1
|
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, Swartz KJ. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. SCIENCE ADVANCES 2022; 8:eabm7814. [PMID: 35302848 PMCID: PMC8932672 DOI: 10.1126/sciadv.abm7814] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
Collapse
Affiliation(s)
- Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Bassetto CA, Carvalho-de-Souza JL, Bezanilla F. Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in Shaker K + channels. eLife 2021; 10:63077. [PMID: 33620313 PMCID: PMC7943188 DOI: 10.7554/elife.63077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower charge-voltage (Q-V) curve that crosses the conductance-voltage (G-V) curve. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A, or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos Az Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - João Luis Carvalho-de-Souza
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Department of Anesthesiology, University of Arizona, Tucson, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
3
|
Lolicato M, Natale AM, Abderemane-Ali F, Crottès D, Capponi S, Duman R, Wagner A, Rosenberg JM, Grabe M, Minor DL. K 2P channel C-type gating involves asymmetric selectivity filter order-disorder transitions. SCIENCE ADVANCES 2020; 6:6/44/eabc9174. [PMID: 33127683 PMCID: PMC7608817 DOI: 10.1126/sciadv.abc9174] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 05/05/2023]
Abstract
K2P potassium channels regulate cellular excitability using their selectivity filter (C-type) gate. C-type gating mechanisms, best characterized in homotetrameric potassium channels, remain controversial and are attributed to selectivity filter pinching, dilation, or subtle structural changes. The extent to which such mechanisms control C-type gating of innately heterodimeric K2Ps is unknown. Here, combining K2P2.1 (TREK-1) x-ray crystallography in different potassium concentrations, potassium anomalous scattering, molecular dynamics, and electrophysiology, we uncover unprecedented, asymmetric, potassium-dependent conformational changes that underlie K2P C-type gating. These asymmetric order-disorder transitions, enabled by the K2P heterodimeric architecture, encompass pinching and dilation, disrupt the S1 and S2 ion binding sites, require the uniquely long K2P SF2-M4 loop and conserved "M3 glutamate network," and are suppressed by the K2P C-type gate activator ML335. These findings demonstrate that two distinct C-type gating mechanisms can operate in one channel and underscore the SF2-M4 loop as a target for K2P channel modulator development.
Collapse
Affiliation(s)
- Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - David Crottès
- Department of Physiology, University of California, San Francisco, CA 93858-2330, USA
| | - Sara Capponi
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Ramona Duman
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Armin Wagner
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - John M Rosenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 93858-2330, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA.
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 93858-2330, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, 93858-2330, USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| |
Collapse
|
4
|
Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M. Hydrogen bond strength in membrane proteins probed by time-resolved 1H-detected solid-state NMR and MD simulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:80-85. [PMID: 28342732 DOI: 10.1016/j.ssnmr.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining time-resolved 1H-detected solid-state NMR experiments and molecular dynamics simulations. In particular, we show that the carboxyl-side chain of the highly conserved residue Glu51 is involved in ultra-strong hydrogen bonds, which are fully-water-exposed and yet stable for weeks. The astonishing stability of these hydrogen bonds is important for the structural integrity of potassium channels, which we further corroborate by computational studies.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
5
|
Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation. Sci Rep 2016; 6:27562. [PMID: 27278891 PMCID: PMC4899724 DOI: 10.1038/srep27562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd(2+) bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K(+) coordination, a hallmark for C-type inactivation. An engineered Cd(2+) bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.
Collapse
|
6
|
Armstrong CM, Hoshi T. K⁺ channel gating: C-type inactivation is enhanced by calcium or lanthanum outside. ACTA ACUST UNITED AC 2015; 144:221-30. [PMID: 25156116 PMCID: PMC4144669 DOI: 10.1085/jgp.201411223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C-type inactivation in K+ channels is enhanced by external Ca2+ or La3+, consistent with a mechanism which involves dilation of the outer pore. Many voltage-gated K+ channels exhibit C-type inactivation. This typically slow process has been hypothesized to result from dilation of the outer-most ring of the carbonyls in the selectivity filter, destroying this ring’s ability to bind K+ with high affinity. We report here strong enhancement of C-type inactivation upon extracellular addition of 10–40 mM Ca2+ or 5–50 µM La3+. These multivalent cations mildly increase the rate of C-type inactivation during depolarization and markedly promote inactivation and/or suppress recovery when membrane voltage (Vm) is at resting levels (−80 to −100 mV). At −80 mV with 40 mM Ca2+ and 0 mM K+ externally, ShBΔN channels with the mutation T449A inactivate almost completely within 2 min or less with no pulsing. This behavior is observed only in those mutants that show C-type inactivation on depolarization and is distinct from the effects of Ca2+ and La3+ on activation (opening and closing of the Vm-controlled gate), i.e., slower activation of K+ channels and a positive shift of the mid-voltage of activation. The Ca2+/La3+ effects on C-type inactivation are antagonized by extracellular K+ in the low millimolar range. This, together with the known ability of Ca2+ and La3+ to block inward current through K+ channels at negative voltage, strongly suggests that Ca2+/La3+ acts at the outer mouth of the selectivity filter. We propose that at −80 mV, Ca2+ or La3+ ions compete effectively with K+ at the channel’s outer mouth and prevent K+ from stabilizing the filter’s outer carbonyl ring.
