus on the role of TET proteins in T-cell lineage specification. We explore the multifaceted roles of TET proteins in regulating gene expression in the contexts of T-cell development, lineage specification, function, and disease. Finally, we discuss the future directions and experimental strategies required to decipher the precise mechanisms employed by TET proteins to fine-tune gene expression and safeguard cell identity.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Institute of Inflammatory Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Dubois S, Waldmann TA, Müller JR. Engagement of lymphoma T cell receptors causes accelerated growth and the secretion of an NK cell-inhibitory factor. Cell Immunol 2020; 357:104213. [PMID: 32977157 PMCID: PMC7554099 DOI: 10.1016/j.cellimm.2020.104213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
The development of T cell lymphomas in mice that constitutively express a single T cell receptor is surveilled by the action of NK cells. We investigated the effects of engaging the lymphoma TCR in this mouse model. We stimulated lymphoma cells expressing an ovalbumin-specific TCR in vivo using listeria monocytogenes as a vehicle. Infections with listeria expressing ovalbumin but not with control bacteria caused a stable change in lymphoma cells that allowed its growth in mice with normal NK cells. TCR engagement furthermore enhanced lymphoma growth in NK-cell-depleted mice suggesting a lymphoma-intrinsic change that lead to accelerated growth. The ability to grow in mice without prior NK cell depletion did not appear to be accompanied by changes in the recognition of lymphoma by NK cells. Rather, lymphoma immunization was associated with a decrease in NK cell numbers: Leukemic phases were observed for all mice starting three to eight weeks after immunizations, and leukemias were succeeded by the disappearance of NK cells from blood. We also observed strong decreases of NK cell numbers in spleens at the time of death. Co-culture experiments showed decreases in the ability of NK cells to proliferate in response to IL-15 when post-immunization lymphoma cells were present in a mechanism that did not require direct cell contact. Together these data suggest that TCR engagement caused intrinsic changes in T cell lymphoma cells resulting in both accelerated in vivo growth and in the secretion of a factor that caused NK cell disappearance.
Collapse
MESH Headings
- Animals
- CD56 Antigen/immunology
- CD56 Antigen/metabolism
- Disease Models, Animal
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Listeria monocytogenes/pathogenicity
- Lymphoma/immunology
- Lymphoma/metabolism
- Lymphoma/pathology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
9
|
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19:120. [PMID: 32762681 PMCID: PMC7409673 DOI: 10.1186/s12943-020-01238-x] [Citation(s) in RCA: 407] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is highly complex, and immune escape is currently considered an important hallmark of cancer, largely contributing to tumor progression and metastasis. Named for their capability of killing target cells autonomously, natural killer (NK) cells serve as the main effector cells toward cancer in innate immunity and are highly heterogeneous in the microenvironment. Most current treatment options harnessing the tumor microenvironment focus on T cell-immunity, either by promoting activating signals or suppressing inhibitory ones. The limited success achieved by T cell immunotherapy highlights the importance of developing new-generation immunotherapeutics, for example utilizing previously ignored NK cells. Although tumors also evolve to resist NK cell-induced cytotoxicity, cytokine supplement, blockade of suppressive molecules and genetic engineering of NK cells may overcome such resistance with great promise in both solid and hematological malignancies. In this review, we summarized the fundamental characteristics and recent advances of NK cells within tumor immunometabolic microenvironment, and discussed potential application and limitations of emerging NK cell-based therapeutic strategies in the era of presicion medicine.
