1
|
Kimball IH, Nguyen PT, Olivera BM, Sack JT, Yarov-Yarovoy V. Molecular determinants of μ-conotoxin KIIIA interaction with the human voltage-gated sodium channel Na V1.7. Front Pharmacol 2023; 14:1156855. [PMID: 37007002 PMCID: PMC10060530 DOI: 10.3389/fphar.2023.1156855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The voltage-gated sodium (NaV) channel subtype NaV1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between μ-Conotoxin KIIIA (KIIIA) and the human NaV1.7 channel (hNaV1.7). We developed a structural model of hNaV1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNaV1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNaV1.7 model and the cryo-EM structure of KIIIA-hNaV1.2 revealed key similarities and differences between NaV channel subtypes with potential implications for the molecular mechanism of toxin block. The accuracy of our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations, suggests that Rosetta structural predictions will be useful for rational design of novel biologics targeting specific NaV channels.
Collapse
Affiliation(s)
- Ian H. Kimball
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | | | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Colom-Casasnovas A, Garay E, Cisneros-Mejorado A, Aguilar MB, Lazcano-Pérez F, Arellano RO, Sánchez-Rodríguez J. Sea anemone Bartholomea annulata venom inhibits voltage-gated Na+ channels and activates GABAA receptors from mammals. Sci Rep 2022; 12:5352. [PMID: 35354863 PMCID: PMC8967859 DOI: 10.1038/s41598-022-09339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Toxin production in nematocysts by Cnidaria phylum represents an important source of bioactive compounds. Using electrophysiology and, heterologous expression of mammalian ion channels in the Xenopus oocyte membrane, we identified two main effects produced by the sea anemone Bartholomea annulata venom. Nematocysts isolation and controlled discharge of their content, revealed that venom had potent effects on both voltage-dependent Na+ (Nav) channels and GABA type A channel receptors (GABAAR), two essential proteins in central nervous system signaling. Unlike many others sea anemone toxins, which slow the inactivation rate of Nav channels, B. annulata venom potently inhibited the neuronal action potential and the Na+ currents generated by distinct Nav channels opening, including human TTX-sensitive (hNav1.6) and TTX-insensitive Nav channels (hNav1.5). A second effect of B. annulata venom was an agonistic action on GABAAR that activated distinct receptors conformed by either α1β2γ2, α3β2γ1 or, ρ1 homomeric receptors. Since GABA was detected in venom samples by ELISA assay at low nanomolar range, it was excluded that GABA from nematocysts directly activated the GABAARs. This revealed that substances in B. annulata nematocysts generated at least two potent and novel effects on mammalian ion channels that are crucial for nervous system signaling.
Collapse
|
3
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
4
|
Xenakis MN, Kapetis D, Yang Y, Gerrits MM, Heijman J, Waxman SG, Lauria G, Faber CG, Westra RL, Lindsey PJ, Smeets HJ. Hydropathicity-based prediction of pain-causing NaV1.7 variants. BMC Bioinformatics 2021; 22:212. [PMID: 33892629 PMCID: PMC8063372 DOI: 10.1186/s12859-021-04119-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mutation-induced variations in the functional architecture of the NaV1.7 channel protein are causally related to a broad spectrum of human pain disorders. Predicting in silico the phenotype of NaV1.7 variant is of major clinical importance; it can aid in reducing costs of in vitro pathophysiological characterization of NaV1.7 variants, as well as, in the design of drug agents for counteracting pain-disease symptoms. Results In this work, we utilize spatial complexity of hydropathic effects toward predicting which NaV1.7 variants cause pain (and which are neutral) based on the location of corresponding mutation sites within the NaV1.7 structure. For that, we analyze topological and scaling hydropathic characteristics of the atomic environment around NaV1.7’s pore and probe their spatial correlation with mutation sites. We show that pain-related mutation sites occupy structural locations in proximity to a hydrophobic patch lining the pore while clustering at a critical hydropathic-interactions distance from the selectivity filter (SF). Taken together, these observations can differentiate pain-related NaV1.7 variants from neutral ones, i.e., NaV1.7 variants not causing pain disease, with 80.5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% sensitivity and 93.7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% specificity [area under the receiver operating characteristics curve = 0.872]. Conclusions Our findings suggest that maintaining hydrophobic NaV1.7 interior intact, as well as, a finely-tuned (dictated by hydropathic interactions) distance from the SF might be necessary molecular conditions for physiological NaV1.7 functioning. The main advantage for using the presented predictive scheme is its negligible computational cost, as well as, hydropathicity-based biophysical rationalization. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04119-2.
Collapse
Affiliation(s)
- Makros N Xenakis
- Department of Toxicogenomics, Section Clinical Genomics, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands. .,Research School for Mental Health and Neuroscience (MHeNS), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Dimos Kapetis
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN, 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, USA
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Ronald L Westra
- Department of Data Science and Knowledge Engineering, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Section Clinical Genomics, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Research School for Oncology and Developmental Biology (GROW), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Hubert J Smeets
- Department of Toxicogenomics, Section Clinical Genomics, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Research School for Mental Health and Neuroscience (MHeNS), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
5
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
NMR Structure of μ-Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced Na V Channel Potency. Molecules 2018; 23:molecules23102715. [PMID: 30360356 PMCID: PMC6222493 DOI: 10.3390/molecules23102715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
μ-Conotoxins are potent and highly specific peptide blockers of voltage-gated sodium channels. In this study, the solution structure of μ-conotoxin GIIIC was determined using 2D NMR spectroscopy and simulated annealing calculations. Despite high sequence similarity, GIIIC adopts a three-dimensional structure that differs from the previously observed conformation of μ-conotoxins GIIIA and GIIIB due to the presence of a bulky, non-polar leucine residue at position 18. The side chain of L18 is oriented towards the core of the molecule and consequently the N-terminus is re-modeled and located closer to L18. The functional characterization of GIIIC defines it as a canonical μ-conotoxin that displays substantial selectivity towards skeletal muscle sodium channels (NaV), albeit with ~2.5-fold lower potency than GIIIA. GIIIC exhibited a lower potency of inhibition of NaV1.4 channels, but the same NaV selectivity profile when compared to GIIIA. These observations suggest that single amino acid differences that significantly affect the structure of the peptide do in fact alter its functional properties. Our work highlights the importance of structural factors, beyond the disulfide pattern and electrostatic interactions, in the understanding of the functional properties of bioactive peptides. The latter thus needs to be considered when designing analogues for further applications.
Collapse
|
7
|
Tikhonov DB, Zhorov BS. Predicting Structural Details of the Sodium Channel Pore Basing on Animal Toxin Studies. Front Pharmacol 2018; 9:880. [PMID: 30131702 PMCID: PMC6090064 DOI: 10.3389/fphar.2018.00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic voltage-gated sodium channels play key roles in physiology and are targets for many toxins and medically important drugs. Physiology, pharmacology, and general architecture of the channels has long been the subject of intensive research in academia and industry. In particular, animal toxins such as tetrodotoxin, saxitoxin, and conotoxins have been used as molecular probes of the channel structure. More recently, X-ray structures of potassium and prokaryotic sodium channels allowed elaborating models of the toxin-channel complexes that integrated data from biophysical, electrophysiological, and mutational studies. Atomic level cryo-EM structures of eukaryotic sodium channels, which became available in 2017, show that the selectivity filter structure and other important features of the pore domain have been correctly predicted. This validates further employments of toxins and other small molecules as sensitive probes of fine structural details of ion channels.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Du Y, Tikhonov DB, Nomura Y, Dong K, Zhorov BS. Mutational analysis of state-dependent contacts in the pore module of eukaryotic sodium channels. Arch Biochem Biophys 2018; 652:59-70. [PMID: 29936083 DOI: 10.1016/j.abb.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 02/04/2023]
Abstract
Voltage-gated sodium channels have residues that change or may change contacts upon gating. Contributions of individual contacts in stability of different states are incompletely understood. Pore-lining inner helices contain exceptionally conserved asparagines in positions i20. Here we explored how mutations in positions i20 and i29 affect electrophysiological properties of insect sodium channels. In repeat interfaces I/IV, III/II and IV/III, alanine substitutions caused positive activation shifts in positions i20 and i29, negative shifts of slow inactivation in positions i20 and positive shifts of slow inactivation in positions i29. The results support the hypothesis on open state inter-repeat H-bonding of residues i20 and i29. The shift magnitudes vary between interfaces, reflecting structural asymmetry of the channels. Mutations in positions i20 of repeats III and IV caused much longer recovery delay from the slow and fast inactivation than other mutations. In repeat IV, alanine substitution of tyrosine i30 rescued positive activation shift of mutation in position i29. Our data suggest that polar residues in positions i29 are involved in stabilization of both the open and slow-inactivated states. Transition between the states may involve switching of H-bonding partners of residues i29 from the conserved asparagines to currently unknown residues.