Collapse
Affiliation(s)
- Clay M Armstrong
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Cheng YM, Azer J, Niven CM, Mafi P, Allard CR, Qi J, Thouta S, Claydon TW. Molecular determinants of U-type inactivation in Kv2.1 channels. Biophys J 2011; 101:651-61. [PMID: 21806933 DOI: 10.1016/j.bpj.2011.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022] Open
Abstract
Kv2.1 channels exhibit a U-shaped voltage-dependence of inactivation that is thought to represent preferential inactivation from preopen closed states. However, the molecular mechanisms underlying so-called U-type inactivation are unknown. We have performed a cysteine scan of the S3-S4 and S5-P-loop linkers and found sites that are important for U-type inactivation. In the S5-P-loop linker, U-type inactivation was preserved in all mutant channels except E352C. This mutation, but not E352Q, abolished closed-state inactivation while preserving open-state inactivation, resulting in a loss of the U-shaped voltage profile. The reducing agent DTT, as well as the C232V mutation in S2, restored U-type inactivation to the E352C mutant, which suggests that residues 352C and C232 may interact to prevent U-type inactivation. The R289C mutation, in the S3-S4 linker, also reduced U-type inactivation. In this case, DTT had little effect but application of MTSET restored wild-type-like U-type inactivation behavior, suggestive of the importance of charge at this site. Kinetic modeling suggests that the E352C and R289C inactivation phenotypes largely resulted from reductions in the rate constants for transitions from closed to inactivated states. The data indicate that specific residues within the S3-S4 and S5-P-loop linkers may play important roles in Kv2.1 U-type inactivation.
Collapse
Affiliation(s)
- Y M Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R. Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 2009; 284:21288-95. [PMID: 19509299 DOI: 10.1074/jbc.m109.017574] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant growth and development is driven by osmotic processes. Potassium represents the major osmotically active cation in plants cells. The uptake of this inorganic osmolyte from the soil in Arabidopsis involves a root K(+) uptake module consisting of the two K(+) channel alpha-subunits, AKT1 and AtKC1. AKT1-mediated potassium absorption from K(+)-depleted soil was shown to depend on the calcium-sensing proteins CBL1/9 and their interacting kinase CIPK23. Here we show that upon activation by the CBL.CIPK complex in low external potassium homomeric AKT1 channels open at voltages positive of E(K), a condition resulting in cellular K(+) leakage. Although at submillimolar external potassium an intrinsic K(+) sensor reduces AKT1 channel cord conductance, loss of cytosolic potassium is not completely abolished under these conditions. Depending on channel activity and the actual potassium gradients, this channel-mediated K(+) loss results in impaired plant growth in the atkc1 mutant. Incorporation of the AtKC1 subunit into the channel complex, however, modulates the properties of the K(+) uptake module to prevent K(+) loss. Upon assembly of AKT1 and AtKC1, the activation threshold of the root inward rectifier voltage gate is shifted negative by approximately -70 mV. Additionally, the channel conductance gains a hypersensitive K(+) dependence. Together, these two processes appear to represent a safety strategy preventing K(+) loss through the uptake channels under physiological conditions. Similar growth retardation phenotypes of akt1 and atkc1 loss-of-function mutants in response to limiting K(+) supply further support such functional interdependence of AKT1 and AtKC1. Taken together, these findings suggest an essential role of AtKC1-like subunits for root K(+) uptake and K(+) homeostasis when plants experience conditions of K(+) limitation.
Collapse
Affiliation(s)
- Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gating the pore of potassium leak channels. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:61-73. [PMID: 19404634 DOI: 10.1007/s00249-009-0457-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/27/2022]
Abstract
A key feature of potassium channel function is the ability to switch between conducting and non-conducting states by undergoing conformational changes in response to cellular or extracellular signals. Such switching is facilitated by the mechanical coupling of gating domain movements to pore opening and closing. Two-pore domain potassium channels (K(2P)) conduct leak or background potassium-selective currents that are mostly time- and voltage-independent. These channels play a significant role in setting the cell resting membrane potential and, therefore modulate cell responsiveness and excitability. Thus, K(2P) channels are key players in numerous physiological processes and were recently shown to also be involved in human pathologies. It is well established that K(2P) channel conductance, open probability and cell surface expression are significantly modulated by various physical and chemical stimuli. However, in understanding how such signals are translated into conformational changes that open or close the channels gate, there remain more open questions than answers. A growing line of evidence suggests that the outer pore area assumes a critical role in gating K(2P) channels, in a manner reminiscent of C-type inactivation of voltage-gated potassium channels. In some K(2P) channels, this gating mechanism is facilitated in response to external pH levels. Recently, it was suggested that K(2P) channels also possess a lower activation gate that is positively coupled to the outer pore gate. The purpose of this review is to present an up-to-date summary of research describing the conformational changes and gating events that take place at the K(2P) channel ion-conducting pathway during the channel regulation.
