1
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
2
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
3
|
Marquis MJ, Sack JT. Mechanism of use-dependent Kv2 channel inhibition by RY785. J Gen Physiol 2022; 154:e202112981. [PMID: 35435946 PMCID: PMC9195051 DOI: 10.1085/jgp.202112981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.
Collapse
Affiliation(s)
- Matthew James Marquis
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Jon T. Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
4
|
Short B. A Kv2 inhibitor traps itself in place. J Gen Physiol 2022; 154:213201. [PMID: 35522189 DOI: 10.1085/jgp.202213181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voltage activation, but not channel opening, is required for RY785 to access the central cavity of Kv2 channels, where it promotes voltage sensor deactivation to trap itself in place.
Collapse
|
5
|
Van Theemsche KM, Van de Sande DV, Snyders DJ, Labro AJ. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K + and Na + Channels. Front Pharmacol 2020; 11:735. [PMID: 32499709 PMCID: PMC7243439 DOI: 10.3389/fphar.2020.00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.
Collapse
Affiliation(s)
- Kenny M Van Theemsche
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Barros F, de la Peña P, Domínguez P, Sierra LM, Pardo LA. The EAG Voltage-Dependent K + Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Front Pharmacol 2020; 11:411. [PMID: 32351384 PMCID: PMC7174612 DOI: 10.3389/fphar.2020.00411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
EAG (ether-à-go-go or KCNH) are a subfamily of the voltage-gated potassium (Kv) channels. Like for all potassium channels, opening of EAG channels drives the membrane potential toward its equilibrium value for potassium, thus setting the resting potential and repolarizing action potentials. As voltage-dependent channels, they switch between open and closed conformations (gating) when changes in membrane potential are sensed by a voltage sensing domain (VSD) which is functionally coupled to a pore domain (PD) containing the permeation pathway, the potassium selectivity filter, and the channel gate. All Kv channels are tetrameric, with four VSDs formed by the S1-S4 transmembrane segments of each subunit, surrounding a central PD with the four S5-S6 sections arranged in a square-shaped structure. Structural information, mutagenesis, and functional experiments, indicated that in "classical/Shaker-type" Kv channels voltage-triggered VSD reorganizations are transmitted to PD gating via the α-helical S4-S5 sequence that links both modules. Importantly, these Shaker-type channels share a domain-swapped VSD/PD organization, with each VSD contacting the PD of the adjacent subunit. In this case, the S4-S5 linker, acting as a rigid mechanical lever (electromechanical lever coupling), would lead to channel gate opening at the cytoplasmic S6 helices bundle. However, new functional data with EAG channels split between the VSD and PD modules indicate that, in some Kv channels, alternative VSD/PD coupling mechanisms do exist. Noticeably, recent elucidation of the architecture of some EAG channels, and other relatives, showed that their VSDs are non-domain swapped. Despite similarities in primary sequence and predicted structural organization for all EAG channels, they show marked kinetic differences whose molecular basis is not completely understood. Thus, while a common general architecture may establish the gating system used by the EAG channels and the physicochemical coupling of voltage sensing to gating, subtle changes in that common structure, and/or allosteric influences of protein domains relatively distant from the central gating machinery, can crucially influence the gating process. We consider here the latest advances on these issues provided by the elucidation of eag1 and erg1 three-dimensional structures, and by both classical and more recent functional studies with different members of the EAG subfamily.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Luisa Maria Sierra
- Departamento de Biología Funcional (Area de Genética), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
7
|
Black KA, Jin R, He S, Gulbis JM. Changing perspectives on how the permeation pathway through potassium channels is regulated. J Physiol 2019; 599:1961-1976. [PMID: 31612997 DOI: 10.1113/jp278682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 11/08/2022] Open
Abstract
The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non-conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a 'closed' state in which the conduction pathway is occluded and an 'open' state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, 'non-canonical' mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues.