Collapse
Affiliation(s)
- Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
Yang Y, Adi T, Effraim PR, Chen L, Dib‐Hajj SD, Waxman SG. Reverse pharmacogenomics: carbamazepine normalizes activation and attenuates thermal hyperexcitability of sensory neurons due to Na v 1.7 mutation I234T. Br J Pharmacol 2018; 175:2261-2271. [PMID: 28658526 PMCID: PMC5980548 DOI: 10.1111/bph.13935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/17/2017] [Accepted: 06/05/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacotherapy for pain currently involves trial and error. A previous study on inherited erythromelalgia (a genetic model of neuropathic pain due to mutations in the sodium channel, Nav 1.7) used genomics, structural modelling and biophysical and pharmacological analyses to guide pharmacotherapy and showed that carbamazepine normalizes voltage dependence of activation of the Nav 1.7-S241T mutant channel, reducing pain in patients carrying this mutation. However, whether this approach is applicable to other Nav channel mutants is still unknown. EXPERIMENTAL APPROACH We used structural modelling, patch clamp and multi-electrode array (MEA) recording to assess the effects of carbamazepine on Nav 1.7-I234T mutant channels and on the firing of dorsal root ganglion (DRG) sensory neurons expressing these mutant channels. KEY RESULTS In a reverse engineering approach, structural modelling showed that the I234T mutation is located in atomic proximity to the carbamazepine-responsive S241T mutation and that activation of Nav 1.7-I234T mutant channels, from patients who are known to respond to carbamazepine, is partly normalized with a clinically relevant concentration (30 μM) of carbamazepine. There was significantly higher firing in intact sensory neurons expressing Nav 1.7-I234T channels, compared with neurons expressing the normal channels (Nav 1.7-WT). Pre-incubation with 30 μM carbamazepine also significantly reduced the firing of intact DRG sensory neurons expressing Nav 1.7-I234T channels. Although the expected use-dependent inhibition of Nav 1.7-WT channels by carbamazepine was confirmed, carbamazepine did not enhance use-dependent inhibition of Nav 1.7-I234T mutant channels. CONCLUSION AND IMPLICATIONS These results support the utility of a pharmacogenomic approach to treatment of pain in patients carrying sodium channel variants. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Yang Yang
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
- Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenCTUSA
- Rehabilitation Research CenterVA Connecticut Healthcare SystemWest HavenCTUSA
| | - Talia Adi
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
- Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenCTUSA
- Rehabilitation Research CenterVA Connecticut Healthcare SystemWest HavenCTUSA
| | - Philip R Effraim
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
- Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenCTUSA
- Rehabilitation Research CenterVA Connecticut Healthcare SystemWest HavenCTUSA
- Department of AnesthesiologyYale University School of MedicineNew HavenCTUSA
| | - Lubin Chen
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
- Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenCTUSA
- Rehabilitation Research CenterVA Connecticut Healthcare SystemWest HavenCTUSA
| | - Sulayman D Dib‐Hajj
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
- Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenCTUSA
- Rehabilitation Research CenterVA Connecticut Healthcare SystemWest HavenCTUSA
| | - Stephen G Waxman
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
- Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenCTUSA
- Rehabilitation Research CenterVA Connecticut Healthcare SystemWest HavenCTUSA
| |
Collapse
|
10
|
Tikhonov DB, Zhorov BS. Conservation and variability of the pore-lining helices in P-loop channels. Channels (Austin) 2017; 11:660-672. [PMID: 29095093 DOI: 10.1080/19336950.2017.1395536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The family of P-loop channels, which play key roles in the cell physiology, is characterized by four membrane re-entering extracellular P-loops that connect eight transmembrane helices of the pore-forming domain. The X-ray and cryo-EM structures of the open- and closed-state channels show conserved state-dependent folding despite the sequences are very diverse. In sodium, calcium, TRPV and two-pore channels, the pore-lining helices contain conserved asparagines and may or may not include π-helix bulges. Comparison of the sequence- and 3D-alignemnts suggests that the asparagines appeared in evolution as insertions that are accommodated in two ways: by π-helix bulges, which preserve most of inter-segment contacts, or by twists of the C-terminal thirds and switch of inter-segment contacts. The two possibilities should be considered in homology modeling of ion channels and in structure-based interpretations of numerous experimental data on physiology, pathophysiology, pharmacology and toxicology of the channels.
Collapse
Affiliation(s)
- Denis B Tikhonov
- a Department of Biophysics of Synaptic Processes , Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS , St. Petersburg , Russia
| | - Boris S Zhorov
- a Department of Biophysics of Synaptic Processes , Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS , St. Petersburg , Russia.,b Department of Biochemistry & Biomedical Sciences , McMaster University , Hamilton , Canada
| |
Collapse
|
11
|
Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli. J Neurosci 2017; 36:7511-22. [PMID: 27413160 DOI: 10.1523/jneurosci.0462-16.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. SIGNIFICANCE STATEMENT Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav1.7, which are preferentially expressed in sensory and sympathetic neurons. More than 20 gain-of-function Nav1.7 mutations have been identified from IEM patients, but the question of how warmth triggers episodes of pain in IEM has not been well addressed. Combining multielectrode array, voltage-clamp, and current-clamp recordings, we assessed a newly identified IEM mutation (Nav1.7-A1632G) from a multigeneration family. Our data demonstrate gain-of-function attributes at the channel level and differential effects of physiologically relevant thermal stimuli on the excitability of DRG neurons expressing mutant and WT Nav1.7 channels, suggesting a cellular mechanism for warmth-triggered pain episodes in IEM patients.
Collapse
|
12
|
Zhorov BS, Dong K. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel. Neurotoxicology 2017; 60:171-177. [PMID: 27567732 PMCID: PMC5730328 DOI: 10.1016/j.neuro.2016.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi's group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi's pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids.
Collapse
Affiliation(s)
- Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
13
|
Kapetis D, Sassone J, Yang Y, Galbardi B, Xenakis MN, Westra RL, Szklarczyk R, Lindsey P, Faber CG, Gerrits M, Merkies ISJ, Dib-Hajj SD, Mantegazza M, Waxman SG, Lauria G. Network topology of NaV1.7 mutations in sodium channel-related painful disorders. BMC SYSTEMS BIOLOGY 2017; 11:28. [PMID: 28235406 PMCID: PMC5324268 DOI: 10.1186/s12918-016-0382-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Gain-of-function mutations in SCN9A gene that encodes the voltage-gated sodium channel NaV1.7 have been associated with a wide spectrum of painful syndromes in humans including inherited erythromelalgia, paroxysmal extreme pain disorder and small fibre neuropathy. These mutations change the biophysical properties of NaV1.7 channels leading to hyperexcitability of dorsal root ganglion nociceptors and pain symptoms. There is a need for better understanding of how gain-of-function mutations alter the atomic structure of Nav1.7. RESULTS We used homology modeling to build an atomic model of NaV1.7 and a network-based theoretical approach, which can predict interatomic interactions and connectivity arrangements, to investigate how pain-related NaV1.7 mutations may alter specific interatomic bonds and cause connectivity rearrangement, compared to benign variants and polymorphisms. For each amino acid substitution, we calculated the topological parameters betweenness centrality (B ct ), degree (D), clustering coefficient (CC ct ), closeness (C ct ), and eccentricity (E ct ), and calculated their variation (Δ value = mutant value -WT value ). Pathogenic NaV1.7 mutations showed significantly higher variation of |ΔB ct | compared to benign variants and polymorphisms. Using the cut-off value ±0.26 calculated by receiver operating curve analysis, we found that ΔB ct correctly differentiated pathogenic NaV1.7 mutations from variants not causing biophysical abnormalities (nABN) and homologous SNPs (hSNPs) with 76% sensitivity and 83% specificity. CONCLUSIONS Our in-silico analyses predict that pain-related pathogenic NaV1.7 mutations may affect the network topological properties of the protein and suggest |ΔB ct | value as a potential in-silico marker.