Collapse
|
10
|
Mckeown L, Burnham MP, Hodson C, Jones OT. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels. J Biol Chem 2008; 283:30421-32. [PMID: 18640987 DOI: 10.1074/jbc.m708921200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.
Collapse
Affiliation(s)
- Lynn Mckeown
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PN, United Kingdom
| | | | | | | |
Collapse
|
11
|
Vaid M, Claydon TW, Rezazadeh S, Fedida D. Voltage clamp fluorimetry reveals a novel outer pore instability in a mammalian voltage-gated potassium channel. ACTA ACUST UNITED AC 2008; 132:209-22. [PMID: 18625849 PMCID: PMC2483330 DOI: 10.1085/jgp.200809978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions in mammalian Kv1.5 channels. Despite the homology between Kv1.5 and the Shaker channel, attaching TMRM or PyMPO fluorescent probes to substituted cysteine residues in the S3-S4 linker of Kv1.5 (M394C-V401C) revealed unique and unusual fluorescence signals. Whereas the fluorescence during voltage sensor movement in Shaker channels was monoexponential and occurred with a similar time course to ionic current activation, the fluorescence report of Kv1.5 voltage sensor motions was transient with a prominent rapidly dequenching component that, with TMRM at A397C (equivalent to Shaker A359C), represented 36 +/- 3% of the total signal and occurred with a tau of 3.4 +/- 0.6 ms at +60 mV (n = 4). Using a number of approaches, including 4-AP drug block and the ILT triple mutation, which dissociate channel opening from voltage sensor movement, we demonstrate that the unique dequenching component of fluorescence is associated with channel opening. By regulating the outer pore structure using raised (99 mM) external K(+) to stabilize the conducting configuration of the selectivity filter, or the mutations W472F (equivalent to Shaker W434F) and H463G to stabilize the nonconducting (P-type inactivated) configuration of the selectivity filter, we show that the dequenching of fluorescence reflects rapid structural events at the selectivity filter gate rather than the intracellular pore gate.
Collapse
Affiliation(s)
- Moninder Vaid
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
12
|
Cohen A, Ben-Abu Y, Hen S, Zilberberg N. A Novel Mechanism for Human K2P2.1 Channel Gating. J Biol Chem 2008; 283:19448-55. [DOI: 10.1074/jbc.m801273200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Carvacho I, Gonzalez W, Torres YP, Brauchi S, Alvarez O, Gonzalez-Nilo FD, Latorre R. Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block. ACTA ACUST UNITED AC 2008; 131:147-61. [PMID: 18227273 PMCID: PMC2213566 DOI: 10.1085/jgp.200709862] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The internal vestibule of large-conductance Ca2+ voltage-activated K+ (BK) channels contains a ring of eight negative charges not present in K+ channels of lower conductance (Glu386 and Glu389 in hSlo) that modulates channel conductance through an electrostatic mechanism (Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. Proc. Natl. Acad. Sci. USA. 100:9017–9022). In BK channels there are also two acidic amino acid residues in an extracellular loop (Asp326 and Glu329 in hSlo). To determine the electrostatic influence of these charges on channel conductance, we expressed wild-type BK channels and mutants E386N/E389N, D326N, E329Q, and D326N/E329Q channels on Xenopus laevis oocytes, and measured the expressed currents under patch clamp. Contribution of E329 to the conductance is negligible and single channel conductance of D326N/E329Q channels measured at 0 mV in symmetrical 110 mM K+ was 18% lower than the control. Current–voltage curves displayed weak outward rectification for D326N and the double mutant. The conductance differences between the mutants and wild-type BK were caused by an electrostatic effect since they were enhanced at low K+ (30 mM) and vanished at high K+ (1 M K+). We determine the electrostatic potential change, Δφ, caused by the charge neutralization using TEA+ block for the extracellular charges and Ba2+ for intracellular charges. We measured 13 ± 2 mV for Δφ at the TEA+ site when turning off the extracellular charges, and 17 ± 2 mV for the Δφ at the Ba2+ site when the intracellular charges were turned off. To understand the electrostatic effect of charge neutralizations, we determined Δφ using a BK channel molecular model embedded in a lipid bilayer and solving the Poisson-Boltzmann equation. The model explains the experimental results adequately and, in particular, gives an economical explanation to the differential effect on the conductance of the neutralization of charges D326 and E329.
