1
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
2
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Zou Z, Cheng Q, Zhou J, Guo C, Hadjinicolaou AV, Salio M, Liang X, Yang C, Du Y, Yao W, Wang D, Cerundolo V, Wang Q, Xia M. ATF4-SLC7A11-GSH axis mediates the acquisition of immunosuppressive properties by activated CD4 + T cells in low arginine condition. Cell Rep 2024; 43:113995. [PMID: 38527061 DOI: 10.1016/j.celrep.2024.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/21/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
The tumor microenvironment (TME) is restricted in metabolic nutrients including the semi-essential amino acid arginine. While complete arginine deprivation causes T cell dysfunction, it remains unclear how arginine levels fluctuate in the TME to shape T cell fates. Here, we find that the 20-μM low arginine condition, representing the levels found in the plasma of patients with cancers, confers Treg-like immunosuppressive capacities upon activated T cells. In vivo mouse tumor models and human single-cell RNA-sequencing datasets reveal positive correlations between low arginine condition and intratumoral Treg accumulation. Mechanistically, low arginine-activated T cells engage in metabolic and transcriptional reprogramming, using the ATF4-SLC7A11-GSH axis, to preserve their suppressive function. These findings improve our understanding of the role of arginine in human T cell biology with potential applications for immunotherapy strategies.
Collapse
Affiliation(s)
- Ziqi Zou
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Cheng
- MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jiajie Zhou
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenyao Guo
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK; Early Cancer Institute, Department of Oncology, Hutchison Research Centre, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Mariolina Salio
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Xinghua Liang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yue Du
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiran Yao
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongrui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Qingqing Wang
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.
| | - Meng Xia
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
4
|
Nakashima A, Furuta A, Yoshida-Kawaguchi M, Yamada K, Nunomura H, Morita K, Yasuda I, Yoneda S, Yamaki-Ushijima A, Shima T, Tsuda S. Immunological regulation and the role of autophagy in preeclampsia. Am J Reprod Immunol 2024; 91:e13835. [PMID: 38467995 DOI: 10.1111/aji.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Autophagy is a bulk degradation system that maintains cellular homeostasis by producing energy and/or recycling excess proteins. During early placentation, extravillous trophoblasts invade the decidua and uterine myometrium, facing maternal immune cells, which participate in the immune suppression of paternal and fetal antigens. Regulatory T cells will likely increase in response to a specific antigen before and during early pregnancy. Insufficient expansion of antigen-specific Treg cells, which possess the same T cell receptor, is associated with the pathophysiology of preeclampsia, suggesting sterile systemic inflammation. Autophagy is involved in reducing inflammation through the degradation of inflammasomes and in the differentiation and function of regulatory T cells. Autophagy dysregulation induces protein aggregation in trophoblasts, resulting in placental dysfunction. In this review, we discuss the role of regulatory T cells in normal pregnancies. In addition, we discuss the association between autophagy and regulatory T cells in the development of preeclampsia based on reports on the role of autophagy in autoimmune diseases.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Haruka Nunomura
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keiko Morita
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Nguyen TM, Sreekanth V, Deb A, Kokkonda P, Tiwari PK, Donovan KA, Shoba V, Chaudhary SK, Mercer JAM, Lai S, Sadagopan A, Jan M, Fischer ES, Liu DR, Ebert BL, Choudhary A. Proteolysis-targeting chimeras with reduced off-targets. Nat Chem 2024; 16:218-228. [PMID: 38110475 PMCID: PMC10913580 DOI: 10.1038/s41557-023-01379-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/13/2023] [Indexed: 12/20/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Praveen K Tiwari
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Veronika Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jaron A M Mercer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sophia Lai
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ananthan Sadagopan
