1
|
Salahlou R, Farajnia S, Alizadeh E, Dastmalchi S, Bargahi N, Rahbarnia L, Steyar SH. Design and in silico analysis of a novel peptide-based multiepitope vaccine against glioblastoma multiforme by targeting tumor-associated macrophage. Heliyon 2024; 10:e40774. [PMID: 39759328 PMCID: PMC11696665 DOI: 10.1016/j.heliyon.2024.e40774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204. Epitopes of the target protein were identified using NetMHCpan 4.1a, NetMHCIIpan-4.0, and ABCpred tools. Subsequently, the predicted epitopes were evaluated using bioinformatics tools to assess their antigenicity, non-allergenicity, immunogenicity, non-toxicity, and potential to stimulate the production of IL-4 and IFN-γ in HTL epitopes. Selected T-cell epitopes demonstrated a robust binding affinity with the particular HLA alleles. Finally, four HTL epitopes, three CTL epitopes, and two B-cell epitopes, jointed via linkers and adjuvant, were used for the final vaccine construct design. Analysis disclosed that the developed vaccine demonstrated robust antigenic properties while proving soluble, stable, non-toxic, and non-allergenic. Additionally, molecular docking studies and molecular dynamics simulations confirmed a robust correlation between the designed vaccine and TLR-2 and TLR-4 immune receptors. The molecular docking results demonstrated a strong interaction between the newly developed vaccine and TLR2 (-895.1 kcal/mol) and TLR4 (-881.0 kcal/mol) receptors. During the simulation, the vaccine-TLR2 and vaccine-TLR4 complexes exhibited binding energies of -113.41 and -106.61 kcal/mol, respectively. Analysis by different bioinformatic tools indicated the potential of the designed vaccine in immune stimulation and a significant elevation in IgG and IgM antibodies, T-helper cells, T-cytotoxic cells, INF-γ, IL-2, and IL-4. Research findings show that the newly designed multi-epitope vaccine is promising in providing long-term immunity against GBM and offers a promising therapeutic alternative.
Collapse
Affiliation(s)
- Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Taheri M, Tehrani HA, Farzad SA, Korourian A, Arefian E, Ramezani M. The potential of mesenchymal stem cell coexpressing cytosine deaminase and secretory IL18-FC chimeric cytokine in suppressing glioblastoma recurrence. Int Immunopharmacol 2024; 142:113048. [PMID: 39236459 DOI: 10.1016/j.intimp.2024.113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Glioblastoma multiforme (GBM) patients have a high recurrence rate of 90%, and the 5-year survival rate is only about 5%. Cytosine deaminase (CDA)/5-fluorocytosine (5-FC) gene therapy is a promising glioma treatment as 5-FC can cross the blood-brain barrier (BBB), while 5-fluorouracil (5-FU) cannot. Furthermore, 5-FU can assist reversing the immunological status of cold solid tumors. This study developed mesenchymal stem cells (MSCs) co-expressing yeast CDA and the secretory IL18-FC superkine to prevent recurrent tumor progression by simultaneously exerting cytotoxic effects and enhancing immune responses. IL18 was fused with Igk and IgG2a FC domains to enhance its secretion and serum half-life. The study confirmed the expression and activity of the CDA enzyme, as well as the expression, secretion, and activity of secretory IL18 and IL18-FC superkine, which were expressed by lentiviruses transduced-MSCs. In the transwell tumor-tropism assay, it was observed that the genetically modified MSCs retained their selective tumor-tropism ability following transduction. CDA-expressing MSCs, in the presence of 5-FC (200 µg/ml), induced cell cycle arrest and apoptosis in glioma cells through bystander effects in an indirect transwell co-culture system. They reduced the viability of the direct co-culture system when they constituted only 12.5 % of the cell population. The effectiveness of engineered MSCs in suppressing tumor progression was assessed by intracerebral administration of a lethal dose of GL261 cells combined in a ratio of 1:1 with MSCs expressing CDA, or CDA and sIL18, or CDA and sIL18-FC, into C57BL/6 mice. PET scan showed no conspicuous tumor mass in the MSC-CDA-sIL18-FC group that received 5-FC treatment. The pathological analysis showed that tumor progression suppressed in this group until 20th day after cell inoculation. Cytokine assessment showed that both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) increased in the serum of MSC-CDA-sIL18 and MSC-CDA-sIL18-FC, treated with normal saline (NS) compared to those of the control group. The MSC-CDA-sIL18-FC group that received 5-FC treatment showed reduced serum levels of IL-6 and a considerably improved survival rate compared to the control group. Therefore, MSCs co-expressing yeast CDA and secretory IL18-FC, with tumor tropism capability, may serve as a supplementary approach to standard GBM treatment to effectively inhibit tumor progression and prevent recurrence.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Korourian
- Quality Control Department Pathobiology Laboratory Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Pham TMQ, Nguyen TN, Tran Nguyen BQ, Diem Tran TP, Diem Pham NM, Phuc Nguyen HT, Cuong Ho TK, Linh Nguyen DV, Nguyen HT, Tran DH, Tran TS, Pham TVN, Le MT, Vy Nguyen TT, Phan MD, Giang H, Nguyen HN, Tran LS. The T cell receptor β chain repertoire of tumor infiltrating lymphocytes improves neoantigen prediction and prioritization. eLife 2024; 13:RP94658. [PMID: 39466298 PMCID: PMC11517254 DOI: 10.7554/elife.94658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
In the realm of cancer immunotherapy, the meticulous selection of neoantigens plays a fundamental role in enhancing personalized treatments. Traditionally, this selection process has heavily relied on predicting the binding of peptides to human leukocyte antigens (pHLA). Nevertheless, this approach often overlooks the dynamic interaction between tumor cells and the immune system. In response to this limitation, we have developed an innovative prediction algorithm rooted in machine learning, integrating T cell receptor β chain (TCRβ) profiling data from colorectal cancer (CRC) patients for a more precise neoantigen prioritization. TCRβ sequencing was conducted to profile the TCR repertoire of tumor-infiltrating lymphocytes (TILs) from 28 CRC patients. The data unveiled both intra-tumor and inter-patient heterogeneity in the TCRβ repertoires of CRC patients, likely resulting from the stochastic utilization of V and J segments in response to neoantigens. Our novel combined model integrates pHLA binding information with pHLA-TCR binding to prioritize neoantigens, resulting in heightened specificity and sensitivity compared to models using individual features alone. The efficacy of our proposed model was corroborated through ELISpot assays on long peptides, performed on four CRC patients. These assays demonstrated that neoantigen candidates prioritized by our combined model outperformed predictions made by the established tool NetMHCpan. This comprehensive assessment underscores the significance of integrating pHLA binding with pHLA-TCR binding analysis for more effective immunotherapeutic strategies.
Collapse
MESH Headings
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/genetics
- Machine Learning
- Algorithms
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huu Thinh Nguyen
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | - Duc Huy Tran
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | - Thanh Sang Tran
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | | | - Minh Triet Le
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | | | | | - Hoa Giang
- Medical Genetics InstituteHo Chi Minh CityViet Nam
| | | | - Le Son Tran
- Medical Genetics InstituteHo Chi Minh CityViet Nam
| |
Collapse
|
4
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
5
|
Tarabini RF, Fioravanti Vieira G, Rigo MM, de Souza APD. Mutations in glioblastoma proteins do not disrupt epitope presentation and recognition, maintaining a specific CD8 T cell immune response potential. Sci Rep 2024; 14:16721. [PMID: 39030304 PMCID: PMC11271619 DOI: 10.1038/s41598-024-67099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.