Collapse
|
14
|
Stansfeld PJ, Gedeck P, Gosling M, Cox B, Mitcheson JS, Sutcliffe MJ. Drug block of the hERG potassium channel: insight from modeling. Proteins 2007; 68:568-80. [PMID: 17444521 DOI: 10.1002/prot.21400] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many commonly used, structurally diverse, drugs block the human ether-a-go-go-related gene (hERG) K(+) channel to cause acquired long QT syndrome, which can lead to sudden death via lethal cardiac arrhythmias. This undesirable side effect is a major hurdle in the development of safe drugs. To gain insight about the structure of hERG and the nature of drug block we have produced structural models of the channel pore domain, into each of which we have docked a set of 20 hERG blockers. In the absence of an experimentally determined three-dimensional structure of hERG, each of the models was validated against site-directed mutagenesis data. First, hERG models were produced of the open and closed channel states, based on homology with the prokaryotic K(+) channel crystal structures. The modeled complexes were in partial agreement with the mutagenesis data. To improve agreement with mutagenesis data, a KcsA-based model was refined by rotating the four copies of the S6 transmembrane helix half a residue position toward the C-terminus, so as to place all residues known to be involved in drug binding in positions lining the central cavity. This model produces complexes that are consistent with mutagenesis data for smaller, but not larger, ligands. Larger ligands could be accommodated following refinement of this model by enlarging the cavity using the inherent flexibility about the glycine hinge (Gly648) in S6, to produce results consistent with the experimental data for the majority of ligands tested.
Collapse
Affiliation(s)
- Phillip J Stansfeld
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Gómez-Lagunas F. Stability of the Shab K+ channel conductance in 0 K+ solutions: the role of the membrane potential. Biophys J 2007; 93:4197-208. [PMID: 17704149 PMCID: PMC2098742 DOI: 10.1529/biophysj.106.095794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shab channels are fairly stable with K(+) present on only one side of the membrane. However, on exposure to 0 K(+) solutions on both sides of the membrane, the Shab K(+) conductance (G(K)) irreversibly drops while the channels are maintained undisturbed at the holding potential. Herein it is reported that the drop of G(K) follows first-order kinetics, with a voltage-dependent decay rate r. Hyperpolarized potentials drastically inhibit the drop of G(K). The G(K) drop at negative potentials cannot be explained by a shift in the voltage dependence of activation. At depolarized potentials, where the channels undergo a slow inactivation process, G(K) drops in 0 K(+) with rates slower than those predicted based on the behavior of r at negative potentials, endowing the r-V(m) relationship with a maximum. Regardless of voltage, r is very small compared with the rate of ion permeation. Observations support the hypothesized presence of a stabilizing K(+) site (or sites) located either within the pore itself or in its external vestibule, at an inactivation-sensitive location. It is argued that part of the G(K) stabilization achieved at hyperpolarized potentials could be the result of a conformational change in the pore itself.
Collapse
Affiliation(s)
- Froylán Gómez-Lagunas
- Facultad de Medicina, Dept. Fisiologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-250 Mexico D.F. 04510, Mexico.
| |
Collapse
|
16
|
Gibor G, Yakubovich D, Rosenhouse-Dantsker A, Peretz A, Schottelndreier H, Seebohm G, Dascal N, Logothetis DE, Paas Y, Attali B. An inactivation gate in the selectivity filter of KCNQ1 potassium channels. Biophys J 2007; 93:4159-72. [PMID: 17704175 PMCID: PMC2098732 DOI: 10.1529/biophysj.107.107987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inactivation is an inherent property of most voltage-gated K(+) channels. While fast N-type inactivation has been analyzed in biophysical and structural details, the mechanisms underlying slow inactivation are yet poorly understood. Here, we characterized a slow inactivation mechanism in various KCNQ1 pore mutants, including L273F, which hinders entry of external Ba(2+) to its deep site in the pore and traps it by slowing its egress. Kinetic studies, molecular modeling, and dynamics simulations suggest that this slow inactivation involves conformational changes that converge to the outer carbonyl ring of the selectivity filter, where the backbone becomes less flexible. This mechanism involves acceleration of inactivation kinetics and enhancement of Ba(2+) trapping at elevated external K(+) concentrations. Hence, KCNQ1 slow inactivation considerably differs from C-type inactivation where vacation of K(+) from the filter was invoked. We suggest that trapping of K(+) at s(1) due to filter rigidity and hindrance of the dehydration-resolvation transition underlie the slow inactivation of KCNQ1 pore mutants.
