1
|
Zhou J, Lv Z, Liu M, Du C, Du L, Gao Z, Jiang Z, Wang L, Wang S, Liang M, Xie S, Li Y, Wang Z, Li G, Wei Y, Han G. Ubiquitination and degradation of MHC-II by Tim-3 inhibits antiviral immunity. Cell Immunol 2024; 407:104889. [PMID: 39546827 DOI: 10.1016/j.cellimm.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
We previously reported that Tim-3, an immune checkpoint inhibitor, inhibits MHC-II expression, but the molecular mechanisms involved and the implications for antiviral immunity remain to be determined. Here, we found that during H1N1 infection, Tim-3 inhibits MHC-II expression in macrophages/microglia in vitro. Tim-3 interacts with MHC-II via its intracellular tail and induces proteasomal dependent degradation of MHC-II. In H1N1 infected macrophages/microglia, Tim-3 promotes the K48-linked ubiquitination of MHC-II via MARCH8, a ubiquitin E3 ligase that can be upregulated by Tim-3. In H1N1 infected mice, specific knockout of Tim-3 in macrophages leads to a decreased viral load, attenuates tissue damage and increases the survival rate. We have thus identified a novel mechanism by which Tim-3 mediates virus immune escape. Manipulating the Tim-3-MHC-II signaling pathway may provide a novel treatment for viral infections.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Zhonglin Lv
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Du
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Zhenfang Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ziying Jiang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Shuohua Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China; The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shun Xie
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Krupa P, Wein H, Zemmrich LS, Zygmunt M, Muzzio DO. Pregnancy-related factors induce immune tolerance through regulation of sCD83 release. Front Immunol 2024; 15:1452879. [PMID: 39328416 PMCID: PMC11424458 DOI: 10.3389/fimmu.2024.1452879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
A well-balanced maternal immune system is crucial to maintain fetal tolerance in case of infections during pregnancy. Immune adaptations include an increased secretion of soluble mediators to protect the semi-allogeneic fetus from excessive pro-inflammatory response. B lymphocytes acquire a higher capacity to express CD83 and secrete soluble CD83 (sCD83) upon exposure to bacteria-derived components such as LPS. CD83 possesses immune modulatory functions and shows a promising therapeutic potential against inflammatory conditions. The administration of sCD83 to pregnant mice reduces LPS-induced abortion rates. The increased CD83 expression by endometrial B cells as compared to peripheral blood B cells suggests its modulatory role in the fetal tolerance, especially in the context of infection. We postulate that in pregnancy, CD83 expression and release is controlled by pregnancy-related hormones. The intra- and extracellular expression of CD83 in leukocytes from peripheral blood or decidua basalis and parietalis at term were analyzed by flow cytometry. After treatment with pregnancy-related hormones and LPS, ELISA and qPCR were performed to study sCD83 release and CD83 gene expression, respectively. Cleavage prediction analysis was used to find potential proteases targeting CD83. Expression of selected proteases was analyzed by ELISA. Higher levels of CD83 were found in CD11c+ dendritic cells, CD3+ T cells and CD19+ B cells from decidua basalis and decidua parietalis after LPS-stimulation in vitro. An increase of intracellular expression of CD83 was also detected in CD19+ B cells from both compartments. Stimulated B cells displayed significantly higher percentages of CD83+ cells than dendritic cells and T cells from decidua basalis and peripheral blood. Treatment of B lymphocytes with pregnancy-related molecules (E2, P4, TGF-β1 and hCG) enhanced the LPS-mediated increase of CD83 expression, while dexamethasone led to a reduction. Similarly, the release of sCD83 was increased under TGF-β1 treatment but decreased upon dexamethasone stimulation. Finally, we found that the hormonal regulation of CD83 expression is likely a result from a balance between gene transcription from CD83 and the modulation of the metalloproteinase MMP-7. Thus, data supports and complements our previous murine studies on hormonal regulation of CD83 expression, reinforcing its immunomodulatory relevance in anti-bacterial responses during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University Medicine
Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Rao CH, Huang R, Bai YZ, Yu C, Chen M, Peng JM, Xu SJ, Sun MX, Wang SJ, Yang YB, An TQ, Tian ZJ, Lyu C, Cai XH, Zheng C, Meng F, Tang YD. MARCH8 inhibits pseudorabies virus replication by trapping the viral cell-to-cell fusion complex in the trans-Golgi network. Int J Biol Macromol 2024; 274:133463. [PMID: 38944094 DOI: 10.1016/j.ijbiomac.2024.133463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
The membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, has broad-spectrum antiviral activity. However, some viruses hijack MARCH8 to promote virus replication, highlighting its dual role in the viral lifecycle. Most studies on MARCH8 have focused on RNA viruses, leaving its role in DNA viruses largely unexplored. Pseudorabies virus (PRV) is a large DNA virus that poses a potential threat to humans. In this study, we found that MARCH8 inhibited PRV replication at the cell-to-cell fusion stage. Interestingly, our findings proved that MARCH8 blocks gB cleavage by recruiting furin but this activity does not inhibit viral infection in vitro. Furthermore, we confirmed that MARCH8 inhibits cell-to-cell fusion independent of its E3 ubiquitin ligase activity but dependent on the interaction with the cell-to-cell fusion complex (gB, gD, gH, and gL). Finally, we discovered that the distribution of the cell-to-cell fusion complex is significantly altered and trapped within the trans-Golgi network. Overall, our results indicate that human MARCH8 acts as a potent antiviral host factor against PRV via trapping the cell-to-cell fusion complex in the trans-Golgi network.
Collapse
Affiliation(s)
- Cui-Hong Rao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Rui Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuan-Zhe Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Meng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shi-Jia Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Shu-Jie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China.
| |
Collapse
|
4
|
Lim HJ, McWilliam HEG. Quantitative Measurement of Plasma Membrane Protein Internalisation and Recycling in Heterogenous Cellular Samples by Flow Cytometry. Bio Protoc 2024; 14:e4986. [PMID: 38737503 PMCID: PMC11082785 DOI: 10.21769/bioprotoc.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Plasma membrane proteins mediate important aspects of physiology, including nutrient acquisition, cell-cell interactions, and monitoring homeostasis. The trafficking of these proteins, involving internalisation from and/or recycling back to the cell surface, is often critical to their functions. These processes can vary among different proteins and cell types and states and are still being elucidated. Current strategies to measure surface protein internalisation and recycling are typically microscopy or biochemical assays; these are accurate but generally limited to analysing a homogenous cell population and are often low throughput. Here, we present flow cytometry-based methods involving probe-conjugated antibodies that enable quantification of internalisation or recycling rates at the single-cell level in complex samples. To measure internalisation, we detail an assay where the protein of interest is labelled with a specific antibody conjugated to a fluorescent oligonucleotide-labelled probe. To measure recycling, a specific antibody conjugated to a cleavable biotin group is employed. These probes permit the differentiation of molecules that have been internalised or recycled from those that have not. When combined with cell-specific marker panels, these methods allow the quantitative study of plasma membrane protein trafficking dynamics in a heterogenous cell mixture at the single-cell level. Key features • These assays allow sensitive quantification of internalised or recycled surface molecules using oligonucleotide or cleavable biotin-conjugated probes, respectively, and detected by flow cytometry. • They can be adapted to any membrane protein that transits via the cell surface and for which a specific purified antibody is available. • The dynamics of a cell surface protein can be measured in heterogenous cell populations simultaneously, including various cellular activation states. • The internalisation assay builds upon the method developed by Liu et al. [1,2] and extends its application to heterogenous human peripheral blood mononuclear cells. • These assays have been extensively used on suspension cells but have not been tested on adherent cells.