Collapse
Affiliation(s)
- Renata Fioravanti Tarabini
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gustavo Fioravanti Vieira
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduation Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Maurício Menegatti Rigo
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
6
|
Zhang Y, Jiang L, Huang S, Lian C, Liang H, Xing Y, Liu J, Tian X, Liu Z, Wang R, An Y, Lu F, Pan Y, Han W, Li Z, Yin F. Sulfonium-Stapled Peptides-Based Neoantigen Delivery System for Personalized Tumor Immunotherapy and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307754. [PMID: 38605600 PMCID: PMC11200081 DOI: 10.1002/advs.202307754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Yaping Zhang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Siyong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Huiting Liang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Yun Xing
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Jianbo Liu
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Xiaojing Tian
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Zhihong Liu
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Rui Wang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Yuhao An
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Youdong Pan
- NeoCura Bio‐Medical Technology Co. Ltd.Shenzhen518055P. R. China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Zigang Li
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Feng Yin
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| |
Collapse
|
7
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
8
|
van den Bent M, Saratsis AM, Geurts M, Franceschi E. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions. Neuro Oncol 2024; 26:S110-S124. [PMID: 38102230 PMCID: PMC11066941 DOI: 10.1093/neuonc/noad220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 12/17/2023] Open
Abstract
H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.
Collapse
Affiliation(s)
- Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amanda M Saratsis
- Department of Neurosurgery, Advocate Children’s Hospital, Park Ridge, Illinois, USA
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Enrico Franceschi
- Department of Nervous System Medical Oncology, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Du Z, Jiang Y, Yang Y, Kang X, Yan J, Liu B, Yang M. A multi-omics analysis-based model to predict the prognosis of low-grade gliomas. Sci Rep 2024; 14:9427. [PMID: 38658591 PMCID: PMC11043340 DOI: 10.1038/s41598-024-58434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
Collapse
Affiliation(s)
- Zhijie Du
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuehui Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueling Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyu Kang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mi Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
10
|
Xiang N, Zhang K, Zhao Y, Xu C, Zhang X, Meng S. Characterization of antigen presentation capability for neoantigen-based products using targeted LC-MS/MS method. J Pharm Biomed Anal 2024; 240:115886. [PMID: 38184916 DOI: 10.1016/j.jpba.2023.115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
The generation of an immune response in neoantigen-based products relies on antigen presentation, which is closely analyzed by bioassays for T-cell functions such as tetramer or cytokine release. Mass spectrometry (MS) has the potential to directly assess the antigen-presenting capability of antigen-presenting cells (APCs), offering advantages such as speed, multi-target analysis, robustness, and ease of transferability. However, it has not been used for quality control of these products due to challenges in sensitivity, including the number of cells and peptide diversity. In this study, we describe the development and validation of an improved targeted LC-MS/MS method with high sensitivity for characterizing antigen presentation, which could be applied in the quality control of neoantigen-based products. The parameters for the extraction were carefully optimized by different short peptides. Highly sensitive targeted triple quadrupole mass spectrometry combined with ultra-high performance liquid chromatography (UHPLC) was employed using a selective ion monitoring mode (Multiple Reaction Monitoring, MRM). Besides, we successfully implemented robust quality control peptides to ensure the reliability and consistency of this method, which proved invaluable for different APCs. With reference to the guidelines from ICH Q2 (R2), M10, as well as considering the specific attributes of the product itself, we validated the method for selectivity, specificity, sensitivity, limit of detection (LOD), recovery rate, matrix effect, repeatability, and application in dendritic cells (DCs) associated with neoantigen-based products. The validation process yields satisfactory results. Combining this approach with T cell assays will comprehensively assess cell product quality attributes from physicochemical and biological perspectives.
Collapse
Affiliation(s)
- Nan Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China
| | - Kehua Zhang
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China
| | - Yinghua Zhao
- SCIEX China, 5F, Building 1, No. 24 Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Chongfeng Xu
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shufang Meng
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China.
| |
Collapse
|
11
|
Krämer C, Kilian M, Chih YC, Kourtesakis A, Hoffmann DC, Boschert T, Koopmann P, Sanghvi K, De Roia A, Jung S, Jähne K, Day B, Shultz LD, Ratliff M, Harbottle R, Green EW, Will R, Wick W, Platten M, Bunse L. NLGN4X TCR transgenic T cells to treat gliomas. Neuro Oncol 2024; 26:266-278. [PMID: 37715782 PMCID: PMC10836769 DOI: 10.1093/neuonc/noad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.
Collapse
Affiliation(s)
- Christoper Krämer
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kilian
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yu-Chan Chih
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Dirk C Hoffmann
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Tamara Boschert
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
| | - Philipp Koopmann
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Khwab Sanghvi
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Alice De Roia
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Stefanie Jung
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristine Jähne
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bryan Day
- Faculty of Medicine, University of Queensland, Herston, Australia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer MRI, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Gardens Point, Australia
| | - Lenny D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | | | - Edward W Green
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Core Facility Cellular tools, DKFZ, Heidelberg, Germany
| | | | - Michael Platten
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
12
|
Boschert T, Kromer K, Lerner T, Lindner K, Haltenhof G, Tan CL, Jähne K, Poschke I, Bunse L, Eisele P, Grassl N, Mildenberger I, Sahm K, Platten M, Lindner JM, Green EW. H3K27M neoepitope vaccination in diffuse midline glioma induces B and T cell responses across diverse HLA loci of a recovered patient. SCIENCE ADVANCES 2024; 10:eadi9091. [PMID: 38306431 PMCID: PMC10836722 DOI: 10.1126/sciadv.adi9091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
H3K27M, a driver mutation with T and B cell neoepitope characteristics, defines an aggressive subtype of diffuse glioma with poor survival. We functionally dissect the immune response of one patient treated with an H3K27M peptide vaccine who subsequently entered complete remission. The vaccine robustly expanded class II human leukocyte antigen (HLA)-restricted peripheral H3K27M-specific T cells. Using functional assays, we characterized 34 clonally unique H3K27M-reactive T cell receptors and identified critical, conserved motifs in their complementarity-determining region 3 regions. Using detailed HLA mapping, we further demonstrate that diverse HLA-DQ and HLA-DR alleles present immunogenic H3K27M epitopes. Furthermore, we identified and profiled H3K27M-reactive B cell receptors from activated B cells in the cerebrospinal fluid. Our results uncover the breadth of the adaptive immune response against a shared clonal neoantigen across multiple HLA allelotypes and support the use of class II-restricted peptide vaccines to stimulate tumor-specific T and B cells harboring receptors with therapeutic potential.