Collapse
Affiliation(s)
- Gilad Gibor
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Claydon TW, Vaid M, Rezazadeh S, Kwan DCH, Kehl SJ, Fedida D. A direct demonstration of closed-state inactivation of K+ channels at low pH. ACTA ACUST UNITED AC 2007; 129:437-55. [PMID: 17470663 PMCID: PMC2154379 DOI: 10.1085/jgp.200709774] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lowering external pH reduces peak current and enhances current decay in Kv and Shaker-IR channels. Using voltage-clamp fluorimetry we directly determined the fate of Shaker-IR channels at low pH by measuring fluorescence emission from tetramethylrhodamine-5-maleimide attached to substituted cysteine residues in the voltage sensor domain (M356C to R362C) or S5-P linker (S424C). One aspect of the distal S3-S4 linker α-helix (A359C and R362C) reported a pH-induced acceleration of the slow phase of fluorescence quenching that represents P/C-type inactivation, but neither site reported a change in the total charge movement at low pH. Shaker S424C fluorescence demonstrated slow unquenching that also reflects channel inactivation and this too was accelerated at low pH. In addition, however, acidic pH caused a reversible loss of the fluorescence signal (pKa = 5.1) that paralleled the reduction of peak current amplitude (pKa = 5.2). Protons decreased single channel open probability, suggesting that the loss of fluorescence at low pH reflects a decreased channel availability that is responsible for the reduced macroscopic conductance. Inhibition of inactivation in Shaker S424C (by raising external K+ or the mutation T449V) prevented fluorescence loss at low pH, and the fluorescence report from closed Shaker ILT S424C channels implied that protons stabilized a W434F-like inactivated state. Furthermore, acidic pH changed the fluorescence amplitude (pKa = 5.9) in channels held continuously at −80 mV. This suggests that low pH stabilizes closed-inactivated states. Thus, fluorescence experiments suggest the major mechanism of pH-induced peak current reduction is inactivation of channels from closed states from which they can activate, but not open; this occurs in addition to acceleration of P/C-type inactivation from the open state.
Collapse
Affiliation(s)
- Thomas W Claydon
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Soldovieri MV, Cilio MR, Miceli F, Bellini G, Miraglia del Giudice E, Castaldo P, Hernandez CC, Shapiro MS, Pascotto A, Annunziato L, Taglialatela M. Atypical gating of M-type potassium channels conferred by mutations in uncharged residues in the S4 region of KCNQ2 causing benign familial neonatal convulsions. J Neurosci 2007; 27:4919-28. [PMID: 17475800 PMCID: PMC6672104 DOI: 10.1523/jneurosci.0580-07.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heteromeric assembly of KCNQ2 and KCNQ3 subunits underlie the M-current (I(KM)), a slowly activating and noninactivating neuronal K(+) current. Mutations in KCNQ2 and KCNQ3 genes cause benign familial neonatal convulsions (BFNCs), a rare autosomal-dominant epilepsy of the newborn. In the present study, we describe the identification of a novel KCNQ2 heterozygous mutation (c587t) in a BFNC-affected family, leading to an alanine to valine substitution at amino acid position 196 located at the N-terminal end of the voltage-sensing S(4) domain. The consequences on KCNQ2 subunit function prompted by the A196V substitution, as well as by the A196V/L197P mutation previously described in another BFNC-affected family, were investigated by macroscopic and single-channel current measurements in CHO cells transiently transfected with wild-type and mutant subunits. When compared with KCNQ2 channels, homomeric KCNQ2 A196V or A196V/L197P channels showed a 20 mV rightward shift in their activation voltage dependence, with no concomitant change in maximal open probability or single-channel conductance. Furthermore, current activation kinetics of KCNQ2 A196V channels displayed an unusual dependence on the conditioning prepulse voltage, being markedly slower when preceded by prepulses to more depolarized potentials. Heteromeric channels formed by KCNQ2 A196V and KCNQ3 subunits displayed gating changes similar to those of KCNQ2 A196V homomeric channels. Collectively, these results reveal a novel role for noncharged residues in the N-terminal end of S(4) in controlling gating of I(KM) and suggest that gating changes caused by mutations at these residues may decrease I(KM) function, thus causing neuronal hyperexcitability, ultimately leading to neonatal convulsions.
Collapse
Affiliation(s)
- Maria Virginia Soldovieri
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | | | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | | | | | - Pasqualina Castaldo
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | - Ciria C. Hernandez
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, and
| | - Mark S. Shapiro
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, and
| | | | - Lucio Annunziato
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
- Department of Health Science, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
19
|
Eduljee C, Claydon TW, Viswanathan V, Fedida D, Kehl SJ. SCAM analysis reveals a discrete region of the pore turret that modulates slow inactivation in Kv1.5. Am J Physiol Cell Physiol 2007; 292:C1041-52. [PMID: 16956964 DOI: 10.1152/ajpcell.00274.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Kv1.5, protonation of histidine 463 in the S5-P linker (turret) increases the rate of depolarization-induced inactivation and decreases the peak current amplitude. In this study, we examined how amino acid substitutions that altered the physico-chemical properties of the side chain at position 463 affected slow inactivation and then used the substituted cysteine accessibility method (SCAM) to probe the turret region (E456-P468) to determine whether residue 463 was unique in its ability to modulate the macroscopic current. Substitutions at position 463 of small, neutral (H463G and H463A) or large, charged (H463R, H463K, and H463E) side groups accelerated inactivation and induced a dependency of the current amplitude on the external potassium concentration. When cysteine substitutions were made in the distal turret (T462C-P468C), modification with either the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) or negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate reagent irreversibly inhibited current. This inhibition could be antagonized either by the R487V mutation (homologous to T449V in Shaker) or by raising the external potassium concentration, suggesting that current inhibition by MTS reagents resulted from an enhancement of inactivation. These results imply that protonation of residue 463 does not modulate inactivation solely by an electrostatic interaction with residues near the pore mouth, as proposed by others, and that residue 463 is part of a group of residues within the Kv1.5 turret that can modulate P/C-type inactivation.
