1
|
Jin G, Liu Y, Wang L, He Z, Zhao X, Ma Y, Jia Y, Li Z, Yin N, Peng M. A single infusion of engineered long-lived and multifunctional T cells confers durable remission of asthma in mice. Nat Immunol 2024; 25:1059-1072. [PMID: 38802511 DOI: 10.1038/s41590-024-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
Asthma, the most prevalent respiratory disease, affects more than 300 million people and causes more than 250,000 deaths annually. Type 2-high asthma is characterized by interleukin (IL)-5-driven eosinophilia, along with airway inflammation and remodeling caused by IL-4 and IL-13. Here we utilize IL-5 as the targeting domain and deplete BCOR and ZC3H12A to engineer long-lived chimeric antigen receptor (CAR) T cells that can eradicate eosinophils. We call these cells immortal-like and functional IL-5 CAR T cells (5TIF) cells. 5TIF cells were further modified to secrete an IL-4 mutein that blocks IL-4 and IL-13 signaling, designated as 5TIF4 cells. In asthma models, a single infusion of 5TIF4 cells in fully immunocompetent mice, without any conditioning regimen, led to sustained repression of lung inflammation and alleviation of asthmatic symptoms. These data show that asthma, a common chronic disease, can be pushed into long-term remission with a single dose of long-lived CAR T cells.
Collapse
Affiliation(s)
- Gang Jin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yanyan Liu
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lixia Wang
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zihao He
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuying Ma
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuting Jia
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
2
|
Wang L, Jin G, Zhou Q, Liu Y, Zhao X, Li Z, Yin N, Peng M. Induction of immortal-like and functional CAR T cells by defined factors. J Exp Med 2024; 221:e20232368. [PMID: 38530240 PMCID: PMC10965394 DOI: 10.1084/jem.20232368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Long-term antitumor efficacy of chimeric antigen receptor (CAR) T cells depends on their functional persistence in vivo. T cells with stem-like properties show better persistence, but factors conferring bona fide stemness to T cells remain to be determined. Here, we demonstrate the induction of CAR T cells into an immortal-like and functional state, termed TIF. The induction of CARTIF cells depends on the repression of two factors, BCOR and ZC3H12A, and requires antigen or CAR tonic signaling. Reprogrammed CARTIF cells possess almost infinite stemness, similar to induced pluripotent stem cells while retaining the functionality of mature T cells, resulting in superior antitumor effects. Following the elimination of target cells, CARTIF cells enter a metabolically dormant state, persisting in vivo with a saturable niche and providing memory protection. TIF represents a novel state of T cells with unprecedented stemness, which confers long-term functional persistence of CAR T cells in vivo and holds broad potential in T cell therapies.
Collapse
Affiliation(s)
- Lixia Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiuping Zhou
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yanyan Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
3
|
Andrabi SBA, Batkulwar K, Bhosale SD, Moulder R, Khan MH, Buchacher T, Khan MM, Arnkil I, Rasool O, Marson A, Kalim UU, Lahesmaa R. HIC1 interacts with FOXP3 multi protein complex: Novel pleiotropic mechanisms to regulate human regulatory T cell differentiation and function. Immunol Lett 2023; 263:123-132. [PMID: 37838026 DOI: 10.1016/j.imlet.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/16/2023]
Abstract
Transcriptional repressor, hypermethylated in cancer 1 (HIC1) participates in a range of important biological processes, such as tumor repression, immune suppression, embryonic development and epigenetic gene regulation. Further to these, we previously demonstrated that HIC1 provides a significant contribution to the function and development of regulatory T (Treg) cells. However, the mechanism by which it regulates these processes was not apparent. To address this question, we used affinity-purification mass spectrometry to characterize the HIC1 interactome in human Treg cells. Altogether 61 high-confidence interactors were identified, including IKZF3, which is a key transcription factor in the development of Treg cells. The biological processes associated with these interacting proteins include protein transport, mRNA processing, non-coding (ncRNA) transcription and RNA metabolism. The results revealed that HIC1 is part of a FOXP3-RUNX1-CBFB protein complex that regulates Treg signature genes thus improving our understanding of HIC1 function during early Treg cell differentiation.