Collapse
Affiliation(s)
- Dimos Kapetis
- Bioinformatics Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy
| | - Jenny Sassone
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy
- Present address: San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, USA
| | - Barbara Galbardi
- Bioinformatics Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy
| | - Markos N. Xenakis
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ronald L. Westra
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Radek Szklarczyk
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Lindsey
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Catharina G. Faber
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ingemar S. J. Merkies
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurology, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, USA
| | - Massimo Mantegazza
- Laboratory of Excellence Ion Channel Science and Therapeutics, Institute of Molecular and Cellular Pharmacology, CNRS UMR7275 & University of Nice-Sophia Antipolis, Valbonne, France
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, USA
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy
| |
Collapse
|
14
|
Leipold E, Ullrich F, Thiele M, Tietze AA, Terlau H, Imhof D, Heinemann SH. Subtype-specific block of voltage-gated K+ channels by μ-conopeptides. Biochem Biophys Res Commun 2017; 482:1135-1140. [DOI: 10.1016/j.bbrc.2016.11.170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
15
|
Han P, Wang K, Dai X, Cao Y, Liu S, Jiang H, Fan C, Wu W, Chen J. The Role of Individual Disulfide Bonds of μ-Conotoxin GIIIA in the Inhibition of Na V1.4. Mar Drugs 2016; 14:md14110213. [PMID: 27869701 PMCID: PMC5128756 DOI: 10.3390/md14110213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
μ-Conotoxin GIIIA, a peptide toxin isolated from Conus geographus, preferentially blocks the skeletal muscle sodium channel NaV1.4. GIIIA folds compactly to a pyramidal structure stabilized by three disulfide bonds. To assess the contributions of individual disulfide bonds of GIIIA to the blockade of NaV1.4, seven disulfide-deficient analogues were prepared and characterized, each with one, two, or three pairs of disulfide-bonded Cys residues replaced with Ala. The inhibitory potency of the analogues against NaV1.4 was assayed by whole cell patch-clamp on rNaV1.4, heterologously expressed in HEK293 cells. The corresponding IC50 values were 0.069 ± 0.005 μM for GIIIA, 2.1 ± 0.3 μM for GIIIA-1, 3.3 ± 0.2 μM for GIIIA-2, and 15.8 ± 0.8 μM for GIIIA-3 (-1, -2 and -3 represent the removal of disulfide bridges Cys3–Cys15, Cys4–Cys20 and Cys10–Cys21, respectively). Other analogues were not active enough for IC50 measurement. Our results indicate that all three disulfide bonds of GIIIA are required to produce effective inhibition of NaV1.4, and the removal of any one significantly lowers its sodium channel binding affinity. Cys10–Cys21 is the most important for the NaV1.4 potency.
Collapse
Affiliation(s)
- Penggang Han
- College of Science, National University of Defense Technology, Changsha 410073, Hunan, China.
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Kang Wang
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Xiandong Dai
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Ying Cao
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Shangyi Liu
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Hui Jiang
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Chongxu Fan
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| | - Wenjian Wu
- College of Science, National University of Defense Technology, Changsha 410073, Hunan, China.
| | - Jisheng Chen
- College of Science, National University of Defense Technology, Changsha 410073, Hunan, China.
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China.
| |
Collapse
|
16
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
17
|
Green BR, Olivera BM. Venom Peptides From Cone Snails: Pharmacological Probes for Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:65-86. [PMID: 27586281 DOI: 10.1016/bs.ctm.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The venoms of cone snails provide a rich source of neuroactive peptides (conotoxins). Several venom peptide families have been identified that are either agonists (ι- and δ-conotoxins) or antagonists (μ- and μO-conotoxins) of voltage-gated sodium channels (VGSCs). Members of these conotoxin classes have been integral in identifying and characterizing specific neurotoxin binding sites on the channel. Furthermore, given the specificity of some of these peptides for one sodium channel subtype over another, conotoxins have also proven useful in exploring differences between VGSC subtypes. This chapter summarizes the current knowledge of the structure and function based on the results of conotoxin interactions with VGSCs and correlates the peptides with the phylogeny of the Conus species from which they were derived.
Collapse
Affiliation(s)
- B R Green
- University of Utah, Salt Lake City, UT, United States; Monash University, Parkville, VIC, Australia
| | - B M Olivera
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
18
|
Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7. Proc Natl Acad Sci U S A 2016; 113:5856-61. [PMID: 27162340 DOI: 10.1073/pnas.1603486113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Improper function of voltage-gated sodium channels (NaVs), obligatory membrane proteins for bioelectrical signaling, has been linked to a number of human pathologies. Small-molecule agents that target NaVs hold considerable promise for treatment of chronic disease. Absent a comprehensive understanding of channel structure, the challenge of designing selective agents to modulate the activity of NaV subtypes is formidable. We have endeavored to gain insight into the 3D architecture of the outer vestibule of NaV through a systematic structure-activity relationship (SAR) study involving the bis-guanidinium toxin saxitoxin (STX), modified saxitoxins, and protein mutagenesis. Mutant cycle analysis has led to the identification of an acetylated variant of STX with unprecedented, low-nanomolar affinity for human NaV1.7 (hNaV1.7), a channel subtype that has been implicated in pain perception. A revised toxin-receptor binding model is presented, which is consistent with the large body of SAR data that we have obtained. This new model is expected to facilitate subsequent efforts to design isoform-selective NaV inhibitors.
Collapse
|
19
|
Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 2016; 350:aad2395. [PMID: 26680202 DOI: 10.1126/science.aad2395] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The voltage-gated calcium channel Ca(v)1.1 is engaged in the excitation-contraction coupling of skeletal muscles. The Ca(v)1.1 complex consists of the pore-forming subunit α1 and auxiliary subunits α2δ, β, and γ. We report the structure of the rabbit Ca(v)1.1 complex determined by single-particle cryo-electron microscopy. The four homologous repeats of the α1 subunit are arranged clockwise in the extracellular view. The γ subunit, whose structure resembles claudins, interacts with the voltage-sensing domain of repeat IV (VSD(IV)), whereas the cytosolic β subunit is located adjacent to VSD(II) of α1. The α2 subunit interacts with the extracellular loops of repeats I to III through its VWA and Cache1 domains. The structure reveals the architecture of a prototypical eukaryotic Ca(v) channel and provides a framework for understanding the function and disease mechanisms of Ca(v) and Na(v) channels.
Collapse
Affiliation(s)
- Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhen Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Zhorov B, Tikhonov D. Computational Structural Pharmacology and Toxicology of Voltage-Gated Sodium Channels. NA CHANNELS FROM PHYLA TO FUNCTION 2016; 78:117-44. [DOI: 10.1016/bs.ctm.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Namadurai S, Yereddi NR, Cusdin FS, Huang CLH, Chirgadze DY, Jackson AP. A new look at sodium channel β subunits. Open Biol 2015; 5:140192. [PMID: 25567098 PMCID: PMC4313373 DOI: 10.1098/rsob.140192] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits.
Collapse
Affiliation(s)
- Sivakumar Namadurai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Nikitha R Yereddi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Fiona S Cusdin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
22
|
Cai T, Luo J, Meng E, Ding J, Liang S, Wang S, Liu Z. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels. Peptides 2015; 68:148-56. [PMID: 25218973 DOI: 10.1016/j.peptides.2014.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023]
Abstract
Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs.