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Bouguenina H, Scarpino A, O'Hanlon JA, Warne J, Wang HZ, Wah Hak LC, Sadok A, McAndrew PC, Stubbs M, Pierrat OA, Hahner T, Cabry MP, Le Bihan YV, Mitsopoulos C, Sialana FJ, Roumeliotis TI, Burke R, van Montfort RLM, Choudhari J, Chopra R, Caldwell JJ, Collins I. A Degron Blocking Strategy Towards Improved CRL4 CRBN Recruiting PROTAC Selectivity. Chembiochem 2023; 24:e202300351. [PMID: 37418539 DOI: 10.1002/cbic.202300351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Small molecules inducing protein degradation are important pharmacological tools to interrogate complex biology and are rapidly translating into clinical agents. However, to fully realise the potential of these molecules, selectivity remains a limiting challenge. Herein, we addressed the issue of selectivity in the design of CRL4CRBN recruiting PROteolysis TArgeting Chimeras (PROTACs). Thalidomide derivatives used to generate CRL4CRBN recruiting PROTACs have well described intrinsic monovalent degradation profiles by inducing the recruitment of neo-substrates, such as GSPT1, Ikaros and Aiolos. We leveraged structural insights from known CRL4CRBN neo-substrates to attenuate and indeed remove this monovalent degradation function in well-known CRL4CRBN molecular glues degraders, namely CC-885 and Pomalidomide. We then applied these design principles on a previously published BRD9 PROTAC (dBRD9-A) and generated an analogue with improved selectivity profile. Finally, we implemented a computational modelling pipeline to show that our degron blocking design does not impact PROTAC-induced ternary complex formation. We believe that the tools and principles presented in this work will be valuable to support the development of targeted protein degradation.
Collapse
Affiliation(s)
- Habib Bouguenina
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Andrea Scarpino
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Jack A O'Hanlon
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Justin Warne
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Hannah Z Wang
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Laura Chan Wah Hak
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Amine Sadok
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
- Monte Rosa Therapeutics AG, Aeschenvorstadt 36, 4051, Basel, Switzerland
| | - P Craig McAndrew
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Mark Stubbs
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Olivier A Pierrat
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Tamas Hahner
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Marc P Cabry
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Yann-Vaï Le Bihan
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Costas Mitsopoulos
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Fernando J Sialana
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
- Functional Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Theodoros I Roumeliotis
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
- Functional Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Rosemary Burke
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Rob L M van Montfort
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Jyoti Choudhari
- Functional Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Rajesh Chopra
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
- Apple Tree Partners, The Gridiron Building, Suite 6.05, 1 St Pancras Square, London, N1 C 4AG, UK
| | - John J Caldwell
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Ian Collins
- Centre for Cancer Drug Discovery, Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| |
Collapse
|
8
|
Wang A, Huang H, Shi JH, Yu X, Ding R, Zhang Y, Han Q, Ni ZY, Li X, Zhao R, Zou Q. USP47 inhibits m6A-dependent c-Myc translation to maintain regulatory T cell metabolic and functional homeostasis. J Clin Invest 2023; 133:e169365. [PMID: 37788092 PMCID: PMC10688989 DOI: 10.1172/jci169365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
The functional integrity of Tregs is interwoven with cellular metabolism; however, the mechanisms governing Treg metabolic programs remain elusive. Here, we identified that the deubiquitinase USP47 inhibited c-Myc translation mediated by the RNA N6-methyladenosine (m6A) reader YTHDF1 to maintain Treg metabolic and functional homeostasis. USP47 positively correlated with the tumor-infiltrating Treg signature in samples from patients with colorectal cancer and gastric cancer. USP47 ablation compromised Treg homeostasis and function in vivo, resulting in the development of inflammatory disorders, and boosted antitumor immune responses. USP47 deficiency in Tregs triggered the accumulation of the c-Myc protein and in turn exacerbated hyperglycolysis. Mechanistically, USP47 prevented YTHDF1 ubiquitination to attenuate the association of YTHDF1 with translation initiation machinery, thereby decreasing m6A-based c-Myc translation efficiency. Our findings reveal that USP47 directs m6A-dependent metabolic programs to orchestrate Treg homeostasis and suggest novel approaches for selective immune modulation in cancer and autoimmune diseases by targeting of USP47.