Collapse
Affiliation(s)
- Katrina A Black
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ruitao Jin
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sitong He
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Jacqueline M Gulbis
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
8
|
Barros F, Pardo LA, Domínguez P, Sierra LM, de la Peña P. New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int J Mol Sci 2019; 20:ijms20020248. [PMID: 30634573 PMCID: PMC6359393 DOI: 10.3390/ijms20020248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-dependent potassium channels (Kv channels) are crucial regulators of cell excitability that participate in a range of physiological and pathophysiological processes. These channels are molecular machines that display a mechanism (known as gating) for opening and closing a gate located in a pore domain (PD). In Kv channels, this mechanism is triggered and controlled by changes in the magnitude of the transmembrane voltage sensed by a voltage-sensing domain (VSD). In this review, we consider several aspects of the VSD–PD coupling in Kv channels, and in some relatives, that share a common general structure characterized by a single square-shaped ion conduction pore in the center, surrounded by four VSDs located at the periphery. We compile some recent advances in the knowledge of their architecture, based in cryo-electron microscopy (cryo-EM) data for high-resolution determination of their structure, plus some new functional data obtained with channel variants in which the covalent continuity between the VSD and PD modules has been interrupted. These advances and new data bring about some reconsiderations about the use of exclusively a classical electromechanical lever model of VSD–PD coupling by some Kv channels, and open a view of the Kv-type channels as allosteric machines in which gating may be dynamically influenced by some long-range interactional/allosteric mechanisms.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| | - Luisa Maria Sierra
- Departamento de Biología Funcional (Area de Genética), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
9
|
Pisupati A, Mickolajczyk KJ, Horton W, van Rossum DB, Anishkin A, Chintapalli SV, Li X, Chu-Luo J, Busey G, Hancock WO, Jegla T. The S6 gate in regulatory Kv6 subunits restricts heteromeric K + channel stoichiometry. J Gen Physiol 2018; 150:1702-1721. [PMID: 30322883 PMCID: PMC6279357 DOI: 10.1085/jgp.201812121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
Atypical substitutions in the S6 activation gate sequence distinguish “regulatory” Kv subunits, which cannot homotetramerize due to T1 self-incompatibility. Pisupati et al. show that such substitutions in Kv6 work together with self-incompatibility to restrict Kv2:Kv6 heteromeric stoichiometry to 3:1. The Shaker-like family of voltage-gated K+ channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1–4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.1, Kv6s, Kv8s, and Kv9s) encodes subunits that have a “silent” or “regulatory” phenotype characterized by T1 self-incompatibility. These channels are unable to form homotetramers, but instead heteromerize with Kv2.1 or Kv2.2 to diversify the functional properties of these delayed rectifiers. While T1 self-incompatibility predicts that these heterotetramers could contain up to two regulatory (R) subunits, experiments show a predominance of 3:1R stoichiometry in which heteromeric channels contain a single regulatory subunit. Substitution of the self-compatible Kv2.1 T1 domain into the regulatory subunit Kv6.4 does not alter the stoichiometry of Kv2.1:Kv6.4 heteromers. Here, to identify other channel structures that might be responsible for favoring the 3:1R stoichiometry, we compare the sequences of mammalian regulatory subunits to independently evolved regulatory subunits from cnidarians. The most widespread feature of regulatory subunits is the presence of atypical substitutions in the highly conserved consensus sequence of the intracellular S6 activation gate of the pore. We show that two amino acid substitutions in the S6 gate of the regulatory subunit Kv6.4 restrict the functional stoichiometry of Kv2.1:Kv6.4 to 3:1R by limiting the formation and function of 2:2R heteromers. We propose a two-step model for the evolution of the asymmetric 3:1R stoichiometry, which begins with evolution of self-incompatibility to establish the regulatory phenotype, followed by drift of the activation gate consensus sequence under relaxed selection to limit stoichiometry to 3:1R.