Collapse
Affiliation(s)
- Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Daniels J, Doukas PG, Escala MEM, Ringbloom KG, Shih DJH, Yang J, Tegtmeyer K, Park J, Thomas JJ, Selli ME, Altunbulakli C, Gowthaman R, Mo SH, Jothishankar B, Pease DR, Pro B, Abdulla FR, Shea C, Sahni N, Gru AA, Pierce BG, Louissaint A, Guitart J, Choi J. Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas. Nat Commun 2020; 11:1806. [PMID: 32286303 PMCID: PMC7156460 DOI: 10.1038/s41467-020-15572-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Primary cutaneous γδ T cell lymphomas (PCGDTLs) represent a heterogeneous group of uncommon but aggressive cancers. Herein, we perform genome-wide DNA, RNA, and T cell receptor (TCR) sequencing on 29 cutaneous γδ lymphomas. We find that PCGDTLs are not uniformly derived from Vδ2 cells. Instead, the cell-of-origin depends on the tissue compartment from which the lymphomas are derived. Lymphomas arising from the outer layer of skin are derived from Vδ1 cells, the predominant γδ cell in the epidermis and dermis. In contrast, panniculitic lymphomas arise from Vδ2 cells, the predominant γδ T cell in the fat. We also show that TCR chain usage is non-random, suggesting common antigens for Vδ1 and Vδ2 lymphomas respectively. In addition, Vδ1 and Vδ2 PCGDTLs harbor similar genomic landscapes with potentially targetable oncogenic mutations in the JAK/STAT, MAPK, MYC, and chromatin modification pathways. Collectively, these findings suggest a paradigm for classifying, staging, and treating these diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD1d/metabolism
- Chromatin Assembly and Disassembly
- Epitopes/immunology
- Genome, Human
- HEK293 Cells
- Humans
- Lymph Nodes/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Models, Biological
- Mutation/genetics
- Phenotype
- Principal Component Analysis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- Skin/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Transcription, Genetic
- Transcriptome/genetics
Collapse
Affiliation(s)
- Jay Daniels
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter G Doukas
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maria E Martinez Escala
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kimberly G Ringbloom
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David J H Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingyi Yang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kyle Tegtmeyer
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joonhee Park
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jane J Thomas
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mehmet E Selli
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Can Altunbulakli
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Samuel H Mo
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Balaji Jothishankar
- Department of Medicine, Section of Dermatology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - David R Pease
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara Pro
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Farah R Abdulla
- Division of Dermatology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Christopher Shea
- Department of Medicine, Section of Dermatology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Alejandro A Gru
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Dermatology, University of Virginia Health System, Charlottesville, VA, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Navigating the Role of CD1d/Invariant Natural Killer T-cell/Glycolipid Immune Axis in Multiple Myeloma Evolution: Therapeutic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:358-365. [PMID: 32234294 DOI: 10.1016/j.clml.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. The immunotherapeutic approach for MM therapy is evolving. The Cd1d/invariant natural killer T-cell/glycolipid immune axis belongs to the innate immunity, and we have highlighted role in myeloma pathogenesis in the present study. The recent development of the chimeric antigen receptor (CAR19)-invariant natural killer T-cells resulted in our renewed interest in this immune system and offer new perspectives for future anti-MM immunotherapies.
Collapse
|
12
|
Feng X, Lu H, Yue J, Schneider N, Liu J, Denzin LK, Chan CS, De S, Shen Z. Loss of Setd4 delays radiation-induced thymic lymphoma in mice. DNA Repair (Amst) 2019; 86:102754. [PMID: 31794893 DOI: 10.1016/j.dnarep.2019.102754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Radiation-induced lymphomagenesis results from a clonogenic lymphoid cell proliferation due to genetic alterations and immunological dysregulation. Mouse models had been successfully used to identify risk and protective factors for radiation-induced DNA damage and carcinogenesis. The mammalian SETD4 is a poorly understood putative methyl-transferase. Here, we report that conditional Setd4 deletion in adult mice significantly extended the survival of radiation-induced T-lymphoma. However, in Tp53 deficient mice, Setd4 deletion did not delay the radiation-induced lymphomagenesis although it accelerated the spontaneous T-lymphomagenesis in non-irradiated mice. The T-lymphomas were largely clonogenic in both Setd4flox/flox and Setd4Δ/Δ mice based on sequencing analysis of the T-cell antigen β receptors. However, the Setd4Δ/Δ T-lymphomas were CD4+/CD8+ double positive, while the littermate Setd4flox/floxtumor were largely CD8+ single positive. A genomic sequencing analysis on chromosome deletion, inversion, duplication, and translocation, revealed a larger contribution of inversion but a less contribution of deletion to the overall chromosome rearrangements in the in Setd4Δ/Δ tumors than the Setd4flox/flox tumors. In addition, the Setd4flox/flox mice died more often from the large sizes of primary thymus lymphoma at earlier time, but there was a slight increase of lymphoma dissemination among peripheral organs in Setd4Δ/Δ at later times. These results suggest that Setd4 has a critical role in modulating lymphomagenesis and may be targeted to suppress radiation-induced carcinogenesis.