Collapse
Affiliation(s)
- Tianfu Cai
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Ji Luo
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Er Meng
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, 410073 Hunan, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Ministry of Education, College of Life Science and Technology, Wuhan, Hubei 430074, China
| | - Songping Liang
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Ministry of Education, College of Life Science and Technology, Wuhan, Hubei 430074, China.
| | - Zhonghua Liu
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China.
| |
Collapse
|
23
|
Korkosh VS, Zhorov BS, Tikhonov DB. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. ACTA ACUST UNITED AC 2015; 144:231-44. [PMID: 25156117 PMCID: PMC4144674 DOI: 10.1085/jgp.201411226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analyses of toxin binding to a homology model of Nav1.4 indicate similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels. Voltage-gated sodium channels are targets for many drugs and toxins. However, the rational design of medically relevant channel modulators is hampered by the lack of x-ray structures of eukaryotic channels. Here, we used a homology model based on the x-ray structure of the NavAb prokaryotic sodium channel together with published experimental data to analyze interactions of the μ-conotoxins GIIIA, PIIIA, and KIIIA with the Nav1.4 eukaryotic channel. Using Monte Carlo energy minimizations and published experimentally defined pairwise contacts as distance constraints, we developed a model in which specific contacts between GIIIA and Nav1.4 were readily reproduced without deformation of the channel or toxin backbones. Computed energies of specific interactions between individual residues of GIIIA and the channel correlated with experimental estimates. The predicted complexes of PIIIA and KIIIA with Nav1.4 are consistent with a large body of experimental data. In particular, a model of Nav1.4 interactions with KIIIA and tetrodotoxin (TTX) indicated that TTX can pass between Nav1.4 and channel-bound KIIIA to reach its binding site at the selectivity filter. Our models also allowed us to explain experimental data that currently lack structural interpretations. For instance, consistent with the incomplete block observed with KIIIA and some GIIIA and PIIIA mutants, our computations predict an uninterrupted pathway for sodium ions between the extracellular space and the selectivity filter if at least one of the four outer carboxylates is not bound to the toxin. We found a good correlation between computational and experimental data on complete and incomplete channel block by native and mutant toxins. Thus, our study suggests similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels.
Collapse
Affiliation(s)
- Viacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
24
|
Mahdavi S, Kuyucak S. Molecular dynamics study of binding of µ-conotoxin GIIIA to the voltage-gated sodium channel Na(v)1.4. PLoS One 2014; 9:e105300. [PMID: 25133704 PMCID: PMC4136838 DOI: 10.1371/journal.pone.0105300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/22/2014] [Indexed: 12/27/2022] Open
Abstract
Homology models of mammalian voltage-gated sodium (NaV) channels based on the crystal structures of the bacterial counterparts are needed to interpret the functional data on sodium channels and understand how they operate. Such models would also be invaluable in structure-based design of therapeutics for diseases involving sodium channels such as chronic pain and heart diseases. Here we construct a homology model for the pore domain of the NaV1.4 channel and use the functional data for the binding of µ-conotoxin GIIIA to NaV1.4 to validate the model. The initial poses for the NaV1.4-GIIIA complex are obtained using the HADDOCK protein docking program, which are then refined in molecular dynamics simulations. The binding mode for the final complex is shown to be in broad agreement with the available mutagenesis data. The standard binding free energy, determined from the potential of mean force calculations, is also in good agreement with the experimental value. Because the pore domains of NaV1 channels are highly homologous, the model constructed for NaV1.4 will provide an excellent template for other NaV1 channels.
Collapse
Affiliation(s)
- Somayeh Mahdavi
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
25
|
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS. Molecular biology of insect sodium channels and pyrethroid resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:1-17. [PMID: 24704279 PMCID: PMC4484874 DOI: 10.1016/j.ibmb.2014.03.012] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 05/06/2023]
Abstract
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.
Collapse
Affiliation(s)
- Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA.
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Frank Rinkevich
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Peng Xu
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Lingxin Wang
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Kristopher Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
26
|
Tikhonov DB, Bruhova I, Garden DP, Zhorov BS. State-dependent inter-repeat contacts of exceptionally conserved asparagines in the inner helices of sodium and calcium channels. Pflugers Arch 2014; 467:253-66. [DOI: 10.1007/s00424-014-1508-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/09/2023]
|
27
|
Mechanism of μ-conotoxin PIIIA binding to the voltage-gated Na+ channel NaV1.4. PLoS One 2014; 9:e93267. [PMID: 24676211 PMCID: PMC3968119 DOI: 10.1371/journal.pone.0093267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 12/19/2022] Open
Abstract
Several subtypes of voltage-gated Na+ (NaV) channels are important targets for pain management. μ-Conotoxins isolated from venoms of cone snails are potent and specific blockers of different NaV channel isoforms. The inhibitory effect of μ-conotoxins on NaV channels has been examined extensively, but the mechanism of toxin specificity has not been understood in detail. Here the known structure of μ-conotoxin PIIIA and a model of the skeletal muscle channel NaV1.4 are used to elucidate elements that contribute to the structural basis of μ-conotoxin binding and specificity. The model of NaV1.4 is constructed based on the crystal structure of the bacterial NaV channel, NaVAb. Six different binding modes, in which the side chain of each of the basic residues carried by the toxin protrudes into the selectivity filter of NaV1.4, are examined in atomic detail using molecular dynamics simulations with explicit solvent. The dissociation constants (Kd) computed for two selected binding modes in which Lys9 or Arg14 from the toxin protrudes into the filter of the channel are within 2 fold; both values in close proximity to those determined from dose response data for the block of NaV currents. To explore the mechanism of PIIIA specificity, a double mutant of NaV1.4 mimicking NaV channels resistant to μ-conotoxins and tetrodotoxin is constructed and the binding of PIIIA to this mutant channel examined. The double mutation causes the affinity of PIIIA to reduce by two orders of magnitude.
Collapse
|
28
|
Goldschen-Ohm MP, Chanda B. Probing gating mechanisms of sodium channels using pore blockers. Handb Exp Pharmacol 2014; 221:183-201. [PMID: 24737237 DOI: 10.1007/978-3-642-41588-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several classes of small molecules and peptides bind at the central pore of voltage-gated sodium channels either from the extracellular or intracellular side of the membrane and block ion conduction through the pore. Biophysical studies that shed light on the chemical nature, accessibility, and kinetics of binding of these naturally occurring and synthetic compounds reveal a wealth of information about how these channels gate. Here, we discuss insights into the structural underpinnings of gating of the channel pore and its coupling to the voltage sensors obtained from pore blockers including site 1 neurotoxins and local anesthetics.
Collapse
|
29
|
Tyson JR, Snutch TP. Molecular nature of voltage‐gated calcium channels: structure and species comparison. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John R. Tyson
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| |
Collapse
|
30
|
Chen R, Chung SH. Complex structures between the N-type calcium channel (CaV2.2) and ω-conotoxin GVIA predicted via molecular dynamics. Biochemistry 2013; 52:3765-72. [PMID: 23651160 DOI: 10.1021/bi4003327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The N-type voltage-gated Ca(2+) channel CaV2.2 is one of the important targets for pain management. ω-Conotoxins isolated from venoms of cone snails, which specifically inhibit CaV2.2, are promising scaffolds for novel analgesics. The inhibitory action of ω-conotoxins on CaV2.2 has been examined experimentally, but the modes of binding of the toxins to this and other related subfamilies of Ca(2+) channels are not understood in detail. Here molecular dynamics simulations are used to construct models of ω-conotoxin GVIA in complex with a homology model of the pore domain of CaV2.2. Three different binding modes in which the side chain of Lys2, Arg17, or Lys24 from the toxin protrudes into the selectivity filter of CaV2.2 are considered. In all the modes, the toxin forms a salt bridge with an aspartate residue of subunit II just above the EEEE ring of the selectivity filter. Using the umbrella sampling technique and potential of mean force calculations, the half-maximal inhibitory concentration (IC50) values are calculated to be 1.5 and 0.7 nM for the modes in which Lys2 and Arg17 occlude the ion conduction pathway, respectively. Both IC50 values compare favorably with the values of 0.04-1.0 nM determined experimentally. The similar IC50 values calculated for the different binding modes demonstrate that GVIA can inhibit CaV2.2 with alternative binding modes. Such a multiple-binding mode mechanism may be common for ω-conotoxins.