Collapse
Affiliation(s)
- Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q, Long J. Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett 2024; 588:216758. [PMID: 38401885 DOI: 10.1016/j.canlet.2024.216758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Immune checkpoint molecules play a pivotal role in the initiation, regulation, and termination of immune responses. Tumor cells exploit these checkpoints to dampen immune cell function, facilitating immune evasion. Clinical interventions target this mechanism by obstructing the binding of immune checkpoints to their ligands, thereby restoring the anti-tumor capabilities of immune cells. Notably, therapies centered on immune checkpoint inhibitors, particularly PD-1/PD-L1 and CTLA-4 blocking antibodies, have demonstrated significant clinical promise. However, a considerable portion of patients still encounter suboptimal efficacy and develop resistance. Recent years have witnessed an exponential surge in preclinical and clinical trials investigating novel immune checkpoint molecules such as TIM3, LAG3, TIGIT, NKG2D, and CD47, along with their respective ligands. The processes governing immune checkpoint molecules, from their synthesis to transmembrane deployment, interaction with ligands, and eventual degradation, are intricately tied to post-translational modifications. These modifications encompass glycosylation, phosphorylation, ubiquitination, neddylation, SUMOylation, palmitoylation, and ectodomain shedding. This discussion proceeds to provide a concise overview of the structural characteristics of several novel immune checkpoints and their ligands. Additionally, it outlines the regulatory mechanisms governed by post-translational modifications, offering insights into their potential clinical applications in immune checkpoint blockade.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meifang Xu
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meifeng Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Boshu Zheng
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qi Ke
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
7
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
8
|
Yu C, Liu Q, Zhao Z, Zhai J, Xue M, Tang YD, Wang C, Zheng C. The emerging roles of MARCH8 in viral infections: A double-edged Sword. PLoS Pathog 2023; 19:e1011619. [PMID: 37708148 PMCID: PMC10501654 DOI: 10.1371/journal.ppat.1011619] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
The host cell membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, regulates intracellular turnover of many transmembrane proteins and shows potent antiviral activities. Generally, 2 antiviral modes are performed by MARCH8. On the one hand, MARCH8 catalyzes viral envelope glycoproteins (VEGs) ubiquitination and thus leads to their intracellular degradation, which is the cytoplasmic tail (CT)-dependent (CTD) mode. On the other hand, MARCH8 traps VEGs at some intracellular compartments (such as the trans-Golgi network, TGN) but without inducing their degradation, which is the cytoplasmic tail-independent (CTI) mode, by which MARCH8 hijacks furin, a cellular proprotein convertase, to block VEGs cleavage. In addition, the MARCH8 C-terminal tyrosine-based motif (TBM) 222YxxL225 also plays a key role in its CTI antiviral effects. In contrast to its antiviral potency, MARCH8 is occasionally hijacked by some viruses and bacteria to enhance their invasion, indicating a duplex role of MARCH8 in host pathogenic infections. This review summarizes MARCH8's antiviral roles and how viruses evade its restriction, shedding light on novel antiviral therapeutic avenues.
Collapse
Affiliation(s)
- Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Zhuo Zhao
- Beijing Centrebio Biological Corporation Limited, Beijing, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, People’s Republic of China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, People’s Republic of China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
9
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Casu A, Nunez Lopez YO, Yu G, Clifford C, Bilal A, Petrilli AM, Cornnell H, Carnero EA, Bhatheja A, Corbin KD, Iliuk A, Maahs DM, Pratley RE. The proteome and phosphoproteome of circulating extracellular vesicle-enriched preparations are associated with characteristic clinical features in type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1219293. [PMID: 37576973 PMCID: PMC10417723 DOI: 10.3389/fendo.2023.1219293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction There are no validated clinical or laboratory biomarkers to identify and differentiate endotypes of type 1 diabetes (T1D) or the risk of progression to chronic complications. Extracellular vesicles (EVs) have been studied as biomarkers in several different disease states but have not been well studied in T1D. Methods As the initial step towards circulating biomarker identification in T1D, this pilot study aimed to provide an initial characterization of the proteomic and phosphoproteomic landscape of circulating EV-enriched preparations in participants with established T1D (N=10) and healthy normal volunteers (Controls) (N=7) (NCT03379792) carefully matched by age, race/ethnicity, sex, and BMI. EV-enriched preparations were obtained using EVtrap® technology. Proteins were identified and quantified by LC-MS analysis. Differential abundance and coexpression network (WGCNA), and pathway enrichment analyses were implemented. Results The detected proteins and phosphoproteins were enriched (75%) in exosomal proteins cataloged in the ExoCarta database. A total of 181 proteins and 8 phosphoproteins were differentially abundant in participants with T1D compared to controls, including some well-known EVproteins (i.e., CD63, RAB14, BSG, LAMP2, and EZR). Enrichment analyses of differentially abundant proteins and phosphoproteins of EV-enriched preparations identified associations with neutrophil, platelet, and immune response functions, as well as prion protein aggregation. Downregulated proteins were involved in MHC class II signaling and the regulation of monocyte differentiation. Potential key roles in T1D for C1q, plasminogen, IL6ST, CD40, HLA-DQB1, HLA-DRB1, CD74, NUCB1, and SAP, are highlighted. Remarkably, WGCNA uncovered two protein modules significantly associated with pancreas size, which may be implicated in the pathogenesis of T1D. Similarly, these modules showed significant enrichment for membrane compartments, processes associated with inflammation and the immune response, and regulation of viral processes, among others. Discussion This study demonstrates the potential of proteomic and phosphoproteomic signatures of EV-enriched preparations to provide insight into the pathobiology of T1D. The WGCNA analysis could be a powerful tool to discriminate signatures associated with different pathobiological components of the disease.
Collapse
Affiliation(s)
- Anna Casu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Yury O. Nunez Lopez
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Gongxin Yu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Christopher Clifford
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anika Bilal
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Heather Cornnell
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Ananya Bhatheja
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Karen D. Corbin
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anton Iliuk
- Biomarker Discovery Department, Tymora Analytical Operations, West Lafayette, IN, United States
| | - David M. Maahs
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Richard E. Pratley
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| |
Collapse
|
11
|
Bandola-Simon J, Roche PA. Regulation of MHC class II and CD86 expression by March-I in immunity and disease. Curr Opin Immunol 2023; 82:102325. [PMID: 37075597 PMCID: PMC10330218 DOI: 10.1016/j.coi.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023]
Abstract
The expression of MHC-II and CD86 on the surface of antigen-presenting cells (APCs) must be tightly regulated to foster antigen-specific CD4 T-cell activation and to prevent autoimmunity. Surface expression of these proteins is regulated by their dynamic ubiquitination by the E3 ubiquitin ligase March-I. March-I promotes turnover of peptide-MHC-II complexes on resting APCs and termination of March-I expression promotes MHC-II and CD86 surface stability. In this review, we will highlight recent studies examining March-I function in both normal and pathological conditions.
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA.
| |
Collapse
|
12
|
Riaz B, Islam SMS, Ryu HM, Sohn S. CD83 Regulates the Immune Responses in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24032831. [PMID: 36769151 PMCID: PMC9917562 DOI: 10.3390/ijms24032831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Activating the immune system plays an important role in maintaining physiological homeostasis and defending the body against harmful infections. However, abnormalities in the immune response can lead to various immunopathological responses and severe inflammation. The activation of dendritic cells (DCs) can influence immunological responses by promoting the differentiation of T cells into various functional subtypes crucial for the eradication of pathogens. CD83 is a molecule known to be expressed on mature DCs, activated B cells, and T cells. Two isotypes of CD83, a membrane-bound form and a soluble form, are subjects of extensive scientific research. It has been suggested that CD83 is not only a ubiquitous co-stimulatory molecule but also a crucial player in monitoring and resolving inflammatory reactions. Although CD83 has been involved in immunological responses, its functions in autoimmune diseases and effects on pathogen immune evasion remain unclear. Herein, we outline current immunological findings and the proposed function of CD83 in inflammatory disorders.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S. M. Shamsul Islam
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hye Myung Ryu
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Correspondence:
| |
Collapse
|
13
|
Yuan Q, Zhao B, Cao YH, Yan JC, Sun LJ, Liu X, Xu Y, Wang XY, Wang B. BCR-Associated Protein 31 Regulates Macrophages Polarization and Wound Healing Function via Early Growth Response 2/C/EBPβ and IL-4Rα/C/EBPβ Pathways. THE JOURNAL OF IMMUNOLOGY 2022; 209:1059-1070. [DOI: 10.4049/jimmunol.2200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The BCR-associated protein 31 (BAP31), a transmembrane protein in the endoplasmic reticulum, participates in the regulation of immune cells, such as microglia and T cells, and has potential functions in macrophages that remain to be unexplored. In this study, we designed and bred macrophage-specific BAP31 knockdown mice to detect the polarization and functions of macrophages. The results revealed that M2 macrophage-associated genes were suppressed in mouse bone marrow–derived macrophages of Lyz2 Cre-BAP31flox/flox mice. Multiple macrophage-associated transcription factors were demonstrated to be able to be regulated by BAP31. Among these factors, C/EBPβ was the most significantly decreased and was regulated by early growth response 2. BAP31 could also affect C/EBPβ via modulating IL-4Rα ubiquitination and proteasome degradation in IL-4–stimulated macrophages. Furthermore, we found that BAP31 affects macrophages functions, including angiogenesis and skin fibrosis, during the wound healing process through IL-4Rα, as confirmed by infection with adeno-associated virus–short hairpin (sh)-IL-4Rα in Lyz2 Cre-BAP31flox/flox mice. Our findings indicate a novel mechanism of BAP31 in regulating macrophages and provide potential solutions for the prevention and treatment of chronic wounds.