Collapse
Affiliation(s)
- Tamara Boschert
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Kristina Kromer
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- BioMed X GmbH, Heidelberg, Germany
| | | | - Katharina Lindner
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Immune Monitoring Unit, DKFZ and National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Gordon Haltenhof
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chin Leng Tan
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kristine Jähne
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isabel Poschke
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immune Monitoring Unit, DKFZ and National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Lukas Bunse
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Niklas Grassl
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Iris Mildenberger
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Katharina Sahm
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
- Immune Monitoring Unit, DKFZ and National Center for Tumour Diseases (NCT), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim Germany
| | | | - Edward W Green
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Li X, Xiao X, Wang Y, Gu G, Li T, Wang Y, Li C, Zhang P, Ji N, Zhang Y, Zhang L. Expression of Interleukin-13 Receptor Alpha 2 in Brainstem Gliomas. Cancers (Basel) 2024; 16:228. [PMID: 38201655 PMCID: PMC10777982 DOI: 10.3390/cancers16010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate IL13Ra2 expression in brainstem glioma (BSG) and its correlation with key markers, functions, and prognostic implications, evaluating its therapeutic potential. A total of 80 tumor samples from BSG patients were analyzed. Multiplex immunofluorescence was used to examine six markers-IL13Ra2, H3.3K27M, CD133, Ki67, HLA-1, and CD4-establishing relationships between IL13Ra2 and these markers. Survival analysis, employing Kaplan-Meier and Cox proportional hazard regression models, encompassed 66 patients with complete follow-up. RNA-Seq data from a previously published study involving 98 patients were analyzed using the DESeq2 library to determine differential gene expression between groups. Gene Ontology (GO) enrichment and single-sample gene set enrichment analysis (ssGSEA) via the clusterProfiler library were used to delineate the gene functions of differentially expressed genes (DEGs). Nearly all the BSG patients displayed varying IL13Ra2 expression, with 45.0% (36/80) exhibiting over a 20% increase. Elevated IL13Ra2 levels were notably observed in pontine gliomas, diffuse intrinsic pontine gliomas (DIPGs), H3F3A-mutant gliomas, and WHO IV gliomas. IL13Ra2 expression was strongly correlated with H3.3K27M mutant protein, Ki67, and CD133. Patients with IL13Ra2 expression >20% showed shorter overall survival compared to those with ≤20% IL13Ra2 expression. The Cox proportional hazard regression model identified H3F3A mutations, rather than IL13Ra2 expression, as an independent prognostic factor. Analysis of RNA-Seq data from our prior cohort confirmed IL13Ra2's correlation with H3.3, CD133, and Ki67 levels. Widespread IL13Ra2 expression in BSG, particularly elevated in the H3F3A mutant group, was strongly correlated with H3F3A mutations, increased proliferation, and heightened tumor stemness. IL13Ra2 represents a promising therapeutic target for BSGs, potentially benefiting patients with H3K27M mutations, DIPGs, WHO Grade IV, and pontine location-specific BSGs, particularly those with H3K27M mutations.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
15
|
Biernacki MA, Lok J, Black RG, Foster KA, Cummings C, Woodward KB, Monahan T, Oehler VG, Stirewalt DL, Wu D, Rongvaux A, Deeg HJ, Bleakley M. Discovery of U2AF1 neoantigens in myeloid neoplasms. J Immunother Cancer 2023; 11:e007490. [PMID: 38164756 PMCID: PMC10729103 DOI: 10.1136/jitc-2023-007490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) arise from somatic mutations acquired in hematopoietic stem and progenitor cells, causing cytopenias and predisposing to transformation into secondary acute myeloid leukemia (sAML). Recurrent mutations in spliceosome genes, including U2AF1, are attractive therapeutic targets as they are prevalent in MDS and sAML, arise early in neoplastic cells, and are generally absent from normal cells, including normal hematopoietic cells. MDS and sAML are susceptible to T cell-mediated killing, and thus engineered T-cell immunotherapies hold promise for their treatment. We hypothesized that targeting spliceosome mutation-derived neoantigens with transgenic T-cell receptor (TCR) T cells would selectively eradicate malignant cells in MDS and sAML. METHODS We identified candidate neoantigen epitopes from recurrent protein-coding mutations in the spliceosome genes SRSF2 and U2AF1 using a multistep in silico process. Candidate epitopes predicted to bind human leukocyte antigen (HLA) class I, be processed and presented from the parent protein, and not to be subject to tolerance then underwent in vitro immunogenicity screening. CD8+ T cells recognizing immunogenic neoantigen epitopes were evaluated in in vitro assays to assess functional avidity, confirm the predicted HLA restriction, the potential for recognition of similar peptides, and the ability to kill neoplastic cells in an antigen-specific manner. Neoantigen-specific TCR were sequenced, cloned into lentiviral vectors, and transduced into third-party T cells after knock-out of endogenous TCR, then tested in vitro for specificity and ability to kill neoplastic myeloid cells presenting the neoantigen. The efficacy of neoantigen-specific T cells was evaluated in vivo in a murine cell line-derived xenograft model. RESULTS We identified two neoantigens created from a recurrent mutation in U2AF1, isolated CD8+ T cells specific for the neoantigens, and demonstrated that transferring their TCR to third-party CD8+ T cells is feasible and confers specificity for the U2AF1 neoantigens. Finally, we showed that these neoantigen-specific TCR-T cells do not recognize normal hematopoietic cells but efficiently kill malignant myeloid cells bearing the specific U2AF1 mutation, including primary cells, in vitro and in vivo. CONCLUSIONS These data serve as proof-of-concept for developing precision medicine approaches that use neoantigen-directed T-cell receptor-transduced T cells to treat MDS and sAML.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- CD8-Positive T-Lymphocytes
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Antigens, Neoplasm
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Epitopes/metabolism
Collapse
Affiliation(s)
- Melinda Ann Biernacki
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jessica Lok
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ralph Graeme Black
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kimberly A Foster
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Carrie Cummings
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kyle B Woodward
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tim Monahan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vivian G Oehler
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Derek L Stirewalt
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Anthony Rongvaux
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hans Joachim Deeg
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Marie Bleakley
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Jucht A, Dumont S, Pooley C, Gonzalez Castro LN. Cancer vaccine strategies for the treatment of diffusely infiltrating gliomas. Ther Adv Vaccines Immunother 2023; 11:25151355231206163. [PMID: 37886714 PMCID: PMC10599115 DOI: 10.1177/25151355231206163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Diffusely infiltrating gliomas - including glioblastoma (GBM), isocitrate dehydrogenase (IDH) mutant gliomas, and histone 3 (H3) altered gliomas - are primary brain tumors with an invariably fatal outcome. Despite advances in the understanding of their biology, standard, targeted and immune checkpoint inhibitor immunotherapies have proven ineffective in arresting their inexorable progression and associated morbidity and mortality. Recognizing the unique aspects of the immunogenicity of cancer cells, the last decade has seen the development and evaluation of vaccine-based therapies for the treatment of solid tumors, including gliomas. Here we review the current vaccine strategies for the treatment of GBM, IDH-mutant gliomas and diffuse midline glioma H3 K27M-altered. We discuss potential benefits and challenges of vaccine therapies in these specific patient populations.