Collapse
Affiliation(s)
- Rong Chen
- Research School of Biology, Australian National University , Canberra, ACT 0200, Australia
| | | |
Collapse
|
31
|
Chugunov AO, Koromyslova AD, Berkut AA, Peigneur S, Tytgat J, Polyansky AA, Pentkovsky VM, Vassilevski AA, Grishin EV, Efremov RG. Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels. J Biol Chem 2013; 288:19014-27. [PMID: 23637230 DOI: 10.1074/jbc.m112.431650] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.
Collapse
Affiliation(s)
- Anton O Chugunov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang Y, Estacion M, Dib-Hajj SD, Waxman SG. Molecular architecture of a sodium channel S6 helix: radial tuning of the voltage-gated sodium channel 1.7 activation gate. J Biol Chem 2013; 288:13741-7. [PMID: 23536180 DOI: 10.1074/jbc.m113.462366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In-frame deletion mutation (Del-L955) in NaV1.7 sodium channel from a kindred with erythromelalgia hyperpolarizes activation. RESULTS Del-L955 twists the S6 helix, displacing the Phe960 activation gate. Replacement of Phe960 at the correct helical position depolarizes activation. CONCLUSION Radial tuning of the activation gate is critical to the activation of NaV1.7 channel. SIGNIFICANCE Structural modeling guided electrophysiology reveals the functional importance of radial tuning of the S6 segment. Voltage-gated sodium (NaV) channels are membrane proteins that consist of 24 transmembrane segments organized into four homologous domains and are essential for action potential generation and propagation. Although the S6 helices of NaV channels line the ion-conducting pore and participate in channel activation, their functional architecture is incompletely understood. Our recent studies show that a naturally occurring in-frame deletion mutation (Del-L955) of NaV1.7 channel, identified in individuals with a severe inherited pain syndrome (inherited erythromelalgia) causes a substantial hyperpolarizing shift of channel activation. Here we took advantage of this deletion mutation to understand the role of the S6 helix in the channel activation. Based on the recently published structure of a bacterial NaV channel (NaVAb), we modeled the WT and Del-L955 channel. Our structural model showed that Del-L955 twists the DII/S6 helix, shifting location and radial orientation of the activation gate residue (Phe(960)). Hypothesizing that these structural changes produce the shift of channel activation of Del-L955 channels, we restored a phenylalanine in wild-type orientation by mutating Ser(961) (Del-L955/S961F), correcting activation by ∼10 mV. Correction of the displaced Phe(960) (F960S) together with introduction of the rescuing activation gate residue (S961F) produced an additional ∼6-mV restoration of activation of the mutant channel. A simple point mutation in the absence of a twist (L955A) did not produce a radial shift and did not hyperpolarize activation. Our results demonstrate the functional importance of radial tuning of the sodium channel S6 helix for the channel activation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
33
|
Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel. Nat Commun 2013; 3:1186. [PMID: 23149731 DOI: 10.1038/ncomms2184] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/02/2012] [Indexed: 11/09/2022] Open
Abstract
Sodium channel Na(V)1.7 is critical for human pain signalling. Gain-of-function mutations produce pain syndromes including inherited erythromelalgia, which is usually resistant to pharmacotherapy, but carbamazepine normalizes activation of Na(V)1.7-V400M mutant channels from a family with carbamazepine-responsive inherited erythromelalgia. Here we show that structural modelling and thermodynamic analysis predict pharmacoresponsiveness of another mutant channel (S241T) that is located 159 amino acids distant from V400M. Structural modelling reveals that Na(v)1.7-S241T is ~2.4 Å apart from V400M in the folded channel, and thermodynamic analysis demonstrates energetic coupling of V400M and S241T during activation. Atomic proximity and energetic coupling are paralleled by pharmacological coupling, as carbamazepine (30 μM) depolarizes S214T activation, as previously reported for V400M. Pharmacoresponsiveness of S241T to carbamazepine was further evident at a cellular level, where carbamazepine normalized the hyperexcitability of dorsal root ganglion neurons expressing S241T. We suggest that this approach might identify variants that confer enhanced pharmacoresponsiveness on a variety of channels.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Computational studies of marine toxins targeting ion channels. Mar Drugs 2013; 11:848-69. [PMID: 23528952 PMCID: PMC3705375 DOI: 10.3390/md11030848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 12/18/2022] Open
Abstract
Toxins from marine animals offer novel drug leads for treatment of diseases involving ion channels. Computational methods could be very helpful in this endeavour in several ways, e.g., (i) constructing accurate models of the channel-toxin complexes using docking and molecular dynamics (MD) simulations; (ii) determining the binding free energies of toxins from umbrella sampling MD simulations; (iii) predicting the effect of mutations from free energy MD simulations. Using these methods, one can design new analogs of toxins with improved affinity and selectivity properties. Here we present a review of the computational methods and discuss their applications to marine toxins targeting potassium and sodium channels. Detailed examples from the potassium channel toxins—ShK from sea anemone and κ-conotoxin PVIIA—are provided to demonstrate capabilities of the computational methods to give accurate descriptions of the channel-toxin complexes and the energetics of their binding. An example is also given from sodium channel toxins (µ-conotoxin GIIIA) to illustrate the differences between the toxin binding modes in potassium and sodium channels.
Collapse
|
35
|
Markgraf R, Leipold E, Schirmeyer J, Paolini-Bertrand M, Hartley O, Heinemann SH. Mechanism and molecular basis for the sodium channel subtype specificity of µ-conopeptide CnIIIC. Br J Pharmacol 2013; 167:576-86. [PMID: 22537004 DOI: 10.1111/j.1476-5381.2012.02004.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated sodium channels (Na(V) channels) are key players in the generation and propagation of action potentials, and selective blockade of these channels is a promising strategy for clinically useful suppression of electrical activity. The conotoxin µ-CnIIIC from the cone snail Conus consors exhibits myorelaxing activity in rodents through specific blockade of skeletal muscle (Na(V) 1.4) Na(V) channels. EXPERIMENTAL APPROACH We investigated the activity of µ-CnIIIC on human Na(V) channels and characterized its inhibitory mechanism, as well as the molecular basis, for its channel specificity. KEY RESULTS Similar to rat paralogs, human Na(V) 1.4 and Na(V) 1.2 were potently blocked by µ-CnIIIC, the sensitivity of Na(V) 1.7 was intermediate, and Na(V) 1.5 and Na(V) 1.8 were insensitive. Half-channel chimeras revealed that determinants for the insensitivity of Na(V) 1.8 must reside in both the first and second halves of the channel, while those for Na(V) 1.5 are restricted to domains I and II. Furthermore, domain I pore loop affected the total block and therefore harbours the major determinants for the subtype specificity. Domain II pore loop only affected the kinetics of toxin binding and dissociation. Blockade by µ-CnIIIC of Na(V) 1.4 was virtually irreversible but left a residual current of about 5%, reflecting a 'leaky' block; therefore, Na(+) ions still passed through µ-CnIIIC-occupied Na(V) 1.4 to some extent. TTX was excluded from this binding site but was trapped inside the pore by µ-CnIIIC. CONCLUSION AND IMPLICATIONS Of clinical significance, µ-CnIIIC is a potent and persistent blocker of human skeletal muscle Na(V) 1.4 that does not affect activity of cardiac Na(V) 1.5.