Collapse
Affiliation(s)
- Aditya Pisupati
- Department of Biology, Pennsylvania State University, University Park, PA.,Medical Scientist Training Program, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - William Horton
- Department of Animal Science, Pennsylvania State University, University Park, PA
| | - Damian B van Rossum
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA.,Division of Experimental Pathology, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Xiaofan Li
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Jose Chu-Luo
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Gregory Busey
- Department of Biology, Pennsylvania State University, University Park, PA
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - Timothy Jegla
- Department of Biology, Pennsylvania State University, University Park, PA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
10
|
Hering S, Zangerl-Plessl EM, Beyl S, Hohaus A, Andranovits S, Timin EN. Calcium channel gating. Pflugers Arch 2018; 470:1291-1309. [PMID: 29951751 PMCID: PMC6096772 DOI: 10.1007/s00424-018-2163-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tuned calcium entry through voltage-gated calcium channels is a key requirement for many cellular functions. This is ensured by channel gates which open during membrane depolarizations and seal the pore at rest. The gating process is determined by distinct sub-processes: movement of voltage-sensing domains (charged S4 segments) as well as opening and closure of S6 gates. Neutralization of S4 charges revealed that pore opening of CaV1.2 is triggered by a "gate releasing" movement of all four S4 segments with activation of IS4 (and IIIS4) being a rate-limiting stage. Segment IS4 additionally plays a crucial role in channel inactivation. Remarkably, S4 segments carrying only a single charged residue efficiently participate in gating. However, the complete set of S4 charges is required for stabilization of the open state. Voltage clamp fluorometry, the cryo-EM structure of a mammalian calcium channel, biophysical and pharmacological studies, and mathematical simulations have all contributed to a novel interpretation of the role of voltage sensors in channel opening, closure, and inactivation. We illustrate the role of the different methodologies in gating studies and discuss the key molecular events leading CaV channels to open and to close.
Collapse
Affiliation(s)
- S Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - E-M Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - A Hohaus
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Andranovits
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - E N Timin
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
11
|
Zhao J, Blunck R. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. eLife 2016; 5. [PMID: 27710769 PMCID: PMC5092046 DOI: 10.7554/elife.18130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023] Open
Abstract
Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| |
Collapse
|
12
|
Naranjo D, Moldenhauer H, Pincuntureo M, Díaz-Franulic I. Pore size matters for potassium channel conductance. J Gen Physiol 2016; 148:277-91. [PMID: 27619418 PMCID: PMC5037345 DOI: 10.1085/jgp.201611625] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance.
Collapse
Affiliation(s)
- David Naranjo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Matías Pincuntureo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Programa de Doctorado en Ciencias, mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile Fraunhofer Chile Research, Las Condes 7550296, Chile
| |
Collapse
|
13
|
Moldenhauer H, Díaz-Franulic I, González-Nilo F, Naranjo D. Effective pore size and radius of capture for K(+) ions in K-channels. Sci Rep 2016; 6:19893. [PMID: 26831782 PMCID: PMC4735802 DOI: 10.1038/srep19893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022] Open
Abstract
Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.