Collapse
|
18
|
Messiaen J, Jacobs SA, De Smet F. The tumor micro-environment in pediatric glioma: friend or foe? Front Immunol 2023; 14:1227126. [PMID: 37901250 PMCID: PMC10611473 DOI: 10.3389/fimmu.2023.1227126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Brain tumors are the leading cause of morbidity and mortality related to cancer in children, where high-grade glioma harbor the worst prognosis. It has become obvious that pediatric glioma differs significantly from their adult counterparts, rendering extrapolations difficult. Curative options for several types of glioma are lacking, albeit ongoing research efforts and clinical trials. As already proven in the past, inter- and intratumoral heterogeneity plays an important role in the resistance to therapy and thus implicates morbidity and mortality for these patients. However, while less studied, the tumor micro-environment (TME) adds another level of heterogeneity. Knowledge gaps exist on how the TME interacts with the tumor cells and how the location of the various cell types in the TME influences tumor growth and the response to treatment. Some studies identified the presence of several (immune) cell types as prognostic factors, but often lack a deeper understanding of the underlying mechanisms, possibly leading to contradictory findings. Although the TME in pediatric glioma is regarded as "cold", several treatment options are emerging, with the TME being the primary target of treatment. Therefore, it is crucial to study the TME of pediatric glioma, so that the interactions between TME, tumoral cells and therapeutics can be better understood before, during and after treatment. In this review, we provide an overview of the available insights into the composition and role of the TME across different types of pediatric glioma. Moreover, where possible, we provide a framework on how a particular TME may influence responses to conventional- and/or immunotherapy.
Collapse
Affiliation(s)
- Julie Messiaen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sandra A. Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Pediatric Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Wang SS, Pandey K, Watson KA, Abbott RC, Mifsud NA, Gracey FM, Ramarathinam SH, Cross RS, Purcell AW, Jenkins MR. Endogenous H3.3K27M derived peptide restricted to HLA-A∗02:01 is insufficient for immune-targeting in diffuse midline glioma. Mol Ther Oncolytics 2023; 30:167-180. [PMID: 37674626 PMCID: PMC10477804 DOI: 10.1016/j.omto.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M+ patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M26-35-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M26-35-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M26-35 mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.
Collapse
Affiliation(s)
- Stacie S. Wang
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC 3052, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Katherine A. Watson
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
| | - Rebecca C. Abbott
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC 3052, Australia
| | - Nicole A. Mifsud
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Fiona M. Gracey
- Myrio Therapeutics, 6-16 Joseph St, Blackburn North, Melbourne, VIC 3130, Australia
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ryan S. Cross
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Misty R. Jenkins
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC 3052, Australia
- La Trobe University, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Nguyen BQT, Tran TPD, Nguyen HT, Nguyen TN, Pham TMQ, Nguyen HTP, Tran DH, Nguyen V, Tran TS, Pham TVN, Le MT, Phan MD, Giang H, Nguyen HN, Tran LS. Improvement in neoantigen prediction via integration of RNA sequencing data for variant calling. Front Immunol 2023; 14:1251603. [PMID: 37731488 PMCID: PMC10507271 DOI: 10.3389/fimmu.2023.1251603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Neoantigen-based immunotherapy has emerged as a promising strategy for improving the life expectancy of cancer patients. This therapeutic approach heavily relies on accurate identification of cancer mutations using DNA sequencing (DNAseq) data. However, current workflows tend to provide a large number of neoantigen candidates, of which only a limited number elicit efficient and immunogenic T-cell responses suitable for downstream clinical evaluation. To overcome this limitation and increase the number of high-quality immunogenic neoantigens, we propose integrating RNA sequencing (RNAseq) data into the mutation identification step in the neoantigen prediction workflow. Methods In this study, we characterize the mutation profiles identified from DNAseq and/or RNAseq data in tumor tissues of 25 patients with colorectal cancer (CRC). Immunogenicity was then validated by ELISpot assay using long synthesis peptides (sLP). Results We detected only 22.4% of variants shared between the two methods. In contrast, RNAseq-derived variants displayed unique features of affinity and immunogenicity. We further established that neoantigen candidates identified by RNAseq data significantly increased the number of highly immunogenic neoantigens (confirmed by ELISpot) that would otherwise be overlooked if relying solely on DNAseq data. Discussion This integrative approach holds great potential for improving the selection of neoantigens for personalized cancer immunotherapy, ultimately leading to enhanced treatment outcomes and improved survival rates for cancer patients.
Collapse
Affiliation(s)
| | | | - Huu Thinh Nguyen
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | | | | | - Duc Huy Tran
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Vy Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
| | - Thanh Sang Tran
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | - Minh-Triet Le
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh, Vietnam
| | | | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh, Vietnam
| |
Collapse
|
21
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
22
|
Noon A, Galban S. Therapeutic avenues for targeting treatment challenges of diffuse midline gliomas. Neoplasia 2023; 40:100899. [PMID: 37030112 PMCID: PMC10119952 DOI: 10.1016/j.neo.2023.100899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Diffuse midline glioma (DMG) is the leading cause of brain tumor-related deaths in children. DMG typically presents with variable neurologic symptoms between ages 3 and 10. Currently, radiation remains the standard therapy for DMG to halt progression and reduce tumor bulk to minimize symptoms. However, tumors recur in almost 100% of patients and thus, DMG is still considered an incurable cancer with a median survival of 9-12 months. Surgery is generally contraindicated due to the delicate organization of the brainstem, where DMG is located. Despite extensive research efforts, no chemotherapeutic agents, immune therapies, or molecularly targeted therapies have been approved to provide survival benefit. Furthermore, the efficacy of therapies is limited by poor blood-brain barrier penetration and inherent resistance mechanisms of the tumor. However, novel drug delivery approaches, along with recent advances in molecularly targeted therapies and immunotherapies, have advanced to clinical trials and may provide viable future treatment options for DMG patients. This review seeks to evaluate current therapeutics at the preclinical stage and those that have advanced to clinical trials and to discuss the challenges of drug delivery and inherent resistance to these therapies.