Collapse
Affiliation(s)
- Aiting Wang
- Department of General Surgery, Ruijin Hospital, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, and
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Xiaoyan Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuerong Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoqiao Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Yu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, and
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Luo J, Wu H, Li J, Xian W, Li W, Locascio JJ, Pei Z, Liu G. Joint Modeling Study Identifies Blood-Based Transcripts Link to Cognitive Decline in Parkinson's Disease. Mov Disord 2022; 37:2386-2395. [PMID: 36087011 DOI: 10.1002/mds.29213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cognitive decline in Parkinson's disease (PD) is prevalent, insidious, and burdensome during the progression of the disease. OBJECTIVES We aimed to find transcriptome-wide biomarkers in blood to predict cognitive decline and identify patients at high risk with cognitive impairment in PD. METHODS We carried out joint modeling analysis to characterize transcriptome-wide longitudinal gene expression and its association with the progression of mild cognitive impairment (MCI) in PD patients. The average time-dependent area under the curves (AUCs) were used for evaluating the accuracy of the significant joint models. A cognitive survival score (CogSs) derived from joint model was leveraged to predict the occurrence of MCI. All predicting models were built in a discovery cohort with 272 patients and replicated in an independent cohort with 177 patients. RESULTS We identified five longitudinal varied expression of transcripts that were significantly associated with MCI progression in patients with PD. The most significant transcript IGLC1 joint model accurately predicted the progression of MCI in PD patients in the discovery and replication cohorts (average time-dependent AUCs >0.82). The CogSs derived from the optimal IGLC1 joint model had a high accuracy at early study stage in both cohorts (AUC ≥0.91). CONCLUSIONS Our transcriptome-wide joint modeling analysis uncovered five blood-based transcripts related to cognitive decline in PD. The joint models will serve as a useful resource for clinicians and researchers to screen PD patients with high risk of development of cognitive impairment and pave the path for Parkinson's personalized medicine. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Junfeng Luo
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hao Wu
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jinxia Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weimin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
10
|
Prospect of ULK1 modulators in targeting regulatory T cells. Bioorg Chem 2022; 129:106141. [PMID: 36137312 DOI: 10.1016/j.bioorg.2022.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Regulatory T (Treg) cells play an instrumental role in coordinating immune homeostasis via potent inhibitory effects. Defects in Treg cells lead to autoimmunity, but an overwhelming proportion of Treg cells encourages cancer progression. Hence, targeting Treg cells has emerged as a promising approach for mitigating disease severity. Recent studies have revealed that kinases are a critical component for tuning the fate of Treg cells, but the entire network of Treg-modulating kinases is still unclear. Here, we propose that the autophagy-activating UNC-51-like kinase 1 (ULK1) is a candidate for Treg cell modulation. While accumulating evidence has highlighted the role of autophagy-related kinases in Treg cells, the ULK1-Treg cell axis is yet to be examined. In this review, we predicted the potential role of ULK1 in Treg cell modulation. Furthermore, we summarized current ULK1 activators and inhibitors that can be investigated as Treg-targeting strategies, which might have beneficial outcomes in autoimmunity and cancer.
Collapse
|
11
|
Vps33B controls Treg cell suppressive function through inhibiting lysosomal nutrient sensing complex-mediated mTORC1 activation. Cell Rep 2022; 39:110943. [PMID: 35705052 DOI: 10.1016/j.celrep.2022.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
The suppressive function of regulatory T (Treg) cells is tightly controlled by nutrient-fueled mechanistic target of rapamycin complex 1 (mTORC1) activation, yet its dynamics and negative regulation remain unclear. Here we show that Treg-specific depletion of vacuolar protein sorting 33B (Vps33B) in mice results in defective Treg cell suppressive function and acquisition of effector phenotype, which in turn leads to disturbed T cell homeostasis and boosted antitumor immunity. Mechanistically, Vps33B binds with lysosomal nutrient-sensing complex (LYNUS) and promotes late endosome and lysosome fusion and clearance of the LYNUS-containing late endosome/lysosome, and therefore suppresses mTORC1 activation. Vps33B deficiency in Treg cells results in disordered endosome lysosome fusion, which leads to accumulation of LYNUS that causes elevated mTORC1 activation and hyper-glycolytic metabolism. Taken together, our study reveals that Vps33B maintains Treg cell suppressive function through sustaining endolysosomal homeostasis and therefore restricting amino acid-licensed mTORC1 activation and metabolism.