Collapse
Affiliation(s)
- Hans Moldenhauer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha Valparaíso, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha Valparaíso, Chile.,Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Santiago, Chile and Fundación Fraunhofer-Chile, Las Condes, Chile
| | - Fernando González-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha Valparaíso, Chile.,Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Santiago, Chile and Fundación Fraunhofer-Chile, Las Condes, Chile
| | - David Naranjo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha Valparaíso, Chile
| |
Collapse
|
14
|
Kuzmenkov AI, Grishin EV, Vassilevski AA. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. BIOCHEMISTRY (MOSCOW) 2016; 80:1764-99. [DOI: 10.1134/s0006297915130118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Perez-Cortes E, Islas A, Arevalo J, Mancilla C, Monjaraz E, Salinas-Stefanon E. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine. Toxicol Appl Pharmacol 2015. [DOI: 10.1016/j.taap.2015.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Abstract
K-selective voltage-gated channels (Kv) are multi-conformation bilayer-embedded proteins whose mechanosensitive (MS) Popen(V) implies that at least one conformational transition requires the restructuring of the channel-bilayer interface. Unlike Morris and colleagues, who attributed MS-Kv responses to a cooperative V-dependent closed-closed expansion↔compaction transition near the open state, Mackinnon and colleagues invoke expansion during a V-independent closed↔open transition. With increasing membrane tension, they suggest, the closed↔open equilibrium constant, L, can increase >100-fold, thereby taking steady-state Popen from 0→1; "exquisite sensitivity to small…mechanical perturbations", they state, makes a Kv "as much a mechanosensitive…as…a voltage-dependent channel". Devised to explain successive gK(V) curves in excised patches where tension spontaneously increased until lysis, their L-based model falters in part because of an overlooked IK feature; with recovery from slow inactivation factored in, their g(V) datasets are fully explained by the earlier model (a MS V-dependent closed-closed transition, invariant L≥4). An L-based MS-Kv predicts neither known Kv time courses nor the distinctive MS responses of Kv-ILT. It predicts Kv densities (hence gating charge per V-sensor) several-fold different from established values. If opening depended on elevated tension (L-based model), standard gK(V) operation would be compromised by animal cells' membrane flaccidity. A MS V-dependent transition is, by contrast, unproblematic on all counts. Since these issues bear directly on recent findings that mechanically-modulated Kv channels subtly tune pain-related excitability in peripheral mechanoreceptor neurons we undertook excitability modeling (evoked action potentials). Kvs with MS V-dependent closed-closed transitions produce nuanced mechanically-modulated excitability whereas an L-based MS-Kv yields extreme, possibly excessive (physiologically-speaking) inhibition.
Collapse
|
17
|
Grizel AV, Glukhov GS, Sokolova OS. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae 2014; 6:10-26. [PMID: 25558391 PMCID: PMC4273088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated potassium ion channels (Kv) play an important role in a variety of cellular processes, including the functioning of excitable cells, regulation of apoptosis, cell growth and differentiation, the release of neurotransmitters and hormones, maintenance of cardiac activity, etc. Failure in the functioning of Kv channels leads to severe genetic disorders and the development of tumors, including malignant ones. Understanding the mechanisms underlying Kv channels functioning is a key factor in determining the cause of the diseases associated with mutations in the channels, and in the search for new drugs. The mechanism of activation of the channels is a topic of ongoing debate, and a consensus on the issue has not yet been reached. This review discusses the key stages in studying the mechanisms of functioning of Kv channels and describes the basic models of their activation known to date.
Collapse
Affiliation(s)
- A. V. Grizel
- Saint Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg, Russia
| | - G. S. Glukhov
- Biological Faculty of Moscow State MV Lomonosov University, 1, Leninskie Gory, Bld. 12, 119991, Moscow, Russia
| | | |
Collapse
|
18
|
Martinez-Morales E, Snyders DJ, Labro AJ. Mutations in the S6 gate isolate a late step in the activation pathway and reduce 4-AP sensitivity in shaker K(v) channel. Biophys J 2014; 106:134-44. [PMID: 24411245 DOI: 10.1016/j.bpj.2013.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/28/2013] [Accepted: 11/12/2013] [Indexed: 01/12/2023] Open
Abstract
Kv channels detect changes in the membrane potential via their voltage-sensing domains (VSDs) that control the status of the S6 bundle crossing (BC) gate. The movement of the VSDs results in a transfer of the S4 gating charges across the cell membrane but only the last 10-20% of the total gating charge movement is associated with BC gate opening, which involves cooperative transition(s) in the subunits. Substituting the proline residue P475 in the S6 of the Shaker channel by a glycine or alanine causes a considerable shift in the voltage-dependence of the cooperative transition(s) of BC gate opening, effectively isolating the late gating charge component from the other gating charge that originates from earlier VSD movements. Interestingly, both mutations also abolished Shaker's sensitivity to 4-aminopyridine, which is a pharmacological tool to isolate the late gating charge component. The alanine substitution (that would promote a α-helical configuration compared to proline) resulted in the largest separation of both gating charge components; therefore, BC gate flexibility appears to be important for enabling the late cooperative step of channel opening.