Collapse
Affiliation(s)
- Aleeha Noon
- College of Medicine, California Northstate University, 9700 W Taron Drive, Elk Grove, CA 95757, USA
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Radiology, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Rogel Cancer Center, The University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
24
|
Immisch L, Papafotiou G, Popp O, Mertins P, Blankenstein T, Willimsky G. Response to: Correspondence on 'H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2+ patients with diffuse midline glioma' by Chheda et al. J Immunother Cancer 2023; 11:e006784. [PMID: 36918223 PMCID: PMC10016299 DOI: 10.1136/jitc-2023-006784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Lena Immisch
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - George Papafotiou
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Dang H, Khan AB, Gadgil N, Sharma H, Trandafir C, Malbari F, Weiner HL. Behavioral Improvements following Lesion Resection for Pediatric Epilepsy: Pediatric Psychosurgery? Pediatr Neurosurg 2023; 58:80-88. [PMID: 36787706 PMCID: PMC10233708 DOI: 10.1159/000529683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Resection of brain lesions associated with refractory epilepsy to achieve seizure control is well accepted. However, concurrent behavioral effects of these lesions such as changes in mood, personality, and cognition and the effects of surgery on behavior have not been well characterized. We describe 5 such children with epileptogenic lesions and significant behavioral abnormalities which improved after surgery. CASE DESCRIPTIONS Five children (ages 3-14 years) with major behavioral abnormalities and lesional epilepsy were identified and treated at our center. Behavioral problems included academic impairment, impulsivity, self-injurious behavior, and decreased social interaction with diagnoses of ADHD, oppositional defiant disorder, and autism. Pre-operative neuropsychiatric testing was performed in 4/5 patients and revealed low-average cognitive and intellectual abilities for their age, attentional difficulties, and poor memory. Lesions were located in the temporal (2 gangliogliomas, 1 JPA, 1 cavernoma) and parietal (1 DNET) lobes. Gross total resection was achieved in all cases. At mean 1-year follow-up, seizure freedom (Engel 1a in 3 patients, Engel 1c in 2 patients) and significant behavioral improvements (academic performance, attention, socialization, and aggression) were achieved in all. Two patients manifested violence pre-operatively; one had extreme behavior with violence toward teachers and peers despite low seizure burden. Since surgery, his behavior has normalized. CONCLUSION We identified 5 patients with severe behavioral disorders in the setting of lesional epilepsy, all of whom demonstrated improvement after surgery. The degree of behavioral abnormality was disproportionate to epilepsy severity, suggesting a more complicated mechanism by which lesional epilepsy impacts behavior. We propose a novel paradigm in which lesionectomy may offer behavioral benefit even when seizures are not refractory. Thus, behavioral improvement may be an important novel goal for neurosurgical resection in children with epileptic brain lesions.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA,
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Trandafir
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
26
|
Schaettler MO, Desai R, Wang AZ, Livingstone AJ, Kobayashi DK, Coxon AT, Bowman-Kirigin JA, Liu CJ, Li M, Bender DE, White MJ, Kranz DM, Johanns TM, Dunn GP. TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma. J Immunother Cancer 2023; 11:e006121. [PMID: 36808076 PMCID: PMC9944319 DOI: 10.1136/jitc-2022-006121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS We employed single-cell PCR to isolate a TCR specific for the Imp3D81N neoantigen (mImp3) previously identified within the murine glioblastoma model GL261. This TCR was used to generate the Mutant Imp3-Specific TCR TransgenIC (MISTIC) mouse in which all CD8 T cells are specific for mImp3. The therapeutic efficacy of neoantigen-specific T cells was assessed through a model of cellular therapy consisting of the transfer of activated MISTIC T cells and interleukin 2 into lymphodepleted tumor-bearing mice. We employed flow cytometry, single-cell RNA sequencing, and whole-exome and RNA sequencing to examine the factors underlying treatment response. RESULTS We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma.
Collapse
Affiliation(s)
- Maximilian O Schaettler
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anthony Z Wang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Dale K Kobayashi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay A Bowman-Kirigin
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Connor J Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mao Li
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diane E Bender
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J White
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Kranz
- Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner M Johanns
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, Chen XY, Wang J, Jha SK. CAR T cells: engineered immune cells to treat brain cancers and beyond. Mol Cancer 2023; 22:22. [PMID: 36721153 PMCID: PMC9890802 DOI: 10.1186/s12943-022-01712-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells' promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.
Collapse
Affiliation(s)
- Zoufang Huang
- grid.452437.3Department of Hematology, Ganzhou Key Laboratory of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Saikat Dewanjee
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Pratik Chakraborty
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Niraj Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| | - Abhijit Dey
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700032 India
| | - Moumita Gangopadhyay
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, West Bengal 700126 India
| | - Xuan-Yu Chen
- grid.264091.80000 0001 1954 7928Institute for Biotechnology, St. John’s University, Queens, New York, 11439 USA
| | - Jian Wang
- Department of Radiotherapy, the Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, 214400 China
| | - Saurabh Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India ,grid.448792.40000 0004 4678 9721Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413 India ,grid.449906.60000 0004 4659 5193Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007 India
| |
Collapse
|
28
|
Chen Y, Zhao C, Li S, Wang J, Zhang H. Immune Microenvironment and Immunotherapies for Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2023; 15:cancers15030602. [PMID: 36765560 PMCID: PMC9913210 DOI: 10.3390/cancers15030602] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary glial glioma that occurs in all age groups but predominates in children and is the main cause of solid tumor-related childhood mortality. Due to its rapid progression, the inability to operate and insensitivity to most chemotherapies, there is a lack of effective treatment methods in clinical practice for DIPG patients. The prognosis of DIPG patients is extremely poor, with a median survival time of no more than 12 months. In recent years, there have been continuous breakthroughs for immunotherapies in various hematological tumors and malignant solid tumors with extremely poor prognoses, which provides new insights into tumors without effective treatment strategies. Meanwhile, with the gradual development of stereotactic biopsy techniques, it is gradually becoming easier and safer to obtain live DIPG tissue, and the understanding of the immune properties of DIPG has also increased. On this basis, a series of immunotherapy studies of DIPG are under way, some of which have shown encouraging results. Herein, we review the current understanding of the immune characteristics of DIPG and critically reveal the limitations of current immune research, as well as the opportunities and challenges for immunological therapies in DIPG, hoping to clarify the development of novel immunotherapies for DIPG treatment.
Collapse
|
29
|
Dalle Ore C, Coleman C, Gupta N, Mueller S. Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas. Pediatr Neurosurg 2023; 58:259-266. [PMID: 36642062 PMCID: PMC10664325 DOI: 10.1159/000529099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months. SUMMARY While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation. KEY MESSAGE Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.