Collapse
Affiliation(s)
- Qing Yuan
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Bo Zhao
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Yu-hua Cao
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Jia-cheng Yan
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Li-jun Sun
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Xia Liu
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Yang Xu
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Xiao-yu Wang
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Wang Z, Wang MM, Geng Y, Ye CY, Zang YS. Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer. J Transl Med 2022; 20:402. [PMID: 36064706 PMCID: PMC9446774 DOI: 10.1186/s12967-022-03608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer-related deaths worldwide. Aberrant cellular metabolism is a hallmark of cancer cells, and disturbed metabolism showed clinical significance in CRC. The membrane-associated RING-CH 8 (MARCH8) protein, the first MARCH E3 ligase, plays an oncogenic role and serves as a prognostic marker in multiple cancers, however, the role of MARCH8 in CRC is unclear. In the present study, we aimed to investigate the biomarkers and their underlying mechanism for CRC. METHOD In this study, we first examined the function of MARCH8 in CRC by analysing public database. Besides, we performing gene silencing studies and generating cellular overexpression and xenograft models. Then its protein substrate was identified and validated. In addition, the expression of MARCH8 was investigated in tissue samples from CRC patients, and the molecular basis for decreased expression was analysed. RESULTS Systematic analysis reveals that MARCH8 is a beneficial prognostic marker in CRC. In CRC, MARCH8 exhibited tumor-suppressive activity both in vivo and in vitro. Furthermore, we found that MARCH8 is negatively correlated with hexokinase 2 (HK2) protein in CRC patients. MARCH8 regulates glycolysis and promotes ubiquitination-mediated proteasome degradation to reduces HK2 protein levels. Then HK2 inhibitor partially rescues the effect of MARCH8 knockdown in CRC. Poised chromatin and elevated miR-32 repressed MARCH8 expression. CONCLUSION In summary, we propose that in CRC, poised chromatin and miR-32 decrease the expression of MARCH8, further bind and add ubiquitin, induce HK2 degradation, and finally repress glycolysis to promote tumor suppressors in CRC.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Miao-Miao Wang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yan Geng
- Department of Nursing, Zhabei Branch Hospital, Second Affiliated Hospital of Naval Medical University, No. 619, Zhonghuaxin Road, Shanghai, 200070, China
| | - Chen-Yang Ye
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
15
|
Liu H, Wilson KR, Firth AM, Macri C, Schriek P, Blum AB, Villar J, Wormald S, Shambrook M, Xu B, Lim HJ, McWilliam HEG, Hill AF, Edgington-Mitchell LE, Caminschi I, Lahoud MH, Segura E, Herold MJ, Villadangos JA, Mintern JD. Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86. Nat Commun 2022; 13:1934. [PMID: 35411049 PMCID: PMC9001657 DOI: 10.1038/s41467-022-29524-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells. UBL3 also regulates MHC II and CD86 in human dendritic cells (DCs) and macrophages. UBL3 impacts ubiquitination of MARCH1 substrates, a mechanism that requires UBL3 plasma membrane anchoring via prenylation. Loss of UBL3 alters adaptive immunity with impaired development of thymic regulatory T cells, loss of conventional type 1 DCs, increased number of trogocytic marginal zone B cells, and defective in vivo MHC II and MHC I antigen presentation. In summary, we identify UBL3 as a conserved, critical factor in MARCH1-mediated ubiquitination with important roles in immune responses.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Kayla R Wilson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Ashley M Firth
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Patrick Schriek
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005, Paris, France
| | - Samuel Wormald
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Hui Jing Lim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamish E G McWilliam
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005, Paris, France
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Silveira PA, Kupresanin F, Romano A, Hsu WH, Lo TH, Ju X, Chen HT, Roberts H, Baker DG, Clark GJ. Anti-Mouse CD83 Monoclonal Antibody Targeting Mature Dendritic Cells Provides Protection Against Collagen Induced Arthritis. Front Immunol 2022; 13:784528. [PMID: 35222372 PMCID: PMC8866188 DOI: 10.3389/fimmu.2022.784528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibodies targeting the activation marker CD83 can achieve immune suppression by targeting antigen-presenting mature dendritic cells (DC). This study investigated the immunosuppressive mechanisms of anti-CD83 antibody treatment in mice and tested its efficacy in a model of autoimmune rheumatoid arthritis. A rat anti-mouse CD83 IgG2a monoclonal antibody, DCR-5, was developed and functionally tested in mixed leukocyte reactions, demonstrating depletion of CD83+ conventional (c)DC, induction of regulatory DC (DCreg), and suppression of allogeneic T cell proliferation. DCR-5 injection into mice caused partial splenic cDC depletion for 2-4 days (mostly CD8+ and CD83+ cDC affected) with a concomitant increase in DCreg and regulatory T cells (Treg). Mice with collagen induced arthritis (CIA) treated with 2 or 6 mg/kg DCR-5 at baseline and every three days thereafter until euthanasia at day 36 exhibited significantly reduced arthritic paw scores and joint pathology compared to isotype control or untreated mice. While both doses reduced anti-collagen antibodies, only 6 mg/kg achieved significance. Treatment with 10 mg/kg DCR-5 was ineffective. Immunohistological staining of spleens at the end of CIA model with CD11c, CD83, and FoxP3 showed greater DC depletion and Treg induction in 6 mg/kg compared to 10 mg/kg DCR-5 treated mice. In conclusion, DCR-5 conferred protection from arthritis by targeting CD83, resulting in selective depletion of mature cDC and subsequent increases in DCreg and Treg. This highlights the potential for anti-CD83 antibodies as a targeted therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Adelina Romano
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Hsiao-Ting Chen
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Kira Biotech Pty Ltd., Brisbane, QLD, Australia
| |
Collapse
|
17
|
Enterina JR, Sarkar S, Streith L, Jung J, Arlian BM, Meyer SJ, Takematsu H, Xiao C, Baldwin TA, Nitschke L, Shlomchick MJ, Paulson JC, Macauley MS. Coordinated changes in glycosylation regulate the germinal center through CD22. Cell Rep 2022; 38:110512. [PMID: 35294874 PMCID: PMC9018098 DOI: 10.1016/j.celrep.2022.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Germinal centers (GCs) are essential for antibody affinity maturation. GC B cells have a unique repertoire of cell surface glycans compared with naive B cells, yet functional roles for changes in glycosylation in the GC have yet to be ascribed. Detection of GCs by the antibody GL7 reflects a downregulation in ligands for CD22, an inhibitory co-receptor of the B cell receptor. To test a functional role for downregulation of CD22 ligands in the GC, we generate a mouse model that maintains CD22 ligands on GC B cells. With this model, we demonstrate that glycan remodeling plays a critical role in the maintenance of B cells in the GC. Sustained expression of CD22 ligands induces higher levels of apoptosis in GC B cells, reduces memory B cell and plasma cell output, and delays affinity maturation of antibodies. These defects are CD22 dependent, demonstrating that downregulation of CD22 ligands on B cells plays a critical function in the GC.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Laura Streith
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Aichi 470-1192, Japan
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Mark J Shlomchick
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
18
|
Hernández-Pérez S, Mattila PK. A specific hybridisation internalisation probe (SHIP) enables precise live-cell and super-resolution imaging of internalized cargo. Sci Rep 2022; 12:620. [PMID: 35022457 PMCID: PMC8755761 DOI: 10.1038/s41598-021-04544-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 02/02/2023] Open
Abstract
Facilitated by the advancements in microscopy, our understanding of the complexity of intracellular vesicle traffic has dramatically increased in recent years. However, distinguishing between plasma membrane-bound or internalised ligands remains a major challenge for the studies of cargo sorting to endosomal compartments, especially in small and round cells such as lymphocytes. The specific hybridization internalisation probe (SHIP) assay, developed for flow cytometry studies, employs a ssDNA fluorescence internalisation probe and a complementary ssDNA quenching probe to unambiguously detect the internalized receptors/cargo. Here, we adopted the SHIP assay to study the trafficking of receptor/ligand complexes using B lymphocytes and B cell receptor-mediated antigen internalization as a model system. Our study demonstrates the potential of the SHIP assay for improving the imaging of internalized receptor/ligand complexes and establishes the compatibility of this assay with multiple imaging modalities, including live-cell imaging and super-resolution microscopy.