Collapse
Affiliation(s)
- René Markgraf
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University of Jena & Jena University Hospital, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Van Der Haegen A, Peigneur S, Tytgat J. Importance of position 8 in μ-conotoxin KIIIA for voltage-gated sodium channel selectivity. FEBS J 2011; 278:3408-18. [PMID: 21781281 DOI: 10.1111/j.1742-4658.2011.08264.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
μ-Conotoxin KIIIA from Conus kinoshitai is a 16-residue peptide that acts as a potent pore blocker of several voltage-gated sodium channels (Na(v)). In order to obtain more selective blockers and to investigate the role of Trp at position 8, we substituted this residue with Arg, Gln and Glu. KIIIA and analogues were tested on a range of Na(v) expressed in Xenopus laevis oocytes. The rank order of potency for KIIIA was: rNa(v)1.4 ≥ rNa(v)1.2 > mNa(v)1.6 > rNa(v)1.3, with IC(50) values of 48 ± 6 nm, 61 ± 5 nm, 183 ± 31 nm and 3.6 ± 0.3 μm, respectively, whereas no effect was seen on hNa(v)1.5 and hNa(v)1.8 at a concentration of 10 μm. Replacement of Trp8 resulted in more selective blockers with a preference for neuronal sodium channels over the skeletal sodium channel. The activity on rNa(v)1.4 was reduced about 40-, 70- and 200-fold for [W8R]KIIIA, [W8Q]KIIIA and [W8E]KIIIA, respectively. All analogues showed a completely reversible block of rNa(v)1.2, as opposed to the partial reversibility of KIIIA. At saturating concentrations, complete block of rNa(v)1.2 was never achieved. The residual current was lower than 10%, except for [W8E]KIIIA. KIIIA had no effect on the voltage dependence of activation of rNa(v)1.2, whereas all analogues caused a depolarizing shift. Overall, this study shows that Trp8 is a key residue in the pharmacophore. Replacement of Trp8 enables more selective blockers to be obtained for neuronal sodium channels. Trp is a key determinant for the reversibility of block of rNa(v)1.2.
Collapse
|
37
|
Leipold E, Markgraf R, Miloslavina A, Kijas M, Schirmeyer J, Imhof D, Heinemann SH. Molecular determinants for the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Neuropharmacology 2011; 61:105-11. [PMID: 21419143 DOI: 10.1016/j.neuropharm.2011.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/09/2011] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels (Na(V) channels) play a pivotal role in neuronal excitability; they are specifically targeted by μ-conotoxins from the venom of marine cone snails. These peptide toxins bind to the outer vestibule of the channel pore thereby blocking ion conduction through Na(V) channels. μ-Conotoxin SIIIA from Conus striatus was shown to be a potent inhibitor of neuronal sodium channels and to display analgesic effects in mice, albeit the molecular targets are not unambiguously known. We therefore studied recombinant Na(V) channels expressed in mammalian cells using the whole-cell patch-clamp method. Synthetic μSIIIA slowly and partially blocked rat Na(V)1.4 channels with an apparent IC(50) of 0.56 ± 0.29 μM; the block was not complete, leaving at high concentration a residual current component of about 10% with a correspondingly reduced single-channel conductance. At 10 μM, μSIIIA potently blocked rat Na(V)1.2, rat and human Na(V)1.4, and mouse Na(V)1.6 channels; human Na(V)1.7 channels were only inhibited by 58.1 ± 4.9%, whereas human Na(V)1.5 as well as rat and human Na(V)1.8 were insensitive. Employing domain chimeras between rNa(V)1.4 and hNa(V)1.5, we located the determinants for μSIIIA specificity in the first half of the channel protein with a major contribution of domain-2 and a minor contribution of domain-1. The latter was largely accounted for by the alteration in the TTX-binding site (Tyr401 in rNa(V)1.4, Cys for Na(V)1.5, and Ser for Na(V)1.8). Introduction of domain-2 pore loops of all tested channel isoforms into rNa(V)1.4 conferred the μSIIIA phenotype of the respective donor channels highlighting the importance of the domain-2 pore loop as the major determinant for μSIIIA's subtype specificity. Single-site substitutions identified residue Ala728 in rNa(V)1.4 as crucial for its high sensitivity toward μSIIIA. Likewise, Asn889 at the homologous position in hNa(V)1.7 is responsible for the channel's reduced μSIIIA sensitivity. These results will pave the way for the rational design of selective Na(V)-channel antagonists for research and medical applications.
Collapse
Affiliation(s)
- Enrico Leipold
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University of Jena & University Hospital Jena, Hans-Knoell-Str. 2, D-07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Tikhonov DB, Zhorov BS. Possible roles of exceptionally conserved residues around the selectivity filters of sodium and calcium channels. J Biol Chem 2010; 286:2998-3006. [PMID: 21081490 DOI: 10.1074/jbc.m110.175406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In the absence of x-ray structures of sodium and calcium channels their homology models are used to rationalize experimental data and design new experiments. A challenge is to model the outer-pore region that folds differently from potassium channels. Here we report a new model of the outer-pore region of the NaV1.4 channel, which suggests roles of highly conserved residues around the selectivity filter. The model takes from our previous study (Tikhonov, D. B., and Zhorov, B. S. (2005) Biophys. J. 88, 184-197) the general disposition of the P-helices, selectivity filter residues, and the outer carboxylates, but proposes new intra- and inter-domain contacts that support structural stability of the outer pore. Glycine residues downstream from the selectivity filter are proposed to participate in knob-into-hole contacts with the P-helices and S6s. These contacts explain the adapted tetrodotoxin resistance of snakes that feed on toxic prey through valine substitution of isoleucine in the P-helix of repeat IV. Polar residues five positions upstream from the selectivity filter residues form H-bonds with the ascending-limb backbones. Exceptionally conserved tryptophans are engaged in inter-repeat H-bonds to form a ring whose π-electrons would facilitate passage of ions from the outer carboxylates to the selectivity filter. The outer-pore model of CaV1.2 derived from the NaV1.4 model is also stabilized by the ring of exceptionally conservative tryptophans and H-bonds between the P-helices and ascending limbs. In this model, the exceptionally conserved aspartate downstream from the selectivity-filter glutamate in repeat II facilitates passage of calcium ions to the selectivity-filter ring through the tryptophan ring. Available experimental data are discussed in view of the models.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 325, Canada
| | | |
Collapse
|
39
|
The tetrodotoxin receptor of voltage-gated sodium channels--perspectives from interactions with micro-conotoxins. Mar Drugs 2010; 8:2153-61. [PMID: 20714429 PMCID: PMC2920548 DOI: 10.3390/md8072153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 11/17/2022] Open
Abstract
Neurotoxin receptor site 1, in the outer vestibule of the conducting pore of voltage-gated sodium channels (VGSCs), was first functionally defined by its ability to bind the guanidinium-containing agents, tetrodotoxin (TTX) and saxitoxin (STX). Subsequent studies showed that peptide micro-conotoxins competed for binding at site 1. All of these natural inhibitors block single sodium channels in an all-or-none manner on binding. With the discovery of an increasing variety of micro-conotoxins, and the synthesis of numerous derivatives, observed interactions between the channel and these different ligands have become more complex. Certain micro-conotoxin derivatives block single-channel currents partially, rather than completely, thus enabling the demonstration of interactions between the bound toxin and the channel's voltage sensor. Most recently, the relatively small micro-conotoxin KIIIA (16 amino acids) and its variants have been shown to bind simultaneously with TTX and exhibit both synergistic and antagonistic interactions with TTX. These interactions raise new pharmacological possibilities and place new constraints on the possible structures of the bound complexes of VGSCs with these toxins.
Collapse
|
40
|
Bruhova I, Zhorov BS. A homology model of the pore domain of a voltage-gated calcium channel is consistent with available SCAM data. ACTA ACUST UNITED AC 2010; 135:261-74. [PMID: 20176854 PMCID: PMC2828909 DOI: 10.1085/jgp.200910288] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the absence of x-ray structures of calcium channels, their homology models are used to rationalize experimental data and design new experiments. The modeling relies on sequence alignments between calcium and potassium channels. Zhen et al. (2005. J. Gen. Physiol. doi:10.1085/jgp.200509292) used the substituted cysteine accessibility method (SCAM) to identify pore-lining residues in the Cav2.1 channel and concluded that their data are inconsistent with the symmetric architecture of the pore domain and published sequence alignments between calcium and potassium channels. Here, we have built Kv1.2-based models of the Cav2.1 channel with 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET)-modified engineered cysteines and used Monte Carlo energy minimizations to predict their energetically optimal orientations. We found that depending on the position of an engineered cysteine in S6 and S5 helices, the ammonium group in the long flexible MTSET-modified side chain can orient into the inner pore, an interface between domains (repeats), or an interface between S5 and S6 helices. Different local environments of equivalent positions in the four repeats can lead to different SCAM results. The reported current inhibition by MTSET generally decreases with the predicted distances between the ammonium nitrogen and the pore axis. A possible explanation for outliers of this correlation is suggested. Our calculations rationalize the SCAM data, validate one of several published sequence alignments between calcium and potassium channels, and suggest similar spatial dispositions of S5 and S6 helices in voltage-gated potassium and calcium channels.