Collapse
Affiliation(s)
- Cecilia Dalle Ore
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Christina Coleman
- Division of Hematology/Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Québec, Canada
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Jovanovich N, Habib A, Head J, Hameed F, Agnihotri S, Zinn PO. Pediatric diffuse midline glioma: Understanding the mechanisms and assessing the next generation of personalized therapeutics. Neurooncol Adv 2023; 5:vdad040. [PMID: 37152806 PMCID: PMC10162114 DOI: 10.1093/noajnl/vdad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG) is a pediatric cancer that originates in the midline structures of the brain. Prognosis of DMG patients remains poor due to the infiltrative nature of these tumors and the protection they receive from systemically delivered therapeutics via an intact blood-brain barrier (BBB), making treatment difficult. While the cell of origin remains disputed, it is believed to reside in the ventral pons. Recent research has pointed toward epigenetic dysregulation inducing an OPC-like transcriptomic signature in DMG cells. This epigenetic dysregulation is typically caused by a mutation (K27M) in one of two histone genes-H3F3A or HIST1H3B -and can lead to a differentiation block that increases these cells oncogenic potential. Standard treatment with radiation is not sufficient at overcoming the aggressivity of this cancer and only confers a survival benefit of a few months, and thus, discovery of new therapeutics is of utmost importance. In this review, we discuss the cell of origin of DMGs, as well as the underlying molecular mechanisms that contribute to their aggressivity and resistance to treatment. Additionally, we outline the current standard of care for DMG patients and the potential future therapeutics for this cancer that are currently being tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- Sameer Agnihtroi, PhD, 4401 Penn Avenue, Office 7126, Pittsburgh, PA 15224, USA ()
| | - Pascal O Zinn
- Corresponding Authors: Pascal O. Zinn, MD, PhD, 5150 Centre Ave. Suite 433, Pittsburgh, PA 15232, USA ()
| |
Collapse
|
31
|
Estevez-Ordonez D, Gary SE, Atchley TJ, Maleknia PD, George JA, Laskay NMB, Gross EG, Devulapalli RK, Johnston JM. Immunotherapy for Pediatric Brain and Spine Tumors: Current State and Future Directions. Pediatr Neurosurg 2022; 58:313-336. [PMID: 36549282 PMCID: PMC10233708 DOI: 10.1159/000528792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brain tumors are the most common solid tumors and the leading cause of cancer-related deaths in children. Incidence in the USA has been on the rise for the last 2 decades. While therapeutic advances in diagnosis and treatment have improved survival and quality of life in many children, prognosis remains poor and current treatments have significant long-term sequelae. SUMMARY There is a substantial need for the development of new therapeutic approaches, and since the introduction of immunotherapy by immune checkpoint inhibitors, there has been an exponential increase in clinical trials to adopt these and other immunotherapy approaches in children with brain tumors. In this review, we summarize the current immunotherapy landscape for various pediatric brain tumor types including choroid plexus tumors, embryonal tumors (medulloblastoma, AT/RT, PNETs), ependymoma, germ cell tumors, gliomas, glioneuronal and neuronal tumors, and mesenchymal tumors. We discuss the latest clinical trials and noteworthy preclinical studies to treat these pediatric brain tumors using checkpoint inhibitors, cellular therapies (CAR-T, NK, T cell), oncolytic virotherapy, radioimmunotherapy, tumor vaccines, immunomodulators, and other targeted therapies. KEY MESSAGES The current landscape for immunotherapy in pediatric brain tumors is still emerging, but results in certain tumors have been promising. In the age of targeted therapy, genetic tumor profiling, and many ongoing clinical trials, immunotherapy will likely become an increasingly effective tool in the neuro-oncologist armamentarium.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA,
| | - Sam E Gary
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Pedram D Maleknia
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jordan A George
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rishi K Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Cancer immunotherapy with CAR T cells: well-trodden paths and journey along lesser-known routes. Radiol Oncol 2022; 56:409-419. [PMID: 36503716 PMCID: PMC9784369 DOI: 10.2478/raon-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is a clinically approved cancer immunotherapy approach using genetically engineered T cells. The success of CAR T cells has been met with challenges regarding efficacy and safety. Although a broad spectrum of CAR T cell variants and applications is emerging, this review focuses on CAR T cells for the treatment of cancer. In the first part, the general principles of adoptive cell transfer, the architecture of the CAR molecule, and the effects of design on function are presented. The second part describes five conceptual challenges that hinder the success of CAR T cells; immunosuppressive tumour microenvironment, T cell intrinsic properties, tumour targeting, manufacturing cellular product, and immune-related adverse events. Throughout the review, selected current approaches to address these issues are presented. CONCLUSIONS Cancer immunotherapy with CAR T cells represents a paradigm shift in the treatment of certain blood cancers that do not respond to other available treatment options. Well-trodden paths taken by pioneers led to the first clinical approval, and now the journey continues down lesser-known paths to treat a variety of cancers and other serious diseases with CAR T cells.
Collapse
|
33
|
Altinoz MA, Ozpinar A, Hacker E, Ozpinar A. Combining locoregional CAR-T cells, autologous + allogeneic tumor lysate vaccination and levamisole in treatment of glioblastoma. Immunopharmacol Immunotoxicol 2022; 44:797-808. [PMID: 35670420 DOI: 10.1080/08923973.2022.2086136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain malignancy and harbors a microenvironment limiting immune cells activity. CAR-T cells are being tested in the treatment of cancers and there exist reports which demonstrate dramatic regression of multicentric GBMs following intrathecal treatment with CAR-T cells. In this article, a triple approach for immune treatment of GBM is proposed. First, GBM tumor specimens for each patient will be saved and cultured to obtain tumor lysates. Then, levamisole will be applied, which possesses immunostimulating, anti-glycolytic, and anti-angiogenic features. Following priming the immune system, GBM patients will be injected with lysates of their own tumor cells plus lysates from a GBM cell line, U251. After 3 months of this treatment, CAR-T cells (transduced with IL13Rα2-CAR) will be applied via intratumoral approach. As such, genetically-modified and native immunocytes may 'meet' in the vicinity of deeply-invading tumor cells and demonstrate greater efficacy via cell-cell interactions. By this, a self-propagating cyclic process - a cancer-immunity cycle - may be initiated to eradicate cancer cells.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Hacker
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| |
Collapse
|
34
|
Rao P, Furst L, Meyran D, Mayoh C, Neeson PJ, Terry R, Khuong-Quang DA, Mantamadiotis T, Ekert PG. Advances in CAR T cell immunotherapy for paediatric brain tumours. Front Oncol 2022; 12:873722. [PMID: 36505819 PMCID: PMC9727400 DOI: 10.3389/fonc.2022.873722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.
Collapse
Affiliation(s)
- Padmashree Rao
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia
| | - Liam Furst
- Department of Microbiology & Immunology, The University of Melbourne, Victoria, VIC, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia,Université de Paris, Inserm, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) Unit, Institut de Recherche Saint-Louis, Paris, France,Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Chelsea Mayoh
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Rachael Terry
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Dong-Anh Khuong-Quang
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia,Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Microbiology & Immunology, The University of Melbourne, Victoria, VIC, Australia,Department of Surgery Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Theo Mantamadiotis, ; Paul G. Ekert,
| | - Paul G. Ekert
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Theo Mantamadiotis, ; Paul G. Ekert,
| |
Collapse
|
35
|
Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Immisch L, Papafotiou G, Popp O, Mertins P, Blankenstein T, Willimsky G. H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2 + patients with diffuse midline glioma. J Immunother Cancer 2022; 10:jitc-2022-005535. [PMID: 36302563 PMCID: PMC9621174 DOI: 10.1136/jitc-2022-005535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Diffuse midline glioma is the leading cause of solid cancer-related deaths in children with very limited treatment options. A majority of the tumors carry a point mutation in the histone 3 variant (H3.3) creating a potential HLA-A*02:01 binding epitope (H3.3K27M26-35). Here, we isolated an H3.3K27M-specific T cell receptor (TCR) from transgenic mice expressing a diverse human TCR repertoire. Despite a high functional avidity of H3.3K27M-specific T cells, we were not able to achieve recognition of cells naturally expressing the H3.3K27M mutation, even when overexpressed as a transgene. Similar results were obtained with T cells expressing the published TCR 1H5 against the same epitope. CRISPR/Cas9 editing was used to exclude interference by endogenous TCRs in donor T cells. Overall, our data provide strong evidence that the H3.3K27M mutation is not a suitable target for cancer immunotherapy, most likely due to insufficient epitope processing and/or amount to be recognized by HLA-A*02:01 restricted CD8+ T cells.