Collapse
Affiliation(s)
- Cyrus Eduljee
- Dept. of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
20
|
Oliva C, González V, Naranjo D. Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins. Biophys J 2005; 89:1009-19. [PMID: 15923220 PMCID: PMC1366587 DOI: 10.1529/biophysj.105.060152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 05/13/2005] [Indexed: 11/18/2022] Open
Abstract
Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kappa-conotoxin-PVIIA (kappa-PVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kappa-PVIIA. This lack of interference with toxin suggests that during slow inactivation the toxin receptor site remains unaffected, placing a strong geometry-conservative constraint on the possible structural configurations of a slow inactivated K-channel. Such a constraint could be fulfilled by a concerted rotation of the external vestibule.
Collapse
Affiliation(s)
- Carolina Oliva
- Centro de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | | | | |
Collapse
|
21
|
Bernèche S, Roux B. A gate in the selectivity filter of potassium channels. Structure 2005; 13:591-600. [PMID: 15837197 DOI: 10.1016/j.str.2004.12.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 11/05/2004] [Accepted: 12/02/2004] [Indexed: 11/25/2022]
Abstract
The selectivity filter of potassium channels is the structural element directly responsible for the selective and rapid conduction of K+, whereas other parts of the protein are thought to function as a molecular gate that either permits or blocks the passage of ions. However, whether the selectivity filter itself also possesses the ability to play the role of a gate is an unresolved question. Using free energy molecular dynamics simulations, it is shown that the reorientation of two peptide linkages in the selectivity filter of the KcsA K+ channel can lead to a stable nonconducting conformational state. Two microscopic factors influence the transition toward such a conformational state: the occupancy of one specific cation binding site in the selectivity filter (S2), and the strength of intersubunit interactions involving the GYG signature sequence. These results suggest that such conformational transitions occurring in the selectivity filter might be related to different K+ channel gating events, including C-type (slow) inactivation.
Collapse
Affiliation(s)
- Simon Bernèche
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
22
|
Gibor G, Yakubovich D, Peretz A, Attali B. External barium affects the gating of KCNQ1 potassium channels and produces a pore block via two discrete sites. ACTA ACUST UNITED AC 2005; 124:83-102. [PMID: 15226366 PMCID: PMC2229603 DOI: 10.1085/jgp.200409068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.
Collapse
Affiliation(s)
- Gilad Gibor
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
23
|
Jiang X, Bett GCL, Li X, Bondarenko VE, Rasmusson RL. C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes. J Physiol 2003; 549:683-95. [PMID: 12730347 PMCID: PMC2342995 DOI: 10.1113/jphysiol.2002.034660] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Channels are water-filled membrane-spanning proteins, which undergo conformational changes as they gate, i.e. open or close. These conformational changes affect both the shape of the channel and the volume of the water-filled pore. We measured the changes in pore volume associated with activation, deactivation, C-type inactivation and recovery in an N-terminal-deleted mutant of the Kv1.4 K+ channel (Kv1.4DeltaN) expressed in Xenopus oocytes. We used giant-patch and cut-open oocyte voltage clamp techniques and applied solutes which are too large to enter the pore mouth to exert osmotic pressure and thus favour smaller pore volume conformations. Applied intracellular osmotic pressure (300 mM sucrose) sped inactivation (time constants (tauinactivation): control, 0.66 +/- 0.09 s; hyperosmotic solution, 0.29 +/- 0.04 s; n = 5, P < 0.01), sped deactivation (taudeactivation: control, 18.8 +/- 0.94 ms; hyperosmotic solution, 8.01 +/- 1.92 ms; n = 5, P < 0.01), and slowed activation (tauactivation: control, 1.04 +/- 0.05 ms; hyperosmotic solution, 1.96 +/- 0.31 ms; n = 5, P < 0.01). These effects were reversible and solute independent. We estimated the pore volume change on inactivation to be about 4500 A3. Osmotic pressure had no effect when applied extracellularly. These data suggest that the intracellular side of the pore closes during C-type inactivation and the volume change is similar to that associated with activation or deactivation. This is also similar to the pore volume estimated from the crystal structure of KcsA and MthK K+ channels. Intracellular osmotic pressure also strongly inhibited re-opening currents associated with recovery from inactivation, which is consistent with a physical similarity between the C-type inactivated and resting closed state.