Collapse
|
12
|
Fernbach S, Spieler EE, Busnadiego I, Karakus U, Lkharrazi A, Stertz S, Hale BG. Restriction factor screening identifies RABGAP1L-mediated disruption of endocytosis as a host antiviral defense. Cell Rep 2022; 38:110549. [PMID: 35320721 PMCID: PMC8939003 DOI: 10.1016/j.celrep.2022.110549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Host interferons (IFNs) powerfully restrict viruses through the action of several hundred IFN-stimulated gene (ISG) products, many of which remain uncharacterized. Here, using RNAi screening, we identify several ISG restriction factors with previously undescribed contributions to IFN-mediated defense. Notably, RABGAP1L, a Tre2/Bub2/Cdc16 (TBC)-domain-containing protein involved in regulation of small membrane-bound GTPases, robustly potentiates IFN action against influenza A viruses (IAVs). Functional studies reveal that the catalytically active TBC domain of RABGAP1L promotes antiviral activity, and the RABGAP1L proximal interactome uncovered its association with proteins involved in endosomal sorting, maturation, and trafficking. In this regard, RABGAP1L overexpression is sufficient to disrupt endosomal function during IAV infection and restricts an early post-attachment, but pre-fusion, stage of IAV cell entry. Other RNA viruses that enter cells primarily via endocytosis are also impaired by RABGAP1L, while entry promiscuous SARS-CoV-2 is resistant. Our data highlight virus endocytosis as a key target for host defenses.
Collapse
Affiliation(s)
- Sonja Fernbach
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, ETH and University of Zurich, 8057 Zurich, Switzerland
| | - Eva E Spieler
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, ETH and University of Zurich, 8057 Zurich, Switzerland
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Anouk Lkharrazi
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
13
|
Zhang YP, Wang X, Jie LG, Qu Y, Zhu XT, Wu J, Yu QH. Osteoarticular Involvement-Associated Biomarkers and Pathways in Psoriasis: The Shared Pathway With Ankylosing Spondylitis. Front Immunol 2022; 13:836533. [PMID: 35371093 PMCID: PMC8969572 DOI: 10.3389/fimmu.2022.836533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a unique immune-mediated disease with cutaneous and osteoarticular involvement. However, only a few studies have explored the susceptibility of osteoarticular involvement in psoriasis (Ps) at the genetic level. This study investigated the biomarkers associated with osteoarticular participation and potential shared molecular mechanisms for PsA and ankylosing spondylitis (AS).
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Wu
- *Correspondence: Jing Wu, ; Qing-Hong Yu,
| | | |
Collapse
|
14
|
Zhang Z, Zhong L, Dan W, Chu X, Liu C, Luo X, Wan P, Liu Z, Lu Y, Wang X, Liu B. ZFP91 promotes cell proliferation and inhibits cell apoptosis in AML via inhibiting the proteasome-dependent degradation of RIP1. Int J Med Sci 2022; 19:274-285. [PMID: 35165513 PMCID: PMC8795797 DOI: 10.7150/ijms.67436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) is a quickly progressive and devastated hematological malignancy with large rate of relapse and the appearance of chemotherapy resistance. Therefore, the identification of new therapeutic targets is urgent. ZFP91 is a hidden oncogene. Nevertheless, how ZFP91 takes part in regulating AML is less clear. Our research aims at investigating the molecular mechanisms and uncovering the effects of ZFP91 on AML. This research demonstrates that ZFP91 boosts AML cell proliferation and stops AML cell apoptosis. Mechanistically, experimental results showed the interaction between ZFP91 and RIP1 and inhibitory effect of ZFP91 on the K48-linked ubiquitination of endogenous RIP1, which is an important molecule in AML. Taken together, our results provide the evidence that targeted inhibition of ZFP91 could be a hopeful measure to treat AML.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenran Dan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xuan Chu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Chen Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xu Luo