Collapse
Affiliation(s)
- Xing Feng
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Jingyin Yue
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Neta Schneider
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Chang S Chan
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
13
|
Labadie JD, Magzamen S, Morley PS, Anderson GB, Yoshimoto J, Avery AC. Associations of environment, health history, T-zone lymphoma, and T-zone-like cells of undetermined significance: A case-control study of aged Golden Retrievers. J Vet Intern Med 2019; 33:764-775. [PMID: 30666722 PMCID: PMC6430877 DOI: 10.1111/jvim.15405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND T-zone lymphoma (TZL), an indolent disease in older dogs, comprises approximately 12% of lymphomas in dogs. TZL cells exhibit an activated phenotype, indicating the disease may be antigen-driven. Prior research found that asymptomatic aged Golden Retrievers (GLDRs) commonly have populations of T-zone-like cells (phenotypically identical to TZL) of undetermined significance (TZUS). OBJECTIVE To evaluate associations of inflammatory conditions, TZL and TZUS, using a case-control study of GLDRs. ANIMALS TZL cases (n = 140), flow cytometrically diagnosed, were identified through Colorado State University's Clinical Immunology Laboratory. Non-TZL dogs, recruited through either a database of owners interested in research participation or the submitting clinics of TZL cases, were subsequently flow cytometrically classified as TZUS (n = 221) or control (n = 147). METHODS Health history, signalment, environmental, and lifestyle factors were obtained from owner-completed questionnaires. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated using multivariable logistic regression, obtaining separate estimates for TZL and TZUS (versus controls). RESULTS Hypothyroidism (OR, 0.3; 95% CI, 0.1-0.7), omega-3 supplementation (OR, 0.3; 95% CI, 0.1-0.6), and mange (OR, 5.5; 95% CI, 1.4-21.1) were significantly associated with TZL. Gastrointestinal disease (OR, 2.4; 95% CI, 0.98-5.8) had nonsignificantly increased TZL odds. Two shared associations for TZL and TZUS were identified: bladder infection or calculi (TZL OR, 3.5; 95% CI, 0.96-12.7; TZUS OR, 5.1; 95% CI, 1.9-13.7) and eye disease (TZL OR, 2.3; 95% CI, 0.97-5.2; TZUS OR, 1.9; 95% CI, 0.99-3.8). CONCLUSIONS AND CLINICAL IMPORTANCE These findings may elucidate pathways involved in TZUS risk and progression from TZUS to TZL. Further investigation into the protective association of omega-3 supplements is warranted.
Collapse
Affiliation(s)
- Julia D. Labadie
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - Paul S. Morley
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - G. Brooke Anderson
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - Anne C. Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| |
Collapse
|
14
|
|
15
|
Tsagaratou A. TET mediated epigenetic regulation of iNKT cell lineage fate choice and function. Mol Immunol 2018; 101:564-573. [PMID: 30176520 DOI: 10.1016/j.molimm.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
During the last years, intensive research has shed light in the transcriptional networks that shape the invariant NKT (iNKT) cell lineage and guide the choices towards functionally distinct iNKT cell subsets (Constantinides and Bendelac, 2013; Engel and Kronenberg, 2014; Gapin, 2016; Kim et al., 2015). However, the epigenetic players that regulate gene expression and orchestrate the iNKT cell lineage choices remain poorly understood. Here, we summarize recent advances in our understanding of epigenetic regulation of iNKT cell development and lineage choice. Particular emphasis is placed on DNA modifications and the Ten Eleven Translocation (TET) family of DNA demethylases.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, CA, 92037, USA.