Collapse
Affiliation(s)
- XueJun Jiang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, 124 Sherman Hall, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | | | | | | | |
Collapse
|
24
|
Liu J, Zhang M, Jiang M, Tseng GN. Structural and functional role of the extracellular s5-p linker in the HERG potassium channel. J Gen Physiol 2002; 120:723-37. [PMID: 12407082 PMCID: PMC2229555 DOI: 10.1085/jgp.20028687] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-type inactivation in the HERG channel is unique among voltage-gated K channels in having extremely fast kinetics and strong voltage sensitivity. This suggests that HERG may have a unique outer mouth structure (where conformational changes underlie C-type inactivation), and/or a unique communication between the outer mouth and the voltage sensor. We use cysteine-scanning mutagenesis and thiol-modifying reagents to probe the structural and functional role of the S5-P (residues 571-613) and P-S6 (residues 631-638) linkers of HERG that line the outer vestibule of the channel. Disulfide formation involving introduced cysteine side chains or modification of side chain properties at "high-impact" positions produces a common mutant phenotype: disruption of C-type inactivation, reduction of K+ selectivity, and hyperpolarizing shift in the voltage-dependence of activation. In particular, we identify 15 consecutive positions in the middle of the S5-P linker (583-597) where side chain modification has marked impact on channel function. Analysis of the degrees of mutation-induced perturbation in channel function along 583-597 reveals an alpha-helical periodicity. Furthermore, the effects of MTS modification suggest that the NH2-terminal of this segment (position 584) may be very close to the pore entrance. We propose a structural model for the outer vestibule of the HERG channel, in which the 583-597 segment forms an alpha-helix. With the NH2 terminus of this helix sitting at the edge of the pore entrance, the length of the helix (approximately 20 A) allows its other end to reach and interact with the voltage-sensing domain. Therefore, the "583-597 helix" in the S5-P linker of the HERG channel serves as a bridge of communication between the outer mouth and the voltage sensor, that may make important contribution to the unique C-type inactivation phenotype.
Collapse
Affiliation(s)
- Jie Liu
- Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- H Peter Larsson
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
26
|
Abstract
kappa-Conotoxin-PVIIA (kappa-PVIIA) is a 27-residue basic (+4) peptide from the venom of the predator snail Conus purpurascens. A single kappa-PVIIA molecule interrupts ion conduction by binding to the external mouth of Shaker K channels. The blockade of Shaker by kappa-PVIIA was studied at the single channel level in membrane patches from Xenopus oocytes. The amplitudes of blocked and closed events were undistinguishable, suggesting that the toxin interrupts ion conduction completely. Between -20 and 40 mV kappa-PVIIA increased the latency to the first opening by one order of magnitude in a concentration-independent fashion. Because kappa-PVIIA has higher affinity for the closed channels at high enough concentration to block >90% of the resting channels, the dissociation rate could be estimated from the analysis of the first latency. At 0 mV, the dissociation rate was 20 s(-1) and had an effective valence of 0.64. The apparent closing rate increased linearly with [kappa-PVIIA] indicating an association rate of 56 microM(-1) s(-1). The toxin did not modify the fraction of null traces. This result suggests that the structural rearrangements in the external mouth contributing to the slow inactivation preserve the main geometrical features of the toxin-receptor interaction.
Collapse
Affiliation(s)
- David Naranjo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México DF, México.
| |
Collapse
|
27
|
Kehl SJ, Eduljee C, Kwan DCH, Zhang S, Fedida D. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn(2+). J Physiol 2002; 541:9-24. [PMID: 12015417 PMCID: PMC2290311 DOI: 10.1113/jphysiol.2001.014456] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using human Kv1.5 channels expressed in HEK293 cells we assessed the ability of H+o to mimic the previously reported action of Zn(2+) to inhibit macroscopic hKv1.5 currents, and using site-directed mutagenesis, we addressed the mechanistic basis for the inhibitory effects of H(+)(o) and Zn(2+). As with Zn(2+), H(+)(o) caused a concentration-dependent, K(+)(o)-sensitive and reversible reduction of the maximum conductance (g(max)). With zero, 5 and 140 mM K(+)(o) the pK(H) for this decrease of g(max) was 6.8, 6.2 and 6.0, respectively. The concentration dependence of the block relief caused by increasing [K(+)](o) was well fitted by a non-competitive interaction between H(+)(o) and K(+)(o), for which the K(D) for the K(+) binding site was 0.5-1.0 mM. Additionally, gating current analysis in the non-conducting mutant hKv1.5 W472F showed that changing from pH 7.4 to pH 5.4 did not affect Q(max) and that charge immobilization, presumed to be due to C-type inactivation, was preserved at pH 5.4. Inhibition of hKv1.5 currents by H+o or Zn(2+) was substantially reduced by a mutation either in the channel turret (H463Q) or near the pore mouth (R487V). In light of the requirement for R487, the homologue of Shaker T449, as well as the block-relieving action of K(+)(o), we propose that H(+) or Zn(2+) binding to histidine residues in the pore turret stabilizes a channel conformation that is most likely an inactivated state.