Collapse
Affiliation(s)
- Lena Immisch
- Institute of Immunology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,German Cancer Research Center, Heidelberg, Germany,German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - George Papafotiou
- Institute of Immunology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,German Cancer Research Center, Heidelberg, Germany,German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,German Cancer Research Center, Heidelberg, Germany,German Cancer Consortium, partner site Berlin, Berlin, Germany
| |
Collapse
|
37
|
Kolsteeg C, Hulleman E, Bianco J. Emerging nanomedical strategies for direct targeting of pediatric and adult diffuse gliomas. Br J Cancer 2022; 127:1193-1200. [PMID: 35715639 PMCID: PMC9519870 DOI: 10.1038/s41416-022-01884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
High-grade gliomas, in particularly diffuse midline glioma, H3K27-altered in children and glioblastoma in adults, are the most lethal brain tumour with a dismal prognosis. Developments in modern medicine are constantly being applied in the search for a cure, although finding the right strategy remains elusive. Circumventing the blood-brain barrier is one of the biggest challenges when it comes to treating brain tumours. The cat and mouse game of finding the Trojan horse to traverse this barrier and deliver therapeutics to the brain has been a long and hard-fought struggle. Research is ongoing to find new and feasible ways to reach specific targets in the brain, with a special focus on inoperable or recurring brain tumours. Many options and combinations of options have been tested to date and continue to be so in the search to find the most effective and least toxic treatment paradigm. Although improvements are often small and slow, some of these strategies have already shown promise, shining a light of hope that finding the cure is feasible. In this review, we discuss recent findings that elucidate promising but atypical strategies for targeting gliomas and the implications that this work has on developing new treatment regimens.
Collapse
Affiliation(s)
- Christy Kolsteeg
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - John Bianco
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
39
|
Poole A, Karuppiah V, Hartt A, Haidar JN, Moureau S, Dobrzycki T, Hayes C, Rowley C, Dias J, Harper S, Barnbrook K, Hock M, Coles C, Yang W, Aleksic M, Lin AB, Robinson R, Dukes JD, Liddy N, Van der Kamp M, Plowman GD, Vuidepot A, Cole DK, Whale AD, Chillakuri C. Therapeutic high affinity T cell receptor targeting a KRAS G12D cancer neoantigen. Nat Commun 2022; 13:5333. [PMID: 36088370 PMCID: PMC9464187 DOI: 10.1038/s41467-022-32811-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Neoantigens derived from somatic mutations are specific to cancer cells and are ideal targets for cancer immunotherapy. KRAS is the most frequently mutated oncogene and drives the pathogenesis of several cancers. Here we show the identification and development of an affinity-enhanced T cell receptor (TCR) that recognizes a peptide derived from the most common KRAS mutant, KRASG12D, presented in the context of HLA-A*11:01. The affinity of the engineered TCR is increased by over one million-fold yet fully able to distinguish KRASG12D over KRASWT. While crystal structures reveal few discernible differences in TCR interactions with KRASWT versus KRASG12D, thermodynamic analysis and molecular dynamics simulations reveal that TCR specificity is driven by differences in indirect electrostatic interactions. The affinity enhanced TCR, fused to a humanized anti-CD3 scFv, enables selective killing of cancer cells expressing KRASG12D. Our work thus reveals a molecular mechanism that drives TCR selectivity and describes a soluble bispecific molecule with therapeutic potential against cancers harboring a common shared neoantigen.
Collapse
Affiliation(s)
- Andrew Poole
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | | | - Annabelle Hartt
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, USA
| | - Jaafar N Haidar
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Sylvie Moureau
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Tomasz Dobrzycki
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Conor Hayes
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | | | - Jorge Dias
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Stephen Harper
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Keir Barnbrook
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Miriam Hock
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Charlotte Coles
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Wei Yang
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Milos Aleksic
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Aimee Bence Lin
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ross Robinson
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Joe D Dukes
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Nathaniel Liddy
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Marc Van der Kamp
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, USA
| | - Gregory D Plowman
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Annelise Vuidepot
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - David K Cole
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Andrew D Whale
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA.
| | | |
Collapse
|
40
|
Liu Z, Lv J, Dang Q, Liu L, Weng S, Wang L, Zhou Z, Kong Y, Li H, Han Y, Han X. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci 2022; 18:5607-5623. [PMID: 36263174 PMCID: PMC9576504 DOI: 10.7150/ijbs.76281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 40052, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanyun Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.,✉ Corresponding author: Xinwei Han.
| |
Collapse
|
41
|
Frameless robot-assisted stereotactic biopsy: an effective and minimally invasive technique for pediatric diffuse intrinsic pontine gliomas. J Neurooncol 2022; 160:107-114. [PMID: 35997920 DOI: 10.1007/s11060-022-04122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Diffuse intrinsic pontine gliomas (DIPGs) are prone to high surgical risks, and they could even lead to death due to their specific sites. To determine the value of frameless robot-assisted stereotactic biopsies of DIPGs, when compared it with microsurgical biopsies. METHODS We conducted a retrospective study of 71 pediatric patients who underwent biopsies from January 2016 to January 2021. (i) group 1: microsurgical biopsies, and (ii) group 2: frameless robot-assisted stereotactic biopsies. Demographic information, neuroimaging characteristics, pathological diagnoses, operation time, postoperative intensive care unit (ICU) stay time, postoperative hospitalization time, complications, cost, and perioperative mortality rate (POMR) were collected for analyses. RESULTS 32 Cases underwent microsurgical biopsies (group 1) and 39 cases underwent frameless robot-assisted stereotactic biopsies (group 2). All cases were accurately diagnosed after surgery. There was no significant difference in gender, age, symptom times and tumor volumes between the two groups (p > 0.05); operation time, postoperative ICU, stay time and postoperative hospitalization time were longer in group 1 than in group 2 (p < 0.001); the intraoperative bleeding volumes and cost were higher in group 1 than in group 2 (p < 0.001). Group 1 patients required more perioperative blood transfusion than group 2 (p = 0.001), and the new neurological impairments were more frequent in group 1 than in group 2 (p = 0.003). The POMR was 9.38% (3/32) in group 1 and 0 in group 2 (p = 0.087). CONCLUSIONS Frameless robot-assisted stereotactic biopsy was an effective and minimally invasive technique for pediatric DIPGs.
Collapse
|
42
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
43
|
Abstract
ABSTRACT The holy grail of cancer therapeutics is the destruction of cancer cells while avoiding harm to normal cells. Cancer is unique from normal tissues because of the presence of somatic mutations that accumulate during tumorigenesis. Some nonsynonymous mutations can give rise to mutated peptide antigens (hereafter referred to as neoantigens) that can be specifically recognized by T cells. Thus, the immunological targeting of neoantigens represents a safe and promising strategy to treat patients with cancer. This article reviews the clinical application of adoptive cell therapy targeting neoantigens in patients with epithelial cancers.