| |
Collapse
|
16
|
Molecular Insights Into Pathogenesis of Peripheral T Cell Lymphoma: a Review. Curr Hematol Malig Rep 2018; 13:318-328. [DOI: 10.1007/s11899-018-0460-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Abstract
Natural Killer T (NKT) cells based cancer immunotherapy is an evolving area of cancer therapy, but tumors escape from this treatment modality by altering CD1d expression and its antigen presentation pathway. Here, we have studied the relation of CD1d expression in various breast cancer cell lines to their viability and progression. We observed a novel phenomenon that CD1d expression level increases with the progressive stage of the cancer. A small molecule, zerumbone (ZER) caused down-regulation of CD1d that was accompanied by breast cancer cell growth in vitro. The growth inhibitory effect of ZER against breast cancer cells was augmented by treatment with anti-CD1d mAb. This effect was mediated by G1-phase cell cycle arrest and apoptosis induction coupled with an increase in mitochondrial membrane depolarization. CD1d expression and cell proliferation were inhibited by both CD1d siRNA and ZER. The α-galactosylceramide, a ligand for CD1d, showed increased CD1d expression as well as cell proliferation which was opposite to the effects of ZER. This study shows that, CD1d overexpression is associated with the progressive stages of breast cancer and ZER could be an adjuvant to potentiate cancer immunotherapy.
Collapse
|
18
|
Tsagaratou A, Lio CWJ, Yue X, Rao A. TET Methylcytosine Oxidases in T Cell and B Cell Development and Function. Front Immunol 2017; 8:220. [PMID: 28408905 PMCID: PMC5374156 DOI: 10.3389/fimmu.2017.00220] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is established by DNA methyltransferases and is a key epigenetic mark. Ten-eleven translocation (TET) proteins are enzymes that oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidization products (oxi-mCs), which indirectly promote DNA demethylation. Here, we provide an overview of the effect of TET proteins and altered DNA modification status in T and B cell development and function. We summarize current advances in our understanding of the role of TET proteins and 5hmC in T and B cells in both physiological and pathological contexts. We describe how TET proteins and 5hmC regulate DNA modification, chromatin accessibility, gene expression, and transcriptional networks and discuss potential underlying mechanisms and open questions in the field.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Chan-Wang J Lio
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Xiaojing Yue
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
19
|
Li J, Roy S, Kim YM, Li S, Zhang B, Love C, Reddy A, Rajagopalan D, Dave S, Diehl AM, Zhuang Y. Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3136-3148. [PMID: 28258199 DOI: 10.4049/jimmunol.1601935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Inhibitor of DNA binding (Id) proteins, including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins is associated with a broad spectrum of tumors, recent studies have identified that Id3 plays a tumor-suppressor role in the development of Burkitt's lymphoma in humans and hepatosplenic T cell lymphomas in mice. In this article, we report rapid lymphoma development in Id2/Id3 double-knockout mice that is caused by unchecked expansion of invariant NKT (iNKT) cells or a unique subset of innate-like CD1d-independent T cells. These populations began to expand in neonatal mice and, upon malignant transformation, resulted in mortality between 3 and 11 mo of age. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability along with upregulation of several signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-κB pathway were found to be shared between Id2/Id3 double-knockout lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumorigenic pathways caused by loss of function of Id2 and Id3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Young-Mi Kim
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Shibo Li
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Sandeep Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
20
|
Crispatzu G, Schrader A, Nothnagel M, Herling M, Diana Herling C. A Critical Evaluation of Analytic Aspects of Gene Expression Profiling in Lymphoid Leukemias with Broad Applications to Cancer Genomics. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.3.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|