Collapse
Affiliation(s)
- Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland.
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Pieta K Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland.
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
19
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
20
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
21
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Wilson KR, Jenika D, Blum AB, Macri C, Xu B, Liu H, Schriek P, Schienstock D, Francis L, Makota FV, Ishido S, Mueller SN, Lahoud MH, Caminschi I, Edgington-Mitchell LE, Villadangos JA, Mintern JD. MHC Class II Ubiquitination Regulates Dendritic Cell Function and Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2255-2264. [PMID: 34599081 DOI: 10.4049/jimmunol.2001426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) Ag presentation by dendritic cells (DCs) is critical for CD4+ T cell immunity. Cell surface levels of MHC II loaded with peptide is controlled by ubiquitination. In this study, we have examined how MHC II ubiquitination impacts immunity using MHC IIKRKI/KI mice expressing mutant MHC II molecules that are unable to be ubiquitinated. Numbers of conventional DC (cDC) 1, cDC2 and plasmacytoid DCs were significantly reduced in MHC IIKRKI/KI spleen, with the remaining MHC IIKRKI/KI DCs expressing an altered surface phenotype. Whereas Ag uptake, endosomal pH, and cathepsin protease activity were unaltered, MHC IIKRKI/KI cDC1 produced increased inflammatory cytokines and possessed defects in Ag proteolysis. Immunization of MHC IIKRKI/KI mice identified impairments in MHC II and MHC class I presentation of soluble, cell-associated and/or DC-targeted OVA via mAb specific for DC surface receptor Clec9A (anti-Clec9A-OVA mAb). Reduced T cell responses and impaired CTL killing was observed in MHC IIKRKI/KI mice following immunization with cell-associated and anti-Clec9A-OVA. Immunization of MHC IIKRKI/KI mice failed to elicit follicular Th cell responses and generated barely detectable Ab to anti-Clec9A mAb-targeted Ag. In summary, MHC II ubiquitination in DCs impacts the homeostasis, phenotype, cytokine production, and Ag proteolysis by DCs with consequences for Ag presentation and T cell and Ab-mediated immunity.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Haiyin Liu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Lauren Francis
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - F Victor Makota
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY; and.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; .,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
23
|
Liu X, Xu F, Ren L, Zhao F, Huang Y, Wei L, Wang Y, Wang C, Fan Z, Mei S, Song J, Zhao Z, Cen S, Liang C, Wang J, Guo F. MARCH8 inhibits influenza A virus infection by targeting viral M2 protein for ubiquitination-dependent degradation in lysosomes. Nat Commun 2021; 12:4427. [PMID: 34285233 PMCID: PMC8292393 DOI: 10.1038/s41467-021-24724-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
The membrane-associated RING-CH (MARCH) proteins are E3 ligases that regulate the stability of various cellular membrane proteins. MARCH8 has been reported to inhibit the infection of HIV-1 and a few other viruses, thus plays an important role in host antiviral defense. However, the antiviral spectrum and the underlying mechanisms of MARCH8 are incompletely defined. Here, we demonstrate that MARCH8 profoundly inhibits influenza A virus (IAV) replication both in vitro and in mice. Mechanistically, MARCH8 suppresses IAV release through redirecting viral M2 protein from the plasma membrane to lysosomes for degradation. Specifically, MARCH8 catalyzes the K63-linked polyubiquitination of M2 at lysine residue 78 (K78). A recombinant A/Puerto Rico/8/34 virus carrying the K78R M2 protein shows greater replication and more severe pathogenicity in cells and mice. More importantly, we found that the M2 protein of the H1N1 IAV has evolved to acquire non-lysine amino acids at positions 78/79 to resist MARCH8-mediated ubiquitination and degradation. Together, our data support the important role of MARCH8 in host anti-IAV intrinsic immune defense by targeting M2, and suggest the inhibitory pressure of MARCH8 on H1N1 IAV transmission in the human population.
Collapse
Affiliation(s)
- Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingdong Song
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens and Center for AIDS Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Trenker R, Wu X, Nguyen JV, Wilcox S, Rubin AF, Call ME, Call MJ. Human and viral membrane-associated E3 ubiquitin ligases MARCH1 and MIR2 recognize different features of CD86 to downregulate surface expression. J Biol Chem 2021; 297:100900. [PMID: 34157285 PMCID: PMC8319528 DOI: 10.1016/j.jbc.2021.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Immune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood. Here, we examined the requirements for recognition of the costimulatory ligand CD86 by two different MARCH-family proteins, human MARCH1 and Kaposi's sarcoma herpesvirus modulator of immune recognition 2 (MIR2), using deep mutational scanning. We identified a highly specific recognition surface in the hydrophobic core of the CD86 transmembrane (TM) domain (TMD) that is required for recognition by MARCH1 and prominently features a proline at position 254. In contrast, MIR2 requires no specific sequences in the CD86 TMD but relies primarily on an aspartic acid at position 244 in the CD86 extracellular juxtamembrane region. Surprisingly, MIR2 recognized CD86 with a TMD composed entirely of valine, whereas many different single amino acid substitutions in the context of the native TM sequence conferred MIR2 resistance. These results show that the human and viral proteins evolved completely different recognition modes for the same substrate. That some TM sequences are incompatible with MIR2 activity, even when no specific recognition motif is required, suggests a more complicated mechanism of immune modulation via CD86 than was previously appreciated.