Collapse
Affiliation(s)
- Syed Bilal Ahmad Andrabi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Kedar Batkulwar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Meraj Hasan Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Ilona Arnkil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; InFLAMES Research Flagship Center, University of Turku; Institute of Biomedicine, University of Turku.
| |
Collapse
|
4
|
Osum KC, Jenkins MK. Toward a general model of CD4 + T cell subset specification and memory cell formation. Immunity 2023; 56:475-484. [PMID: 36921574 PMCID: PMC10084496 DOI: 10.1016/j.immuni.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
In the past few decades, a number of transformative discoveries have been made regarding memory CD8+ T cell biology; meanwhile, the CD4+ T cell field has lagged behind this progress. This perspective focuses on CD4+ helper T (Th) cell subset specification and memory cell formation. Here, we argue that the sheer number of Th effector and memory cell subsets and a focus on their differences have been a barrier to a general model of CD4+ memory T cell formation that applies to all immune responses. We highlight a bifurcation model that relies on an IL-2 signal-dependent switch as an explanation for the balanced production of diverse Th memory cells that participate in cell-mediated or humoral immunity in most contexts.
Collapse
Affiliation(s)
- Kevin C Osum
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Oubounyt M, Elkjaer ML, Laske T, Grønning AB, Moeller M, Baumbach J. De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters. NAR Genom Bioinform 2023; 5:lqad018. [PMID: 36879901 PMCID: PMC9985332 DOI: 10.1093/nargab/lqad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/.
Collapse
Affiliation(s)
- Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tanja Laske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Alexander G B Grønning
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus J Moeller
- Heisenberg Chair of Preventive and Translational Nephrology, Department of Nephrology, Rheumatology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Verstockt B, Verstockt S, Cremer J, Sabino J, Ferrante M, Vermeire S, Sudhakar P. Distinct transcriptional signatures in purified circulating immune cells drive heterogeneity in disease location in IBD. BMJ Open Gastroenterol 2023; 10:bmjgast-2022-001003. [PMID: 36746519 PMCID: PMC9906185 DOI: 10.1136/bmjgast-2022-001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To infer potential mechanisms driving disease subtypes among patients with inflammatory bowel disease (IBD), we profiled the transcriptome of purified circulating monocytes and CD4 T-cells. DESIGN RNA extracted from purified monocytes and CD4 T-cells derived from the peripheral blood of 125 endoscopically active patients with IBD was sequenced using Illumina HiSeq 4000NGS. We used complementary supervised and unsupervised analytical methods to infer gene expression signatures associated with demographic/clinical features. Expression differences and specificity were validated by comparison with publicly available single cell datasets, tissue-specific expression and meta-analyses. Drug target information, druggability and adverse reaction records were used to prioritise disease subtype-specific therapeutic targets. RESULTS Unsupervised/supervised methods identified significant differences in the expression profiles of CD4 T-cells between patients with ileal Crohn's disease (CD) and ulcerative colitis (UC). Following a pathway-based classification (Area Under Receiver Operating Characteristic - AUROC=86%) between ileal-CD and UC patients, we identified MAPK and FOXO pathways to be downregulated in UC. Coexpression module/regulatory network analysis using systems-biology approaches revealed mediatory core transcription factors. We independently confirmed that a subset of the disease location-associated signature is characterised by T-cell-specific and location-specific expression. Integration of drug-target information resulted in the discovery of several new (BCL6, GPR183, TNFAIP3) and repurposable drug targets (TUBB2A, PRKCQ) for ileal CD as well as novel targets (NAPEPLD, SLC35A1) for UC. CONCLUSIONS Transcriptomic profiling of circulating CD4 T-cells in patients with IBD demonstrated marked molecular differences between the IBD-spectrum extremities (UC and predominantly ileal CD, sandwiching colonic CD), which could help in prioritising particular drug targets for IBD subtypes.
Collapse
Affiliation(s)
- Bram Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Sare Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - João Sabino
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Severine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Padhmanand Sudhakar
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Li T. The functions of polycomb group proteins in T cells. CELL INSIGHT 2022; 1:100048. [PMID: 37193554 PMCID: PMC10120301 DOI: 10.1016/j.cellin.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/18/2023]
Abstract
T cells are involved in many aspects of adaptive immunity, including autoimmunity, anti-tumor activity, and responses to allergenic substances and pathogens. T cells undergo comprehensive epigenome remodeling in response to signals. Polycomb group (PcG) proteins are a well-studied complex of chromatin regulators, conserved in animals, and function in various biological processes. PcG proteins are divided into two distinct complexes: PRC1 (Polycomb repressive complex 1) and PRC2. PcG is correlated with the regulation of T cell development, phenotypic transformation, and function. In contrast, PcG dysregulation is correlated with pathogenesis of immune-mediated diseases and compromised anti-tumor responses. This review discusses recent findings on the involvement of PcG proteins in T cell maturation, differentiation, and activation. In addition, we explore implications in the development of the immune system diseases and cancer immunity, which offers promising targets for various treatment protocols.