Collapse
Affiliation(s)
- Iva Bruhova
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
41
|
Zhang MM, Gruszczynski P, Walewska A, Bulaj G, Olivera BM, Yoshikami D. Cooccupancy of the outer vestibule of voltage-gated sodium channels by micro-conotoxin KIIIA and saxitoxin or tetrodotoxin. J Neurophysiol 2010; 104:88-97. [PMID: 20410356 DOI: 10.1152/jn.00145.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The guanidinium alkaloids tetrodotoxin (TTX) and saxitoxin (STX) are classic ligands of voltage-gated sodium channels (VGSCs). Like TTX and STX, micro-conotoxin peptides are pore blockers but with greater VGSC subtype selectivity. micro-Conotoxin KIIIA blocks the neuronal subtype Na(V)1.2 with nanomolar affinity and we recently discovered that KIIIA and its mutant with one fewer positive charge, KIIIA[K7A], could act synergistically with TTX in a ternary peptide x TTX x Na(V) complex. In the complex, the peptide appeared to trap TTX in its normal binding site such that TTX could not readily dissociate from the channel until the peptide had done so; in turn, the presence of TTX accelerated the rate at which peptide dissociated from the channel. In the present study we examined the inhibition of Na(V)1.2, exogenously expressed in Xenopus oocytes, by STX (a divalent cation) and its sulfated congener GTX2/3 (with a net +1 charge). Each could form a ternary complex with KIIIA and Na(V)1.2, as previously found with TTX (a monovalent cation), but only when STX or GTX2/3 was added before KIIIA. The KIIIA x alkaloid x Na(V) complex was considerably less stable with STX than with either GTX2/3 or TTX. In contrast, ternary KIIIA[K7A] x alkaloid x Na(V) complexes could be formed with either order of ligand addition and were about equally stable with STX, GTX2/3, or TTX. The most parsimonious interpretation of the overall results is that the alkaloid and peptide are closely apposed in the ternary complex. The demonstration that two interacting ligands ("syntoxins") occupy adjacent sites raises the possibility of evolving a much more sophisticated neuropharmacology of VGSCs.
Collapse
Affiliation(s)
- Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
42
|
Cervenka R, Zarrabi T, Lukacs P, Todt H. The outer vestibule of the Na+ channel-toxin receptor and modulator of permeation as well as gating. Mar Drugs 2010; 8:1373-93. [PMID: 20479982 PMCID: PMC2866490 DOI: 10.3390/md8041373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/31/2010] [Accepted: 04/19/2010] [Indexed: 12/19/2022] Open
Abstract
The outer vestibule of voltage-gated Na(+) channels is formed by extracellular loops connecting the S5 and S6 segments of all four domains ("P-loops"), which fold back into the membrane. Classically, this structure has been implicated in the control of ion permeation and in toxin blockage. However, conformational changes of the outer vestibule may also result in alterations in gating, as suggested by several P-loop mutations that gave rise to gating changes. Moreover, partial pore block by mutated toxins may reverse gating changes induced by mutations. Therefore, toxins that bind to the outer vestibule can be used to modulate channel gating.
Collapse
Affiliation(s)
| | | | - Peter Lukacs
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; E-Mails:
(R.C.);
(T.Z.);
(P.L.)
| | - Hannes Todt
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; E-Mails:
(R.C.);
(T.Z.);
(P.L.)
| |
Collapse
|
43
|
The tetrodotoxin binding site is within the outer vestibule of the sodium channel. Mar Drugs 2010; 8:219-34. [PMID: 20390102 PMCID: PMC2852835 DOI: 10.3390/md8020219] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/10/2010] [Accepted: 01/28/2010] [Indexed: 12/21/2022] Open
Abstract
Tetrodotoxin and saxitoxin are small, compact asymmetrical marine toxins that block voltage-gated Na channels with high affinity and specificity. They enter the channel pore’s outer vestibule and bind to multiple residues that control permeation. Radiolabeled toxins were key contributors to channel protein purification and subsequent cloning. They also helped identify critical structural elements called P loops. Spacial organization of their mutation-identified interaction sites in molecular models has generated a molecular image of the TTX binding site in the outer vestibule and the critical permeation and selectivity features of this region. One site in the channel’s domain I P loop determines affinity differences in mammalian isoforms.
Collapse
|
44
|
Cheng RCK, Tikhonov DB, Zhorov BS. Structural modeling of calcium binding in the selectivity filter of the L-type calcium channel. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:839-53. [PMID: 20054687 DOI: 10.1007/s00249-009-0574-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/08/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Calcium channels play crucial physiological roles. In the absence of high-resolution structures of the channels, the mechanism of ion permeation is unknown. Here we used a method proposed in an accompanying paper (Cheng and Zhorov in Eur Biophys J, 2009) to predict possible chelation patterns of calcium ions in a structural model of the L-type calcium channel. We compared three models in which two or three calcium ions interact with the four selectivity filter glutamates and a conserved aspartate adjacent to the glutamate in repeat II. Monte Carlo energy minimizations yielded many complexes with calcium ions bound to at least two selectivity filter carboxylates. In these complexes calcium-carboxylate attractions are counterbalanced by calcium-calcium and carboxylate-carboxylate repulsions. Superposition of the complexes suggests a high degree of mobility of calcium ions and carboxylate groups of the glutamates. We used the predicted complexes to propose a permeation mechanism that involves single-file movement of calcium ions. The key feature of this mechanism is the presence of bridging glutamates that coordinate two calcium ions and enable their transitions between different chelating patterns involving four to six oxygen atoms from the channel protein. The conserved aspartate is proposed to coordinate a calcium ion incoming to the selectivity filter from the extracellular side. Glutamates in repeats III and IV, which are most distant from the repeat II aspartate, are proposed to coordinate the calcium ion that leaves the selectivity filter to the inner pore. Published experimental data and earlier proposed permeation models are discussed in view of our model.
Collapse
Affiliation(s)
- Ricky C K Cheng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
45
|
Murata K, Nishimura S, Kuniyasu A, Nakayama H. Three-dimensional structure of the alpha1-beta complex in the skeletal muscle dihydropyridine receptor by single-particle electron microscopy. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:215-226. [PMID: 19995890 DOI: 10.1093/jmicro/dfp059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dihydropyridine receptor (DHPR) is a protein complex that consists of five distinct subunits of alpha(1), alpha(2), beta, gamma and delta and functions as a voltage-dependent L-type Ca(2+) channel. Here we purified the alpha(1)-beta complex (approximately 250 kDa) from the rabbit skeletal muscle DHPR and reconstructed its three-dimensional (3D) structure to 38 A resolution by single particle analysis of negative staining electron microscopy. The alpha(1)-beta structure exhibited two unique regions: a pseudo-4-fold petaloid region and an elongated region. X-ray crystallographic models of a homologous voltage-dependent K(+) channel and the beta subunit fit well into the individual regions of the alpha(1)-beta structure, revealing that the two regions correspond to the transmembrane alpha(1) and the cytoplasmic beta subunits, respectively. In addition, 3D reconstruction and immuno-electron microscopic analysis performed on the independently purified DHPR demonstrated that the alpha(1)-beta complex was located in the large globular portion of the DHPR, and the N-terminal region of the beta subunit was extended to the leg-shaped protrusion of the DHPR, which includes the alpha(2)delta subunits. Our results propose a model in which the beta subunit may regulate ion channel function by acting as a hinge between alpha(1) and alpha(2)delta subunits of the DHPR.