Collapse
Affiliation(s)
- Raphael Trenker
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Xinyu Wu
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie V Nguyen
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen Wilcox
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Genomics Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alan F Rubin
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Melissa J Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
25
|
Tada T, Zhang Y, Fujita H, Tokunaga K. MARCH8: the tie that binds to viruses. FEBS J 2021; 289:3642-3654. [PMID: 33993615 DOI: 10.1111/febs.16017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Membrane-associated RING-CH (MARCH) family member proteins are RING-finger E3 ubiquitin ligases that are known to downregulate cellular transmembrane proteins. MARCH8 is a novel antiviral factor that inhibits HIV-1 envelope glycoprotein and vesicular stomatitis virus G by downregulating these envelope glycoproteins from the cell surface, resulting in their reduced incorporation into virions. More recently, we have found that MARCH8 reduces viral infectivity via two different mechanisms. Additionally, several groups have reported further antiviral or virus-supportive functions of the MARCH8 protein and its other cellular mechanisms. In this review, we summarize the current knowledge about the molecular mechanisms by which MARCH8 can regulate cellular homeostasis and inhibit and occasionally support enveloped virus infection.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Microbiology, NYU School of Medicine, NY, USA
| | - Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
26
|
Xu F, Liu X, Zhang D, Zhao F, Fan Z, Hu S, Mei S, Huang Y, Sun H, Wei L, Guo L, Wang J, Cen S, Liang C, Guo F. The Engineered MARCH8-Resistant Vesicular Stomatitis Virus Glycoprotein Enhances Lentiviral Vector Transduction. Hum Gene Ther 2021; 32:936-948. [PMID: 33678011 DOI: 10.1089/hum.2020.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentiviral vectors are one of the most commonly used viral delivery systems for gene therapy. Vesicular stomatitis virus-G envelope glycoprotein (VSV G)-pseudotyped lentiviral vectors have been widely used in clinical studies for treatment of virus infections and genetic deficient diseases. However, the efficiency of lentiviral vector transduction has been long recognized as a limiting factor in clinical gene therapy application, especially in transducing hematopoietic stem cells. MARCH8 (membrane-associated RING-CH 8), an E3 ubiquitin ligase, has been reported to target and downregulate VSV G. Results in this study show that MARCH8 induces ubiquitination and lysosome degradation of VSV G, and knockout of MARCH8 in virus-producing cells increases lentiviral vector transduction by elevating the level of VSV G protein. We then engineered VSV G mutant that has the lysine residues in the cytoplasmic domain substituted for arginine, and showed that this G mutant resists degradation by MARCH8, and allows the enhancement of transduction efficiency of lentiviral vector particles than the parental VSV G protein. This engineered VSV G mutant thus further advances the lentiviral vector system as a powerful tool in gene therapy.
Collapse
Affiliation(s)
- Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
27
|
Umthong S, Lynch B, Timilsina U, Waxman B, Ivey EB, Stavrou S. Elucidating the Antiviral Mechanism of Different MARCH Factors. mBio 2021; 12:e03264-20. [PMID: 33653895 PMCID: PMC8092282 DOI: 10.1128/mbio.03264-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The membrane-associated RING-CH (MARCH) proteins belong to a family of E3 ubiquitin ligases, whose main function is to remove transmembrane proteins from the plasma membrane. Recent work has shown that the human MARCH1, 2, and 8 are antiretroviral factors that target the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins by reducing their incorporation in the budding virions. Nevertheless, the dearth of information regarding the antiviral mechanism of this family of proteins necessitates further examination. In this study, using both the human MARCH proteins and their mouse homologues, we provide a comprehensive analysis of the antiretroviral mechanism of this family of proteins. Moreover, we show that human MARCH proteins restrict to various degrees the envelope glycoproteins of a diverse number of viruses. This report sheds light on the important antiviral function of MARCH proteins and their significance in cell intrinsic immunity.IMPORTANCE This study examines the mechanism utilized by different MARCH proteins to restrict retrovirus infection. MARCH proteins block the incorporation of envelope glycoproteins to the budding virions. In this report, by comparing the human and mouse MARCH genes and using murine leukemia virus (MLV) and HIV-1, we identify differences in the mechanism of restriction among MARCH proteins. Furthermore, we perform a comprehensive analysis on a number of envelope glycoproteins and show that MARCH proteins have broad antiviral functions.
Collapse
Affiliation(s)
- Supawadee Umthong
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brian Lynch
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Emily B Ivey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
28
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
29
|
Singh S, Bano A, Saraya A, Das P, Sharma R. iTRAQ-based analysis for the identification of MARCH8 targets in human esophageal squamous cell carcinoma. J Proteomics 2021; 236:104125. [PMID: 33540066 DOI: 10.1016/j.jprot.2021.104125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
MARCH8 is an E3 ligase, primarily involved in immune-modulation. Recently, we reported its aberrant expression in human esophageal squamous cell carcinoma. However, exact mechanisms by which it regulates cancer have been poorly understood. We applied high-throughput quantitative proteomics approach to identify downstream protein targets of MARCH8. Silencing of endogenous MARCH8 in ESCC cells followed by LC-MS/MS analysis led to identification of 1,029 unique proteins showing altered expression post MARCH8 knockdown. Several previously reported MARCH8 target proteins viz. TFR1, syntaxin-4, e-cadherin and CD44 were found to be upregulated. Furthermore, new putative targets of MARCH8, including β2M, were identified in the present study. We demonstrated that MARCH8 interacts with and ubiquitinates CDH1 and β2M. Inhibiting proteasome activity with MG132 prevented CDH1 and β2M degradation, indicating that MARCH8 might be targeting CDH1 and β2M for proteasomal degradation. Further, loss of β2M and CDH1 expression significantly and inversely correlated with MARCH8 expression in ESCC tissues (r = -0.737 and - 0.651, respectively; p < 0.01). In conclusion, our present study has led to identification of new targets of MARCH8 and suggests the role of MARCH8 in regulating CDH1 and β2M turnover in esophageal cancer cells. SIGNIFICANCE: The use of quantitative proteomics carried out has led to the recognition of new targets of MARCH8. The present study gives a broad understanding of the molecular remodeling arising in the ESCC after MARCH8 knockdown. The study also solidifies the idea that role of MARCH8 is not just limited to immunomodulation as silencing of MARCH8 affects various other processes such as protein processing and localization. This study might help in understanding the regulation of MARCH8 in ESCCs and the mechanism by which MARCH8 might be facilitating cancer cells to evade immune surveillance.
Collapse
Affiliation(s)
- Shivam Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, New Delhi 110078, India
| | - Arjumand Bano
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, New Delhi 110078, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, New Delhi 110078, India.
| |
Collapse
|
30
|
Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M, Song Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther 2021; 6:28. [PMID: 33479196 PMCID: PMC7819986 DOI: 10.1038/s41392-020-00418-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system initiates robust immune responses to defend against invading pathogens or tumor cells and protect the body from damage, thus acting as a fortress of the body. However, excessive responses cause detrimental effects, such as inflammation and autoimmune diseases. To balance the immune responses and maintain immune homeostasis, there are immune checkpoints to terminate overwhelmed immune responses. Pathogens and tumor cells can also exploit immune checkpoint pathways to suppress immune responses, thus escaping immune surveillance. As a consequence, therapeutic antibodies that target immune checkpoints have made great breakthroughs, in particular for cancer treatment. While the overall efficacy of immune checkpoint blockade (ICB) is unsatisfactory since only a small group of patients benefited from ICB treatment. Hence, there is a strong need to search for other targets that improve the efficacy of ICB. Ubiquitination is a highly conserved process which participates in numerous biological activities, including innate and adaptive immunity. A growing body of evidence emphasizes the importance of ubiquitination and its reverse process, deubiquitination, on the regulation of immune responses, providing the rational of simultaneous targeting of immune checkpoints and ubiquitination/deubiquitination pathways to enhance the therapeutic efficacy. Our review will summarize the latest findings of ubiquitination/deubiquitination pathways for anti-tumor immunity, and discuss therapeutic significance of targeting ubiquitination/deubiquitination pathways in the future of immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ming Zheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Bingxiao Yuan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| |
Collapse
|
31
|
Physiological substrates and ontogeny-specific expression of the ubiquitin ligases MARCH1 and MARCH8. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:218-228. [PMID: 35492398 PMCID: PMC9040089 DOI: 10.1016/j.crimmu.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
MARCH1 and MARCH8 are ubiquitin ligases that control the expression and trafficking of critical immunoreceptors. Understanding of their function is hampered by three major knowledge gaps: (i) it is unclear which cell types utilize these ligases; (ii) their level of redundancy is unknown; and (iii) most of their putative substrates have been described in cell lines, often overexpressing MARCH1 or MARCH8, and it is unclear which substrates are regulated by either ligase in vivo. Here we address these questions by systematically analyzing the immune cell repertoire of MARCH1- or MARCH8-deficient mice, and applying unbiased proteomic profiling of the plasma membrane of primary cells to identify MARCH1 and MARCH8 substrates. Only CD86 and MHC II were unequivocally identified as immunoreceptors regulated by MARCH1 and MARCH8, but each ligase carried out its function in different tissues. MARCH1 regulated MHC II and CD86 in professional and “atypical” antigen presenting cells of hematopoietic origin, including neutrophils, eosinophils and monocytes. MARCH8 only operated in non-hematopoietic cells, such as thymic and alveolar epithelial cells. Our results establish the tissue-specific functions of MARCH1 and MARCH8 in regulation of immune receptor expression and reveal that the range of cells constitutively endowed with antigen-presentation capacity is wider than generally appreciated.