Collapse
Affiliation(s)
- Ting Li
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| |
Collapse
|
8
|
Hao Y, Zhao W, Chang L, Chen X, Liu C, Liu Y, Hou L, Su Y, Xu H, Guo Y, Sun Q, Mu L, Wang J, Li H, Han J, Kong Q. Metformin inhibits the pathogenic functions of AChR-specific B and Th17 cells by targeting miR-146a. Immunol Lett 2022; 250:29-40. [PMID: 36108773 DOI: 10.1016/j.imlet.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022]
Abstract
Myasthenia gravis (MG) is characterized by fatigable skeletal muscle weakness with a fluctuating and unpredictable disease course and is caused by circulating autoantibodies and pathological T helper cells. Regulation of B-cell function and the T-cell network may be a potential therapeutic strategy for MG. MicroRNAs (miRNAs) have emerged as potential biomarkers in immune disorders due to their critical roles in various immune cells and multiple inflammatory diseases. Aberrant miR-146a signal activation has been reported in autoimmune diseases, but a detailed exploration of the relationship between miR-146a and MG is still necessary. Using an experimental autoimmune myasthenia gravis (EAMG) rat model, we observed that miR-146a was highly expressed in the spleen but expressed at low levels in the thymus and lymph nodes in EAMG rats. Additionally, miR-146a expression in T and B cells was also quite different. EAMG-specific Th17 and Treg cells had lower miR-146a levels, while EAMG-specific B cells had higher miR-146a levels, indicating that targeted intervention against miR-146a might have diametrically opposite effects. Metformin, a drug that was recently demonstrated to alleviate EAMG, may rescue the functions of both Th17 cells and B cells by reversing the expression of miR-146a. We also investigated the downstream target genes of miR-146a in both T and B cells using bioinformatics screening and qPCR. Taken together, our study identifies a complex role of miR-146a in the EAMG rat model, suggesting that more caution should be paid in targeting miR-146a for the treatment of MG.
Collapse
Affiliation(s)
- Yue Hao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lulu Chang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Xingfan Chen
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Chonghui Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yang Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lixuan Hou
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yinchun Su
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Hao Xu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yu Guo
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Qixu Sun
- YanTai PengLai, People's Hospital Digestive System Department, YanTai, ShanDong 265600, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
9
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
10
|
Melo GA, Calôba C, Brum G, Passos TO, Martinez GJ, Pereira RM. Epigenetic regulation of T cells by Polycomb group proteins. J Leukoc Biol 2022; 111:1253-1267. [DOI: 10.1002/jlb.2ri0122-039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme A. Melo
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Carolina Calôba
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gabrielle Brum
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Thaís O. Passos
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology and Infection, Discipline of Microbiology and Immunology Rosalind Franklin University of Medicine and Science Chicago Illinois USA
| | - Renata M. Pereira
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
11
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
12
|
Giefing M, Gearhart MD, Schneider M, Overbeck B, Klapper W, Hartmann S, Ustaszewski A, Weniger MA, Wiehle L, Hansmann ML, Melnick A, Béguelin W, Sundström C, Küppers R, Bardwell VJ, Siebert R. Loss of function mutations of BCOR in classical Hodgkin lymphoma. Leuk Lymphoma 2021; 63:1080-1090. [DOI: 10.1080/10428194.2021.2015587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center and Developmental Biology Center, University of Minnesota, Minneapolis, USA
| | - Markus Schneider
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Essen, Essen, Germany
| | - Birte Overbeck
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Sylvia Hartmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marc A. Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
| | - Laura Wiehle
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Martin-Leo Hansmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center and Developmental Biology Center, University of Minnesota, Minneapolis, USA
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
13
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
14
|
Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4 + T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol 2021; 38:705-725. [PMID: 32340571 DOI: 10.1146/annurev-immunol-103019-085803] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.
Collapse
Affiliation(s)
- Mikel Ruterbusch
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| |
Collapse
|
15
|
Mousel MR, White SN, Herndon MK, Herndon DR, Taylor JB, Becker GM, Murdoch BM. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS One 2021; 16:e0247209. [PMID: 34252097 PMCID: PMC8274911 DOI: 10.1371/journal.pone.0247209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.