Collapse
Affiliation(s)
- Evelyn Martinez-Morales
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Baeyens N, Bouryi V, Morel N. Extracellular calcium modulates the inhibitory effect of 4-aminopyridine on Kv current in vascular smooth muscle cells. Eur J Pharmacol 2014; 723:116-23. [PMID: 24333216 DOI: 10.1016/j.ejphar.2013.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/30/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
4-Aminopyridine is widely used as a Kv channel blocker. However, its mechanism of action is still a matter of debate. Extracellular calcium as well as 4-aminopyridine have been reported to interact with the activation kinetics of particular Kv channels. The objective of the present study was to investigate whether extracellular calcium could modulate the inhibition of Kv current by 4-aminopyridine in vascular myocytes. Kv current was recorded by using whole-cell patch-clamp in freshly isolated smooth muscle cells from rat mesenteric artery. Macroscopic properties of Kv current were not affected by change in extracellular calcium from 0 to 2mM. During a 10s depolarizing pulse, 4-aminopyridine inhibited the peak current without affecting the end-pulse current. The concentration-effect curve of 4-aminopyridine was shifted to the left in the presence of 2mM calcium compared to 0 calcium. After 4-aminopyridine washout, current recovery from block was slower in the presence than in the absence of calcium. Inhibition of Kv current by 4-aminopyridine (0.5mM) and the Kv2 blocker stromatoxin (50nM) was additive and stromatoxin did not alter the potentiation of 4-aminopyridine effect by extracellular calcium. These results showed that extracellular calcium modulated the inhibitory potency of 4-aminopyridine on Kv current in vascular myocytes. The component of Kv current that was inhibited by 4-aminopyridine in a calcium-sensitive manner was distinct from Kv2 current.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Cell physiology, Institute of Neuroscience, Université catholique de Louvain, Bruxelles, Belgium
| | - Vitali Bouryi
- Cell physiology, Institute of Neuroscience, Université catholique de Louvain, Bruxelles, Belgium
| | - Nicole Morel
- Cell physiology, Institute of Neuroscience, Université catholique de Louvain, Bruxelles, Belgium.
| |
Collapse
|
20
|
Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Potassium Channels: Structures, Diseases, and Modulators. Chem Biol Drug Des 2013; 83:1-26. [DOI: 10.1111/cbdd.12237] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chuan Tian
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| | - Ruixin Zhu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Lixin Zhu
- Department of Pediatrics; Digestive Diseases and Nutrition Center; The State University of New York at Buffalo; Buffalo NY 14226 USA
| | - Tianyi Qiu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Zhiwei Cao
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Tingguo Kang
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| |
Collapse
|
21
|
Schow EV, Freites JA, Nizkorodov A, White SH, Tobias DJ. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1726-36. [PMID: 22425907 DOI: 10.1016/j.bbamem.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.
Collapse
Affiliation(s)
- Eric V Schow
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | |
Collapse
|
22
|
Milescu M, Lee HC, Bae CH, Kim JI, Swartz KJ. Opening the shaker K+ channel with hanatoxin. ACTA ACUST UNITED AC 2013; 141:203-16. [PMID: 23359283 PMCID: PMC3557313 DOI: 10.1085/jgp.201210914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1–S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1–S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance–voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin–channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance–voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b–S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin–channel interface determine whether a toxin is an inhibitor or opener.