Collapse
|
32
|
Liu H, Wilson KR, Schriek P, Macri C, Blum AB, Francis L, Heinlein M, Nataraja C, Harris J, Jones SA, Gray DHD, Villadangos JA, Mintern JD. Ubiquitination of MHC Class II Is Required for Development of Regulatory but Not Conventional CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1207-1216. [PMID: 32747505 DOI: 10.4049/jimmunol.1901328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) displays peptides at the cell surface, a process critical for CD4+ T cell development and priming. Ubiquitination is a mechanism that dictates surface MHC II with the attachment of a polyubiquitin chain to peptide-loaded MHC II, promoting its traffic away from the plasma membrane. In this study, we have examined how MHC II ubiquitination impacts the composition and function of both conventional CD4+ T cell and regulatory T cell (Treg) compartments. Responses were examined in two models of altered MHC II ubiquitination: MHCIIKRKI /KI mice that express a mutant MHC II unable to be ubiquitinated or mice that lack membrane-associated RING-CH 8 (MARCH8), the E3 ubiquitin ligase responsible for MHC II ubiquitination specifically in thymic epithelial cells. Conventional CD4+ T cell populations in thymus, blood, and spleen of MHCIIKRKI/KI and March8 -/- mice were largely unaltered. In MLRs, March8 -/-, but not MHCIIKRKI/KI, CD4+ T cells had reduced reactivity to both self- and allogeneic MHC II. Thymic Treg were significantly reduced in MHCIIKRKI/KI mice, but not March8 -/- mice, whereas splenic Treg were unaffected. Neither scenario provoked autoimmunity, with no evidence of immunohistopathology and normal levels of autoantibody. In summary, MHC II ubiquitination in specific APC types does not have a major impact on the conventional CD4+ T cell compartment but is important for Treg development.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Kayla R Wilson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Patrick Schriek
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Lauren Francis
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Melanie Heinlein
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3013, Australia
| | - Champa Nataraja
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Sarah A Jones
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3013, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia;
| |
Collapse
|
33
|
Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2020; 31:119-125. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
An immunocompetent and self-tolerant pool of naive T cells is formed in the thymus through the process of repertoire selection. T cells that are potentially capable of responding to foreign antigens are positively selected in the thymic cortex and are further selected in the thymic medulla to help prevent self-reactivity. The affinity between T-cell antigen receptors expressed by newly generated T cells and self-peptide-major histocompatibility complexes displayed in the thymic microenvironments plays a key role in determining the fate of developing T cells during thymic selection. Recent advances in our knowledge of the biology of thymic epithelial cells have revealed unique machinery that contributes to positive and negative selection in the thymus. In this article, we summarize recent findings on thymic T-cell selection, focusing on the machinery unique to thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
34
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
35
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
36
|
Wild AB, Krzyzak L, Peckert K, Stich L, Kuhnt C, Butterhof A, Seitz C, Mattner J, Grüner N, Gänsbauer M, Purtak M, Soulat D, Winkler TH, Nitschke L, Zinser E, Steinkasserer A. CD83 orchestrates immunity toward self and non-self in dendritic cells. JCI Insight 2019; 4:126246. [PMID: 31527313 PMCID: PMC6824307 DOI: 10.1172/jci.insight.126246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/04/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are crucial to balance protective immunity and autoimmune inflammatory processes. Expression of CD83 is a well-established marker for mature DCs, although its physiological role is still not completely understood. Using a DC-specific CD83-conditional KO (CD83ΔDC) mouse, we provide new insights into the function of CD83 within this cell type. Interestingly, CD83-deficient DCs produced drastically increased IL-2 levels and displayed higher expression of the costimulatory molecules CD25 and OX40L, which causes superior induction of antigen-specific T cell responses and compromises Treg suppressive functions. This also directly translates into accelerated immune responses in vivo. Upon Salmonella typhimurium and Listeria monocytogenes infection, CD83ΔDC mice cleared both pathogens more efficiently, and CD83-deficient DCs expressed increased IL-12 levels after bacterial encounter. Using the experimental autoimmune encephalomyelitis model, autoimmune inflammation was dramatically aggravated in CD83ΔDC mice while resolution of inflammation was strongly reduced. This phenotype was associated with increased cell influx into the CNS accompanied by elevated Th17 cell numbers. Concomitantly, CD83ΔDC mice had reduced Treg numbers in peripheral lymphoid organs. In summary, we show that CD83 ablation on DCs results in enhanced immune responses by dysregulating tolerance mechanisms and thereby impairing resolution of inflammation, which also demonstrates high clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jochen Mattner
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niklas Grüner
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Gänsbauer
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Purtak
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Didier Soulat
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
37
|
Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, Clark GJ. CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol 2019; 10:1312. [PMID: 31231400 PMCID: PMC6568190 DOI: 10.3389/fimmu.2019.01312] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
CD83 is a member of the immunoglobulin (Ig) superfamily and is expressed in membrane bound or soluble forms. Membrane CD83 (mCD83) can be detected on a variety of activated immune cells, although it is most highly and stably expressed by mature dendritic cells (DC). mCD83 regulates maturation, activation and homeostasis. Soluble CD83 (sCD83), which is elevated in the serum of patients with autoimmune disease and some hematological malignancies is reported to have an immune suppressive function. While CD83 is emerging as a promising immune modulator with therapeutic potential, some important aspects such as its ligand/s, intracellular signaling pathways and modulators of its expression are unclear. In this review we discuss the recent biological findings and the potential clinical value of CD83 based therapeutics in various conditions including autoimmune disease, graft-vs.-host disease, transplantation and hematological malignancies.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek N. J. Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Liu H, Mintern JD, Villadangos JA. MARCH ligases in immunity. Curr Opin Immunol 2019; 58:38-43. [PMID: 31063934 DOI: 10.1016/j.coi.2019.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023]
Abstract
Membrane associated RING-CH (MARCH) ubiquitin ligases control the stability, trafficking and function of important immunoreceptors, including MHC molecules and costimulatory molecule CD86. Regulation of the critical antigen presenting molecule MHC II by MARCH1 and the control of MARCH1 expression by inflammatory stimuli is a key step in the function of antigen presenting cells. MHC II ubiquitination by MARCH8 and CD83 plays a critical role in T cell thymic selection. Recent studies reveal new immune functions of MARCH ligases in innate immunity, regulation of FcγR expression and Treg development. In addition, we review the importance of MARCH in immunomodulation at the host-pathogen interface. Both bacterial and viral pathogens manipulate MARCH function, while MARCH ligases act as an important host anti-viral defence mechanism. Here, we review the role of membrane-bound MARCH ligases in immune function and provide an update on new substrates and concepts. Understanding the increasingly complex roles of MARCH E3 ligases will be vital to develop therapeutic strategies for their regulation.