Collapse
Affiliation(s)
- Michelle R. Mousel
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Paul G. Allen School of Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Maria K. Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - David R. Herndon
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
| | - J. Bret Taylor
- U.S. Department of Agriculture, Range Sheep Production Efficiency Research, Agricultural Research Service, Dubois, ID, United States of America
| | - Gabrielle M. Becker
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
16
|
BCOR gene alterations in hematological diseases. Blood 2021; 138:2455-2468. [PMID: 33945606 DOI: 10.1182/blood.2021010958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The BCL6 co-repressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homologue BCORL1 have been detected in several hematological malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR. BCOR and BCORL1 mutations are similar to those causing two rare X-linked diseases: the oculo-facio-cardio-dental (OFCD) and the Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and non-malignant hematological diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (e.g. Dnmt3a and Tet2), in promoting hematological malignancies and in providing a useful platform for the development of new targeted therapies.
Collapse
|
17
|
Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 + T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 205:1721-1730. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and
| |
Collapse
|
18
|
Hamline MY, Corcoran CM, Wamstad JA, Miletich I, Feng J, Lohr JL, Hemberger M, Sharpe PT, Gearhart MD, Bardwell VJ. OFCD syndrome and extraembryonic defects are revealed by conditional mutation of the Polycomb-group repressive complex 1.1 (PRC1.1) gene BCOR. Dev Biol 2020; 468:110-132. [PMID: 32692983 PMCID: PMC9583620 DOI: 10.1016/j.ydbio.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
BCOR is a critical regulator of human development. Heterozygous mutations of BCOR in females cause the X-linked developmental disorder Oculofaciocardiodental syndrome (OFCD), and hemizygous mutations of BCOR in males cause gestational lethality. BCOR associates with Polycomb group proteins to form one subfamily of the diverse Polycomb repressive complex 1 (PRC1) complexes, designated PRC1.1. Currently there is limited understanding of differing developmental roles of the various PRC1 complexes. We therefore generated a conditional exon 9-10 knockout Bcor allele and a transgenic conditional Bcor expression allele and used these to define multiple roles of Bcor, and by implication PRC1.1, in mouse development. Females heterozygous for Bcor exhibiting mosaic expression due to the X-linkage of the gene showed reduced postnatal viability and had OFCD-like defects. By contrast, Bcor hemizygosity in the entire male embryo resulted in embryonic lethality by E9.5. We further dissected the roles of Bcor, focusing on some of the tissues affected in OFCD through use of cell type specific Cre alleles. Mutation of Bcor in neural crest cells caused cleft palate, shortening of the mandible and tympanic bone, ectopic salivary glands and abnormal tongue musculature. We found that defects in the mandibular region, rather than in the palate itself, led to palatal clefting. Mutation of Bcor in hindlimb progenitor cells of the lateral mesoderm resulted in 2/3 syndactyly. Mutation of Bcor in Isl1-expressing lineages that contribute to the heart caused defects including persistent truncus arteriosus, ventricular septal defect and fetal lethality. Mutation of Bcor in extraembryonic lineages resulted in placental defects and midgestation lethality. Ubiquitous over expression of transgenic Bcor isoform A during development resulted in embryonic defects and midgestation lethality. The defects we have found in Bcor mutants provide insights into the etiology of the OFCD syndrome and how BCOR-containing PRC1 complexes function in development.
Collapse
Affiliation(s)
- Michelle Y Hamline
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA; University of Minnesota Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Connie M Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph A Wamstad
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Isabelle Miletich
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jifan Feng
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jamie L Lohr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Medical Research Council Centre for Transplantation, King's College London, London, SE1 9RT, UK
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Brune Z, Rice MR, Barnes BJ. Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Front Immunol 2020; 11:1143. [PMID: 32582209 PMCID: PMC7283537 DOI: 10.3389/fimmu.2020.01143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. IRF5 pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of Irf5 is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though Irf5 knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in Irf5 knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Collapse
Affiliation(s)
- Zarina Brune
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew R. Rice
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
20
|
Kouakanou L, Peters C, Sun Q, Floess S, Bhat J, Huehn J, Kabelitz D. Vitamin C supports conversion of human γδ T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Sci Rep 2020; 10:6550. [PMID: 32300237 PMCID: PMC7162875 DOI: 10.1038/s41598-020-63572-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-β in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-β-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-β-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-β, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-β-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Qiwei Sun
- BGI Genomics Institute, Shenzhen, China
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
- Metabolic Programming, School of Life Sciences, Technical University Munich (TUM), 85354, Freising, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany.
| |
Collapse
|