Collapse
Affiliation(s)
- Kazuyoshi Murata
- Japan Biological Information Research Center, AIST Tokyo Waterfront, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | |
Collapse
|
46
|
Cheng RCK, Tikhonov DB, Zhorov BS. Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 2009; 284:28332-28342. [PMID: 19700404 DOI: 10.1074/jbc.m109.027326] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phenylalkylamines (PAAs), a major class of L-type calcium channel (LTCC) blockers, have two aromatic rings connected by a flexible chain with a nitrile substituent. Structural aspects of ligand-channel interactions remain unclear. We have built a KvAP-based model of LTCC and used Monte Carlo energy minimizations to dock devapamil, verapamil, gallopamil, and other PAAs. The PAA-LTCC models have the following common features: (i) the meta-methoxy group in ring A, which is proximal to the nitrile group, accepts an H-bond from a PAA-sensing Tyr_IIIS6; (ii) the meta-methoxy group in ring B accepts an H-bond from a PAA-sensing Tyr_IVS6; (iii) the ammonium group is stabilized at the focus of P-helices; and (iv) the nitrile group binds to a Ca(2+) ion coordinated by the selectivity filter glutamates in repeats III and IV. The latter feature can explain Ca(2+) potentiation of PAA action and the presence of an electronegative atom at a similar position of potent PAA analogs. Tyr substitution of a Thr in IIIS5 is known to enhance action of devapamil and verapamil. Our models predict that the para-methoxy group in ring A of devapamil and verapamil accepts an H-bond from this engineered Tyr. The model explains structure-activity relationships of PAAs, effects of LTCC mutations on PAA potency, data on PAA access to LTCC, and Ca(2+) potentiation of PAA action. Common and class-specific aspects of action of PAAs, dihydropyridines, and benzothiazepines are discussed in view of the repeat interface concept.
Collapse
Affiliation(s)
- Ricky C K Cheng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
47
|
Kudrnac M, Beyl S, Hohaus A, Stary A, Peterbauer T, Timin E, Hering S. Coupled and independent contributions of residues in IS6 and IIS6 to activation gating of CaV1.2. J Biol Chem 2009; 284:12276-84. [PMID: 19265197 DOI: 10.1074/jbc.m808402200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage dependence and kinetics of Ca(V)1.2 activation are affected by structural changes in pore-lining S6 segments of the alpha(1)-subunit. Significant effects are induced by either proline or threonine substitutions in the lower third of segment IIS6 ("bundle crossing region"), where S6 segments are likely to seal the channel in the closed conformation (Hohaus, A., Beyl, S., Kudrnac, M., Berjukow, S., Timin, E. N., Marksteiner, R., Maw, M. A., and Hering, S. (2005) J. Biol. Chem. 280, 38471-38477). Here we report that S435P in IS6 results in a large shift of the activation curve (-25.9 +/- 1.2 mV) and slower current kinetics. Threonine substitutions at positions Leu-429 and Leu-434 induced a similar kinetic phenotype with shifted activation curves (L429T by -6.6 +/- 1.2 and L434T by -12.1 +/- 1.7 mV). Inactivation curves of all mutants were shifted to comparable extents as the activation curves. Interdependence of IS6 and IIS6 mutations was analyzed by means of mutant cycle analysis. Double mutations in segments IS6 and IIS6 induce either additive (L429T/I781T, -34.1 +/- 1.4 mV; L434T/I781T, -40.4 +/- 1.3 mV; L429T/L779T, -12.6 +/- 1.3 mV; and L434T/L779T, -22.4 +/- 1.3 mV) or nonadditive shifts of the activation curves along the voltage axis (S435P/I781T, -33.8 +/- 1.4 mV). Mutant cycle analysis revealed energetic coupling between residues Ser-435 and Ile-781, whereas other paired mutations in segments IS6 and IIS6 had independent effects on activation gating.
Collapse
Affiliation(s)
- Michaela Kudrnac
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
48
|
Tikhonov DB, Zhorov BS. Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 2008; 283:17594-604. [PMID: 18397890 DOI: 10.1074/jbc.m800141200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benz(othi)azepine (BTZ) derivatives constitute one of three major classes of L-type Ca(2+) channel ligands. Despite intensive experimental studies, no three-dimensional model of BTZ binding is available. Here we have built KvAP- and KcsA-based models of the Ca(v)1.2 pore domain in the open and closed states and used multiple Monte Carlo minimizations to dock representative ligands. In our open channel model, key functional groups of BTZs interact with BTZ-sensing residues, which were identified in previous mutational experiments. The bulky tricyclic moiety occupies interface between domains III and IV, while the ammonium group protrudes into the inner pore, where it is stabilized by nucleophilic C-ends of the pore helices. In the closed channel model, contacts with several ligand-sensing residues in the inner helices are lost, which weakens ligand-channel interactions. An important feature of the ligand-binding mode in both open and closed channels is an interaction between the BTZ carbonyl group and a Ca(2+) ion chelated by the selectivity filter glutamates in domains III and IV. In the absence of Ca(2+), the tricyclic BTZ moiety remains in the domain interface, while the ammonium group directly interacts with a glutamate residue in the selectivity filter. Our model suggests that the Ca(2+) potentiation involves a direct electrostatic interaction between aCa(2+) ion and the ligand rather than an allosteric mechanism. Energy profiles indicate that BTZs can reach the binding site from the domain interface, whereas access through the open activation gate is unlikely, because reorientation of the bulky molecule in the pore is hindered.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
49
|
Liu J, Wu Q, Pi C, Zhao Y, Zhou M, Wang L, Chen S, Xu A. Isolation and characterization of a T-superfamily conotoxin from Conus litteratus with targeting tetrodotoxin-sensitive sodium channels. Peptides 2007; 28:2313-9. [PMID: 17961831 DOI: 10.1016/j.peptides.2007.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 09/07/2007] [Accepted: 09/14/2007] [Indexed: 11/16/2022]
Abstract
A T-1-conotoxin, lt5d, was purified and characterized from the venom of vermivorous hunting cone snails Conus litteratus. The complete amino acid sequence of lt5d (DCCPAKLLCCNP) has been determined by Edman degradation. With two disulfide bonds, the calculated average mass is 1274.57 Da, which is confirmed by MALDI-TOF mass spectrometry (average mass 1274.8778). Under whole cell patch-clamp mode, lt5d inhibits tetrodotoxin-sensitive sodium currents on adult rat dorsal root ganglion neurons, but has no effects on tetrodotoxin-resistant sodium currents. The inhibition of TTX-sensitive sodium currents by lt5d was found to be concentration-dependent with the IC(50) value of 156.16 nM. Thus, this is the first T-superfamily conotoxin identified to block TTX-sensitive sodium channels.
Collapse
Affiliation(s)
- Junliang Liu
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Choudhary G, Aliste MP, Tieleman DP, French RJ, Dudley SC. Docking of mu-conotoxin GIIIA in the sodium channel outer vestibule. Channels (Austin) 2007; 1:344-52. [PMID: 18690041 DOI: 10.4161/chan.5112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
mu-Conotoxin GIIIA (mu-CTX) is a high-affinity ligand for the outer vestibule of selected isoforms of the voltage-gated Na(+) channel. The detailed bases for the toxin's high affinity binding and isoform selectivity are unclear. The outer vestibule is lined by four pore-forming (P) loops, each with an acidic residue near the mouth of the vestibule. mu-CTX has seven positively charged residues that may interact with these acidic P-loop residues. Using pair-wise alanine replacement of charged toxin and channel residues, in conjunction with double mutant cycle analysis, we determined coupling energies for specific interactions between each P-loop acidic residue and selected toxin residues to systematically establish quantitative restraints on the toxin orientation in the outer vestibule. Xenopus oocytes were injected with the mutant or native Na(+) channel mRNA, and currents measured by two-electrode voltage clamp. Mutant cycle analysis revealed novel, strong, toxin-channel interactions between K9/E403, K11/D1241, K11/D1532, and R19/D1532. Experimentally determined coupling energies for interacting residue pairs provided restraints for molecular dynamics simulations of mu-CTX docking. Our simulations suggest a refined orientation of the toxin in the pore, with toxin basic side-chains playing key roles in high-affinity binding. This modeling also provides a set of testable predictions for toxin-channel interactions, hitherto not described, that may contribute to high-affinity binding and channel isoform selectivity.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Department of Medicine, Providence Veterans Affairs Medical Center/Brown University, Providence, Rhode Island 02904, USA.
| | | | | | | | | |
Collapse
|