Collapse
Affiliation(s)
- Mirela Milescu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
23
|
Santos JS, Syeda R, Montal M. Stabilization of the conductive conformation of a voltage-gated K+ (Kv) channel: the lid mechanism. J Biol Chem 2013; 288:16619-16628. [PMID: 23609443 DOI: 10.1074/jbc.m113.468728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Voltage-gated K(+) (Kv) channels are molecular switches that sense membrane potential and in response open to allow K(+) ions to diffuse out of the cell. In these proteins, sensor and pore belong to two distinct structural modules. We previously showed that the pore module alone is a robust yet dynamic structural unit in lipid membranes and that it senses potential and gates open to conduct K(+) with unchanged fidelity. The implication is that the voltage sensitivity of K(+) channels is not solely encoded in the sensor. Given that the coupling between sensor and pore remains elusive, we asked whether it is then possible to convert a pore module characterized by brief openings into a conductor with a prolonged lifetime in the open state. The strategy involves selected probes targeted to the filter gate of the channel aiming to modulate the probability of the channel being open assayed by single channel recordings from the sensorless pore module reconstituted in lipid bilayers. Here we show that the premature closing of the pore is bypassed by association of the filter gate with two novel open conformation stabilizers: an antidepressant and a peptide toxin known to act selectively on Kv channels. Such stabilization of the conductive conformation of the channel is faithfully mimicked by the covalent attachment of fluorescein at a cysteine residue selectively introduced near the filter gate. This modulation prolongs the occupancy of permeant ions at the gate. It is this longer embrace between ion and gate that we conjecture underlies the observed stabilization of the conductive conformation. This study provides a new way of thinking about gating.
Collapse
Affiliation(s)
- Jose S Santos
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Ruhma Syeda
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093.
| |
Collapse
|
24
|
Kopljar I, Labro AJ, de Block T, Rainier JD, Tytgat J, Snyders DJ. The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state. ACTA ACUST UNITED AC 2013; 141:359-69. [PMID: 23401573 PMCID: PMC3581691 DOI: 10.1085/jgp.201210890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function.
Collapse
Affiliation(s)
- Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Goodchild SJ, Xu H, Es-Salah-Lamoureux Z, Ahern CA, Fedida D. Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations. ACTA ACUST UNITED AC 2012; 140:495-511. [PMID: 23071269 PMCID: PMC3483119 DOI: 10.1085/jgp.201210823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG+) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs+, displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K+, suggesting that K+ ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG+ ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K+, allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics.
Collapse
Affiliation(s)
- Samuel J Goodchild
- Department of Anesthesiology, Pharmacology, and Therapeutics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
26
|
Tetrameric assembly of KvLm K+ channels with defined numbers of voltage sensors. Proc Natl Acad Sci U S A 2012; 109:16917-22. [PMID: 23019583 DOI: 10.1073/pnas.1205592109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Voltage-gated K(+) (Kv) channels are tetrameric assemblies in which each modular subunit consists of a voltage sensor and a pore domain. KvLm, the voltage-gated K(+) channel from Listeria monocytogenes, differs from other Kv channels in that its voltage sensor contains only three out of the eight charged residues previously implicated in voltage gating. Here, we ask how many sensors are required to produce a functional Kv channel by investigating heterotetramers comprising combinations of full-length KvLm (FL) and its sensorless pore module. KvLm heterotetramers were produced by cell-free expression, purified by electrophoresis, and shown to yield functional channels after reconstitution in droplet interface bilayers. We studied the properties of KvLm channels with zero, one, two, three, and four voltage sensors. Three sensors suffice to promote channel opening with FL(4)-like voltage dependence at depolarizing potentials, but all four sensors are required to keep the channel closed during membrane hyperpolarization.