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yang Lu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xiao Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Overcoming IMiD Resistance in T-cell Lymphomas Through Potent Degradation of ZFP91 and IKZF1. Blood 2021; 139:2024-2037. [PMID: 34936696 DOI: 10.1182/blood.2021014701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory (IMiD) agents like lenalidomide and pomalidomide induce the recruitment of IKZF1 and other targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and degradation. These agents are highly active in B-cell lymphomas and a subset of myeloid diseases but have compromised effects in T-cell lymphomas (TCLs). Here we show that two factors determine resistance to IMiDs among TCLs. First, limited CRBN expression reduces IMiD activity in TCLs but can be overcome by newer-generation degrader CC-92480. Using mass spectrometry, we show that CC-92480 selectively degrades IKZF1 and ZFP91 in TCL cells with greater potency than pomalidomide. As a result, CC-92480 is highly active against multiple TCL subtypes and showed greater efficacy than pomalidomide across 4 in vivo TCL models. Second, we demonstrate that ZFP91 functions as a bona fide transcription factor that co-regulates cell survival with IKZF1 in IMiD-resistant TCLs. By activating keynote genes from WNT, NF-kB, and MAP kinase signaling, ZFP91 directly promotes resistance to IKZF1 loss. Moreover, lenalidomide-sensitive TCLs can acquire stable resistance via ZFP91 rewiring, which involves casein kinase 2 (CK2) mediated c-Jun inactivation. Overall, these findings identify a critical transcription factor network within TCLs and provide clinical proof of concept for the novel therapy using next-generation degraders.
Collapse
|
16
|
Liang X, Bai Z, Wang F, Han Y, Sun H, Xiaokereti J, Zhang L, Zhou X, Lu Y, Tang B. Full-Length Transcriptome Sequencing: An Insight Into the Dog Model of Heart Failure. Front Cardiovasc Med 2021; 8:712797. [PMID: 34977163 PMCID: PMC8716442 DOI: 10.3389/fcvm.2021.712797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure (HF) leads to a progressive increase in morbidity and mortality rates. This study aimed to explore the transcriptional landscape during HF and identify differentially expressed transcripts (DETs) and alternative splicing events associated with HF. We generated a dog model of HF (n = 3) using right ventricular pacemaker implantation. We performed full-length transcriptome sequencing (based on nanopore platform) on the myocardial tissues and analyzed the transcripts using differential expression analysis and functional annotation methods [Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses]. Additionally, we estimated the expression of the selected genes by quantitative real-time PCR (qRT-PCR) and detected the proportion of immune cells using flow cytometry. We found that increased B-type natriuretic peptide reduced ejection fraction, and apparent clinical signs were observed in the dog model of HF. We identified 67,458 transcripts using full-length transcriptome sequencing. A total of 785 DETs were obtained from the HF and control groups. These DETs were mainly enriched in the immune responses, especially Th1, Th2, and Th17 cell differentiation processes. Furthermore, flow cytometry results revealed that the proportion of Th1 and Th17 cells increased in patients with HF compared to controls, while the proportion of Th2 cells decreased. Differentially expressed genes in the HF and control groups associated with Th1, Th2, and Th17 cell differentiation were quantified using qRT-PCR. We also identified variable splicing events of sarcomere genes (e.g., MYBPC3, TNNT2, TTN, FLNC, and TTNI3). In addition, we detected 4,892 transcription factors and 406 lncRNAs associated with HF. Our analysis based on full-length transcript sequencing provided an analysis perspective in a dog model of HF, which is valuable for molecular research in an increasingly relevant large animal model of HF.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zechen Bai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Feifei Wang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang First Aid Center, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yafan Han
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Huaxin Sun
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jiasuoer Xiaokereti
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xianhui Zhou
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yanmei Lu
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- *Correspondence: Baopeng Tang
| | - Baopeng Tang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Yanmei Lu
| |
Collapse
|