Collapse
Affiliation(s)
- Steven J Kehl
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| | | | | | | | | |
Collapse
|
28
|
Zilberberg N, Ilan N, Goldstein SA. KCNKØ: opening and closing the 2-P-domain potassium leak channel entails "C-type" gating of the outer pore. Neuron 2001; 32:635-48. [PMID: 11719204 DOI: 10.1016/s0896-6273(01)00503-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Essential to nerve and muscle function, little is known about how potassium leak channels operate. KCNKØ opens and closes in a kinase-dependent fashion. Here, the transition is shown to correspond to changes in the outer aspect of the ion conduction pore. Voltage-gated potassium (VGK) channels open and close via an internal gate; however, they also have an outer pore gate that produces "C-type" inactivation. While KCNKØ does not inactivate, KCNKØ and VGK channels respond in like manner to outer pore blockers, potassium, mutations, and chemical modifiers. Structural relatedness is confirmed: VGK residues that come close during C-type gating predict KCNKØ sites that crosslink (after mutation to cysteine) to yield channels controlled by reduction and oxidization. We conclude that similar outer pore gates mediate KCNKØ opening and closing and VGK channel C-type inactivation despite their divergent structures and physiological roles.
Collapse
Affiliation(s)
- N Zilberberg
- Department of Pediatrics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | |
Collapse
|
29
|
Elinder F, Männikkö R, Larsson HP. S4 charges move close to residues in the pore domain during activation in a K channel. J Gen Physiol 2001; 118:1-10. [PMID: 11429439 PMCID: PMC2233763 DOI: 10.1085/jgp.118.1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET(+)). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 A) to a position close (8 A) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.
Collapse
Affiliation(s)
- Fredrik Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roope Männikkö
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H. Peter Larsson
- Neurological Sciences Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
30
|
Elinder F, Männikkö R, Larsson HP. S4 Charges Move Close to Residues in the Pore Domain during Activation in a K Channel. J Gen Physiol 2001. [DOI: 10.1085/jgp.118.1.1-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES−) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET+). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 Å) to a position close (8 Å) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.
Collapse
Affiliation(s)
- Fredrik Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roope Männikkö
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H. Peter Larsson
- Neurological Sciences Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
31
|
Abstract
The effect of external potassium (K) and cesium (Cs) on the inwardly rectifying K channel ROMK2 (K(ir)1.1b) was studied in Xenopus oocytes. Elevating external K from 1 to 10 mM increased whole-cell outward conductance by a factor of 3.4 +/- 0.4 in 15 min and by a factor of 5.7 +/- 0.9 in 30 min (n = 22). Replacing external Na by Cs blocked inward conductance but increased whole-cell conductance by a factor of 4.5 +/- 0.5 over a period of 40 min (n = 15). In addition to this slow increase in conductance, there was also a small, rapid increase in conductance that occurred as soon as ROMK was exposed to external cesium or 10 mM K. This rapid increase could be explained by the observed increase in ROMK single-channel conductance from 6.4 +/- 0.8 pS to 11.1 +/- 0.8 pS (10 mM K, n = 8) or 11.7 +/- 1.2 pS (Cs, n = 8). There was no effect of either 10 mM K or cesium on the high open probability (P(o) = 0.97 +/- 0.01; n = 12) of ROMK outward currents. In patch-clamp recordings, the number of active channels increased when the K concentration at the outside surface was raised from 1 to 50 mM K. In cell-attached patches, exposure to 50 mM external K produced one or more additional channels in 9/16 patches. No change in channel number was observed in patches continuously exposed to 50 mM external K. Hence, the slow increase in whole-cell conductance is interpreted as activation of pre-existing ROMK channels that had been inactivated by low external K. This type of time-dependent channel activation was not seen with IRK1 (K(ir)2.1) or in ROMK2 mutants in which any one of 6 residues, F129, Q133, E132, V121, L117, or K61, were replaced by their respective IRK1 homologs. These results are consistent with a model in which ROMK can exist in either an activated mode or an inactivated mode. Within the activated mode, individual channels undergo rapid transitions between open and closed states. High (10 mM) external K or Cs stabilizes the activated mode, and low external K stabilizes the inactivated mode. Mutation of a pH-sensing site (ROMK2-K61) prevents transitions from activated to inactivated modes. This is consistent with a direct effect of external K or Cs on the gating of ROMK by internal pH.
Collapse
Affiliation(s)
- H Sackin
- Department of Physiology and Biophysics, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The mechanism by which physiological signals regulate the conformation of molecular gates that open and close ion channels is poorly understood. Voltage clamp fluorometry was used to ask how the voltage-sensing S4 transmembrane domain is coupled to the slow inactivation gate in the pore domain of the Shaker K(+) channel. Fluorophores attached at several sites in S4 indicate that the voltage-sensing rearrangements are followed by an additional inactivation motion. Fluorophores attached at the perimeter of the pore domain indicate that the inactivation rearrangement projects from the selectivity filter out to the interface with the voltage-sensing domain. Some of the pore domain sites also sense activation, and this appears to be due to a direct interaction with S4 based on the finding that S4 comes into close enough proximity to the pore domain for a pore mutation to alter the nanoenvironment of an S4-attached fluorophore. We propose that activation produces an S4-pore domain interaction that disrupts a bond between the S4 contact site on the pore domain and the outer end of S6. Our results indicate that this bond holds the slow inactivation gate open and, therefore, we propose that this S4-induced bond disruption triggers inactivation.
Collapse
Affiliation(s)
- Eli Loots
- Department of Molecular and Cell Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|