Collapse
Affiliation(s)
- Haiyin Liu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jose A Villadangos
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia; The Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.
| |
Collapse
|
39
|
Tan C, Byrne EFX, Ah-Cann C, Call MJ, Call ME. A serine in the first transmembrane domain of the human E3 ubiquitin ligase MARCH9 is critical for down-regulation of its protein substrates. J Biol Chem 2018; 294:2470-2485. [PMID: 30554144 DOI: 10.1074/jbc.ra118.004836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/05/2018] [Indexed: 01/29/2023] Open
Abstract
The membrane-associated RING-CH (MARCH) family of membrane-bound E3 ubiquitin ligases regulates the levels of cell-surface membrane proteins, many of which are involved in immune responses. Although their role in ubiquitin-dependent endocytosis and degradation of cell-surface proteins is extensively documented, the features of MARCH proteins and their substrates that drive the molecular recognition events leading to ubiquitin transfer remain poorly defined. In this study, we sought to determine the features of human MARCH9 that are required for regulating the surface levels of its substrate proteins. Consistent with previous studies of other MARCH proteins, we found that susceptibility to MARCH9 activity is encoded in the transmembrane (TM) domains of its substrates. Accordingly, substitutions at specific residues and motifs within MARCH9's TM domains resulted in varying degrees of functional impairment. Most notably, a single serine-to-alanine substitution in the first of its two TM domains rendered MARCH9 completely unable to alter the surface levels of two different substrates: the major histocompatibility class I molecule HLA-A2 and the T-cell co-receptor CD4. Solution NMR analysis of a MARCH9 fragment encompassing the two TM domains and extracellular connecting loop revealed that the residues contributing most to MARCH9 activity are located in the α-helical portions of TM1 and TM2 that are closest to the extracellular face of the lipid bilayer. This observation defines a key region required for substrate regulation. In summary, our biochemical and structural findings demonstrate that specific sequences in the α-helical MARCH9 TM domains make crucial contributions to its ability to down-regulate its protein substrates.
Collapse
Affiliation(s)
- Cyrus Tan
- From the Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia.,the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia
| | - Eamon F X Byrne
- the Department of Bioengineering, Stanford University, Stanford, California 94305, and
| | - Casey Ah-Cann
- the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia.,the ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia
| | - Melissa J Call
- From the Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia, .,the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia
| | - Matthew E Call
- From the Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia, .,the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia
| |
Collapse
|
40
|
MHC class II fine tuning by ubiquitination: lesson from MARCHs. Immunogenetics 2018; 71:197-201. [DOI: 10.1007/s00251-018-1094-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
|
41
|
Wilson KR, Liu H, Healey G, Vuong V, Ishido S, Herold MJ, Villadangos JA, Mintern JD. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS One 2018; 13:e0200540. [PMID: 30001419 PMCID: PMC6042767 DOI: 10.1371/journal.pone.0200540] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Major histocompatibility complex class II (MHC II) expression and turn-over are regulated via its ubiquitination by the membrane associated RING-CH 1 (MARCH1) E3 ligase. Unexpectedly, we show that MHC II ubiquitination also impacts MHC I. Lack of MARCH1 in B cells and dendritic cells (DCs) resulted in a significant reduction in surface MHC I expression. This decrease was not directly caused by changes in MARCH1 ubiquitination of MHC I but indirectly by altered MHC II trafficking in the absence of its ubiquitination. Deletion of MHC II in March1-/- cells restored normal MHC I surface expression and replacement of wild type MHC II by a variant that could not be ubiquitinated caused a reduction in MHC I expression. Furthermore, these cells displayed inefficient presentation of peptide and protein antigen via MHC I to CD8+ T cells. In summary, we describe an unexpected intersection between MHC I and MHC II such that the surface expression of both molecules are indirectly and directly regulated by MARCH1 ubiquitination, respectively.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Geraldine Healey
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Vivian Vuong
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Japan
| | - Marco J Herold
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Kaul S, Mittal SK, Roche PA. A major isoform of the E3 ubiquitin ligase March-I in antigen-presenting cells has regulatory sequences within its gene. J Biol Chem 2018; 293:4478-4485. [PMID: 29378848 DOI: 10.1074/jbc.ra118.001775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Regulation of major histocompatibility complex class II (MHC-II) expression is important not only to maintain a diverse pool of MHC-II-peptide complexes but also to prevent development of autoimmunity. The membrane-associated RING-CH (March) E3 ubiquitin ligase March-I regulates ubiquitination and turnover of MHC-II-peptide complexes in resting dendritic cells (DCs) and B cells. However, activation of either cell type terminates March-I expression, thereby stabilizing MHC-II-peptide complexes. Despite March-I's important role in the biology of antigen-presenting cells (APCs), how expression of March-I mRNA is regulated remains unknown. We now show that both DCs and B cells possess a distinct isoform of March-I whose expression is regulated by a promoter located within the March-I gene. Using March-I promoter fragments to drive expression of GFP, we also identified a core promoter for expression of March-I in DCs and B cells, but not in fibroblasts, kidney cells, or epithelial cells, that contains regulatory regions that down-regulate March-I expression upon activation of DCs. Curiously, we found downstream sequence elements, present in the first coding exon of March-I in APCs, that confer regulation of March-I expression in activated APCs. In summary, our study identifies regulatory regions of the March-I gene that confer APC-specific expression and activation-induced modulation of March-I expression in DCs and B cells.
Collapse
Affiliation(s)
- Sunil Kaul
- From the Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Sharad K Mittal
- From the Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul A Roche
- From the Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
43
|
Passos GA, Speck‐Hernandez CA, Assis AF, Mendes‐da‐Cruz DA. Update on Aire and thymic negative selection. Immunology 2018; 153:10-20. [PMID: 28871661 PMCID: PMC5721245 DOI: 10.1111/imm.12831] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Twenty years ago, the autoimmune regulator (Aire) gene was associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, and was cloned and sequenced. Its importance goes beyond its abstract link with human autoimmune disease. Aire identification opened new perspectives to better understand the molecular basis of central tolerance and self-non-self distinction, the main properties of the immune system. Since 1997, a growing number of immunologists and molecular geneticists have made important discoveries about the function of Aire, which is essentially a pleiotropic gene. Aire is one of the functional markers in medullary thymic epithelial cells (mTECs), controlling their differentiation and expression of peripheral tissue antigens (PTAs), mTEC-thymocyte adhesion and the expression of microRNAs, among other functions. With Aire, the immunological tolerance became even more apparent from the molecular genetics point of view. Currently, mTECs represent the most unusual cells because they express almost the entire functional genome but still maintain their identity. Due to the enormous diversity of PTAs, this uncommon gene expression pattern was termed promiscuous gene expression, the interpretation of which is essentially immunological - i.e. it is related to self-representation in the thymus. Therefore, this knowledge is strongly linked to the negative selection of autoreactive thymocytes. In this update, we focus on the most relevant results of Aire as a transcriptional and post-transcriptional controller of PTAs in mTECs, its mechanism of action, and its influence on the negative selection of autoreactive thymocytes as the bases of the induction of central tolerance and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Geraldo A. Passos
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
- Discipline of Genetics and Molecular BiologyDepartment of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Cesar A. Speck‐Hernandez
- Graduate Programme in Basic and Applied ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Amanda F. Assis
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Daniella A. Mendes‐da‐Cruz
- Laboratory on Thymus ResearchOswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
- National Institute of Science and Technology on NeuroimmunomodulationRio de JaneiroRJBrazil
| |
Collapse
|
44
|