Collapse
|
44
|
Chandran SS, Ma J, Klatt MG, Dündar F, Bandlamudi C, Razavi P, Wen HY, Weigelt B, Zumbo P, Fu SN, Banks LB, Yi F, Vercher E, Etxeberria I, Bestman WD, Da Cruz Paula A, Aricescu IS, Drilon A, Betel D, Scheinberg DA, Baker BM, Klebanoff CA. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat Med 2022; 28:946-957. [PMID: 35484264 PMCID: PMC9117146 DOI: 10.1038/s41591-022-01786-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/16/2022] [Indexed: 01/05/2023]
Abstract
Public neoantigens (NeoAgs) represent an elite class of shared cancer-specific epitopes derived from recurrently mutated driver genes. Here we describe a high-throughput platform combining single-cell transcriptomic and T cell receptor (TCR) sequencing to establish whether mutant PIK3CA, among the most frequently genomically altered driver oncogenes, generates an immunogenic public NeoAg. Using this strategy, we developed a panel of TCRs that recognize an endogenously processed neopeptide encompassing a common PIK3CA hotspot mutation restricted by the prevalent human leukocyte antigen (HLA)-A*03:01 allele. Mechanistically, immunogenicity to this public NeoAg arises from enhanced neopeptide/HLA complex stability caused by a preferred HLA anchor substitution. Structural studies indicated that the HLA-bound neopeptide presents a comparatively 'featureless' surface dominated by the peptide's backbone. To bind this epitope with high specificity and affinity, we discovered that a lead TCR clinical candidate engages the neopeptide through an extended interface facilitated by an unusually long CDR3β loop. In patients with diverse malignancies, we observed NeoAg clonal conservation and spontaneous immunogenicity to the neoepitope. Finally, adoptive transfer of TCR-engineered T cells led to tumor regression in vivo in mice bearing PIK3CA-mutant tumors but not wild-type PIK3CA tumors. Together, these findings establish the immunogenicity and therapeutic potential of a mutant PIK3CA-derived public NeoAg.
Collapse
Affiliation(s)
- Smita S Chandran
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
| | - Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Si Ning Fu
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauren B Banks
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fei Yi
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enric Vercher
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inaki Etxeberria
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Watchain D Bestman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilinca S Aricescu
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Cell Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Identification of shared neoantigens in esophageal carcinoma by the combination of comprehensive analysis of genomic data and in silico neoantigen prediction. Cell Immunol 2022; 377:104537. [DOI: 10.1016/j.cellimm.2022.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023]
|
46
|
Persson ML, Douglas AM, Alvaro F, Faridi P, Larsen MR, Alonso MM, Vitanza NA, Dun MD. The intrinsic and microenvironmental features of diffuse midline glioma; implications for the development of effective immunotherapeutic treatment strategies. Neuro Oncol 2022; 24:1408-1422. [PMID: 35481923 PMCID: PMC9435509 DOI: 10.1093/neuonc/noac117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse midline glioma (DMG), including those of the brainstem (diffuse intrinsic pontine glioma), are pediatric tumors of the central nervous system (CNS). Recognized as the most lethal of all childhood cancers, palliative radiotherapy remains the only proven treatment option, however, even for those that respond, survival is only temporarily extended. DMG harbor an immunologically “cold” tumor microenvironment (TME) with few infiltrating immune cells. The mechanisms underpinning the cold TME are not well understood. Low expression levels of immune checkpoint proteins, including PD-1, PD-L1, and CTLA-4, are recurring features of DMG and likely contribute to the lack of response to immune checkpoint inhibitors (ICIs). The unique epigenetic signatures (including stem cell-like methylation patterns), a low tumor mutational burden, and recurring somatic mutations (H3K27M, TP53, ACVR1, MYC, and PIK3CA), possibly play a role in the reduced efficacy of traditional immunotherapies. Therefore, to circumvent the lack of efficacy thus far seen for the use of ICIs, adoptive cell transfer (including chimeric antigen receptor T cells) and the use of oncolytic viruses, are currently being evaluated for the treatment of DMG. It remains an absolute imperative that we improve our understanding of DMG’s intrinsic and TME features if patients are to realize the potential benefits offered by these sophisticated treatments. Herein, we summarize the limitations of immunotherapeutic approaches, highlight the emerging safety and clinical efficacy shown for sophisticated cell-based therapies, as well as the evolving knowledge underpinning the DMG-immune axis, to guide the development of immunotherapies that we hope will improve outcomes.
Collapse
Affiliation(s)
- Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research (CIMA), Pamplona, Spain
| | - Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
47
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
48
|
Grady C, Melnick K, Porche K, Dastmalchi F, Hoh DJ, Rahman M, Ghiaseddin A. Glioma Immunotherapy: Advances and Challenges for Spinal Cord Gliomas. Neurospine 2022; 19:13-29. [PMID: 35130421 PMCID: PMC8987559 DOI: 10.14245/ns.2143210.605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal cord gliomas are rare entities that often have limited surgical options. Immunotherapy has shown promise in intracranial gliomas with some research suggesting benefit for spinal cord gliomas. A focused review of immunotherapies that have been investigated in spinal cord gliomas was performed. The primary methods of immunotherapy investigated in spinal cord gliomas include immune checkpoint inhibitors, adoptive T-cell therapies, and vaccine strategies. There are innumerable challenges that must be overcome to effectively apply immunotherapeutic strategies to the spinal cord gliomas including low incidence, few antigenic targets, the blood spinal cord barrier, the immunosuppressive tumor microenvironment and neurotoxic treatment effects. Nonetheless, research has suggested ways to overcome these challenges and treatments have been effective in case reports for metastatic non-small cell lung cancer, melanoma, midline glioma and glioblastoma. Current therapies for spinal cord gliomas are markedly limited. Further research is needed to determine if the success of immunotherapy for intracranial gliomas can be effectively applied to these unique tumors.
Collapse
Affiliation(s)
- Clare Grady
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA,Corresponding Author Kaitlyn Melnick https://orcid.org/0000-0002-2657-2176 Department of Neurosurgery, University of Florida, Box 100265, Gainesville, FL, USA
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Daniel J. Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
50
|
Wang J, Ge J, Wang Y, Xiong F, Guo J, Jiang X, Zhang L, Deng X, Gong Z, Zhang S, Yan Q, He Y, Li X, Shi L, Guo C, Wang F, Li Z, Zhou M, Xiang B, Li Y, Xiong W, Zeng Z. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun 2022; 13:866. [PMID: 35165282 PMCID: PMC8844414 DOI: 10.1038/s41467-022-28479-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is reportedly the first identified human tumor virus, and is closely related to the occurrence and development of nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and several lymphomas. PD-L1 expression is elevated in EBV-positive NPC and GC tissues; however, the specific mechanisms underlying the EBV-dependent promotion of PD-L1 expression to induce immune escape warrant clarification. EBV encodes 44 mature miRNAs. In this study, we find that EBV-miR-BART11 and EBV-miR-BART17-3p upregulate the expression of PD-L1 in EBV-associated NPC and GC. Furthermore, EBV-miR-BART11 targets FOXP1, EBV-miR-BART17-3p targets PBRM1, and FOXP1 and PBRM1 bind to the enhancer region of PD-L1 to inhibit its expression. Therefore, EBV-miR-BART11 and EBV-miR-BART17-3p inhibit FOXP1 and PBRM1, respectively, and enhance the transcription of PD-L1 (CD274, http://www.ncbi.nlm.nih.gov/gene/29126), resulting in the promotion of tumor immune escape, which provides insights into potential targets for EBV-related tumor immunotherapy. Epstein-Barr virus (EBV)-encoded latent genes are reported to regulate PD-L1 expression to promote immune escape. Here, the authors show that EBV-encoded miRNAs EBV-miR-BART11 and EBV-miR-BART17-3p upregulate PD-L1 expression in nasopharyngeal carcinoma and gastric cancer by targeting FOXP1 and PBRM1.
Collapse
|