Chen X, Zhang Q, Bai J, Zhao Y, Wang X, Wang H, Jiang P. The Nucleocapsid Protein and Nonstructural Protein 10 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Enhance CD83 Production via NF-κB and Sp1 Signaling Pathways. J Virol 2017; 91:e00986-17. [PMID: 28659471 PMCID: PMC5571251 DOI: 10.1128/jvi.00986-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Porcine reproductive and respiratory syndrome, caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a panzootic disease that is one of the most economically costly diseases to the swine industry. A key aspect of PRRSV virulence is that the virus suppresses the innate immune response and induces persistent infection, although the underlying mechanisms are not well understood. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and is associated with DC activation and immunosuppression of T cell proliferation when expressed as soluble CD83 (sCD83). In this study, we show that PRRSV infection strongly stimulates CD83 expression in porcine monocyte-derived DCs (MoDCs) and that the nucleocapsid (N) protein and nonstructural protein 10 (nsp10) of PRRSV enhance CD83 promoter activity via the NF-κB and Sp1 signaling pathways. R43A and K44A amino acid substitution mutants of the N protein suppress the N protein-mediated increase of CD83 promoter activity. Similarly, P192-5A and G214-3A mutants of nsp10 (with 5 and 3 alanine substitutions beginning at residues P192 and G214, respectively) abolish the nsp10-mediated induction of the CD83 promoter. Using reverse genetics, four mutant viruses (rR43A, rK44A, rP192-5A, and rG214-3A) and four revertants [rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R)] were generated. Decreased induction of CD83 in MoDCs was observed after infection by mutants rR43A, rK44A, rP192-5A, and rG214-3A, in contrast to the results obtained using rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R). These findings suggest that PRRSV N and nsp10 play important roles in modulating CD83 signaling and shed light on the mechanism by which PRRSV modulates host immunity.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically costly pathogens affecting the swine industry. It is unclear how PRRSV inhibits the host's immune response and induces persistent infection. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and has previously been associated with DC activation and immunosuppression of T cell proliferation and differentiation when expressed as soluble CD83 (sCD83). In this study, we found that PRRSV infection induces sCD83 expression in porcine MoDCs via the NF-κB and Sp1 signaling pathways. The viral nucleocapsid protein, nonstructural protein 1 (nsp1), and nsp10 were shown to enhance CD83 promoter activity. Amino acids R43 and K44 of the N protein, as well as residues 192 to 196 (P192-5) and 214 to 216 (G214-3) of nsp10, play important roles in CD83 promoter activation. These findings provide new insights into the molecular mechanism of immune suppression by PRRSV.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongxiang Zhao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
45
|
Takada K, Kondo K, Takahama Y. Generation of Peptides That Promote Positive Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:2215-2222. [PMID: 28264997 DOI: 10.4049/jimmunol.1601862] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
To establish an immunocompetent TCR repertoire that is useful yet harmless to the body, a de novo thymocyte repertoire generated through the rearrangement of genes that encode TCR is shaped in the thymus through positive and negative selection. The affinity between TCRs and self-peptides associated with MHC molecules determines the fate of developing thymocytes. Low-affinity TCR engagement with self-peptide-MHC complexes mediates positive selection, a process that primarily occurs in the thymic cortex. Massive efforts exerted by many laboratories have led to the characterization of peptides that can induce positive selection. Moreover, it is now evident that protein degradation machineries unique to cortical thymic epithelial cells play a crucial role in the production of MHC-associated self-peptides for inducing positive selection. This review summarizes current knowledge on positive selection-inducing self-peptides and Ag processing machineries in cortical thymic epithelial cells. Recent studies on the role of positive selection in the functional tuning of T cells are also discussed.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
46
|
The MARCH family joins the antigen cross-presentation party. Immunol Cell Biol 2017; 95:737-738. [PMID: 28829049 DOI: 10.1038/icb.2017.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Breed ER, Lee ST, Hogquist KA. Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Semin Cell Dev Biol 2017; 84:2-10. [PMID: 28800929 DOI: 10.1016/j.semcdb.2017.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/30/2017] [Indexed: 01/02/2023]
Abstract
The development of a self-tolerant and effective T cell receptor repertoire is dependent on interactions coordinated by various antigen presenting cells (APC) within the thymus. T cell receptor-self-peptide-MHC interactions are essential for determining T cell fate, however different cytokine and co-stimulatory signals provided by the diverse APCs within the thymus are also critical. Here, we outline the different localization and functional capabilities of thymic APCs. We also discuss how these distinct APCs work collectively to facilitate the establishment of a diverse T cell receptor repertoire that is tolerant to an array of different self-antigens.
Collapse
Affiliation(s)
- Elise R Breed
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - S Thera Lee
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
48
|
White AJ, Baik S, Parnell SM, Holland AM, Brombacher F, Jenkinson WE, Anderson G. A type 2 cytokine axis for thymus emigration. J Exp Med 2017; 214:2205-2216. [PMID: 28694386 PMCID: PMC5551576 DOI: 10.1084/jem.20170271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
In the thymus, stromal microenvironments support a developmental program that generates mature T cells ready for thymic exit. The cellular and molecular specialization within thymic stromal cells that enables their regulation of specific stages of thymocyte development is poorly understood. Here, we show the thymic microenvironment expresses the type 2 IL-4R complex and is functionally responsive to its known ligands, IL-4 and IL-13. Absence of IL-4Rα limits thymocyte emigration, leading to an intrathymic accumulation of mature thymocytes within medullary perivascular spaces and reduced numbers of recent thymic emigrants. Thymus transplantation shows this requirement maps to IL-4Rα expression by stromal cells, and we provide evidence that it regulates thymic exit via a process distinct from S1P-mediated migration. Finally, we reveal a cellular mechanism by which IL-4+IL-13+ invariant NKT cells are necessary for IL-4Rα signaling that regulates thymic exit. Collectively, we define a new axis for thymic emigration involving stimulation of the thymic microenvironment via type 2 cytokines from innate T cells.
Collapse
Affiliation(s)
- Andrea J White
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Song Baik
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Amanda M Holland
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Institute of Infectious Diseases and Molecular Medicine and South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
49
|
Alissafi T, Banos A, Boon L, Sparwasser T, Ghigo A, Wing K, Vassilopoulos D, Boumpas D, Chavakis T, Cadwell K, Verginis P. Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest 2017; 127:2789-2804. [PMID: 28581446 DOI: 10.1172/jci92079] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Design of efficacious Treg-based therapies and establishment of clinical tolerance in autoimmune diseases have proven to be challenging. The clinical implementation of Treg immunotherapy has been hampered by various impediments related to the stability and isolation procedures of Tregs as well as the specific in vivo targets of Treg modalities. Herein, we have demonstrated that Foxp3+ Tregs potently suppress autoimmune responses in vivo through inhibition of the autophagic machinery in DCs in a cytotoxic T-lymphocyte-associated protein 4-dependent (CTLA4-dependent) manner. Autophagy-deficient DCs exhibited reduced immunogenic potential and failed to prime autoantigen-specific CD4+ T cells to mediate autoimmunity. Mechanistically, CTLA4 binding promoted activation of the PI3K/Akt/mTOR axis and FoxO1 nuclear exclusion in DCs, leading to decreased transcription of the autophagy component microtubule-associated protein 1 light chain 3β (Lc3b). Human DCs treated with CTLA4-Ig, a fusion protein composed of the Fc region of IgG1 and the extracellular domain of CTLA4 (also known as abatacept, marketed as Orencia), demonstrated reduced levels of autophagosome formation, while DCs from CTLA4-Ig-treated rheumatoid arthritis patients displayed diminished LC3B transcripts. Collectively, our data identify the canonical autophagy pathway in DCs as a molecular target of Foxp3+ Treg-mediated suppression that leads to amelioration of autoimmune responses. These findings may pave the way for the development of therapeutic protocols that exploit Tregs for the treatment of autoimmunity as well as diseases in which disturbed tolerance is a common denominator.
Collapse
Affiliation(s)
- Themis Alissafi
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aggelos Banos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Kajsa Wing
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Vassilopoulos
- Joint Rheumatology Program, Clinical Immunology-Rheumatology Unit, National and Kapodistrian University of Athens Medical School, Hippokration General Hospital, Athens, Greece
| | - Dimitrios Boumpas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Joint Rheumatology Program, 4th Department of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine and Department of Internal Medicine, University of Dresden, Dresden, Germany
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York, New York, USA.,Departments of Microbiology and Medicine, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
50
|
Kondo K, Takada K, Takahama Y. Antigen processing and presentation in the thymus: implications for T cell repertoire selection. Curr Opin Immunol 2017; 46:53-57. [PMID: 28477557 DOI: 10.1016/j.coi.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023]
Abstract
The processing and presentation of major histocompatibility complex (MHC)-associated antigens depend on the intracellular digestion of self- and nonself-proteins, the loading of digested peptides onto MHC molecules, and the traffic of peptide-MHC complexes to plasma membrane surface for display to interacting T cells. Recent studies have revealed unique machineries for antigen processing and presentation in thymic antigen-presenting cells that display self-antigens to developing thymocytes for the formation of functionally competent yet self-tolerant T cell repertoire. Here, we briefly summarize those machineries, focusing on the biology of cortical and medullary thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan; Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18W9 Kita-ku, Sapporo 060-0818, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|