Collapse
|
27
|
Labro AJ, Snyders DJ. Being flexible: the voltage-controllable activation gate of kv channels. Front Pharmacol 2012; 3:168. [PMID: 22993508 PMCID: PMC3440756 DOI: 10.3389/fphar.2012.00168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/26/2012] [Indexed: 12/16/2022] Open
Abstract
Kv channels form voltage-dependent potassium selective pores in the outer cell membrane and are composed out of four α-subunits, each having six membrane-spanning α-helices (S1–S6). The α-subunits tetramerize such that the S5–S6 pore domains co-assemble into a centrally located K+ pore which is surrounded by four operational voltage-sensing domains (VSD) that are each formed by the S1–S4 segments. Consequently, each subunit is capable of responding to changes in membrane potential and dictates whether the pore should be conductive or not. K+ permeation through the pore can be sealed off by two separate gates in series: (a) at the inner S6 bundle crossing (BC gate) and (b) at the level of the selectivity filter (SF gate) located at the extracellular entrance of the pore. Within the last years a general consensus emerged that a direct communication between the S4S5-linker and the bottom part of S6 (S6c) constitutes the coupling with the VSD thus making the BC gate the main voltage-controllable activation gate. While the BC gate listens to the VSD, the SF changes its conformation depending on the status of the BC gate. Through the eyes of an entering K+ ion, the operation of the BC gate apparatus can be compared with the iris-like motion of the diaphragm from a camera whereby its diameter widens. Two main gating motions have been proposed to create this BC gate widening: (1) tilting of the helix whereby the S6 converts from a straight α-helix to a tilted one or (2) swiveling of the S6c whereby the S6 remains bent. Such motions require a flexible hinge that decouples the pre- and post-hinge segment. Roughly at the middle of the S6 there exists a highly conserved glycine residue and a tandem proline motif that seem to fulfill the role of a gating hinge which allows for tilting/swiveling/rotations of the post-hinge S6 segment. In this review we delineate our current view on the operation of the BC gate for controlling K+ permeation in Kv channels.
Collapse
Affiliation(s)
- Alain J Labro
- Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | | |
Collapse
|
28
|
Neutralisation of a single voltage sensor affects gating determinants in all four pore-forming S6 segments of Ca(V)1.2: a cooperative gating model. Pflugers Arch 2012; 464:391-401. [PMID: 22941337 DOI: 10.1007/s00424-012-1144-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Voltage sensors trigger the closed-open transitions in the pore of voltage-gated ion channels. To probe the transmission of voltage sensor signalling to the channel pore of Ca(V)1.2, we investigated how elimination of positive charges in the S4 segments (charged residues were replaced by neutral glutamine) modulates gating perturbations induced by mutations in pore-lining S6 segments. Neutralisation of all positively charged residues in IIS4 produced a functional channel (IIS4(N)), while replacement of the charged residues in IS4, IIIS4 and IVS4 segments resulted in nonfunctional channels. The IIS4(N) channel displayed activation kinetics similar to wild type. Mutations in a highly conserved structure motif on S6 segments ("GAGA ring": G432W in IS6, A780T in IIS6, G1193T in IIIS6 and A1503G in IVS6) induce strong left-shifted activation curves and decelerated channel deactivation kinetics. When IIS4(N) was combined with these mutations, the activation curves were shifted back towards wild type and current kinetics were accelerated. In contrast, 12 other mutations adjacent to the GAGA ring in IS6-IVS6, which also affect activation gating, were not rescued by IIS4(N). Thus, the rescue of gating distortions in segments IS6-IVS6 by IIS4(N) is highly position-specific. Thermodynamic cycle analysis supports the hypothesis that IIS4 is energetically coupled with the distantly located GAGA residues. We speculate that conformational changes caused by neutralisation of IIS4 are not restricted to domain II (IIS6) but are transmitted to gating structures in domains I, III and IV via the GAGA ring.
Collapse
|
29
|
Morris CE, Juranka PF, Joós B. Perturbed voltage-gated channel activity in perturbed bilayers: implications for ectopic arrhythmias arising from damaged membrane. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:245-56. [PMID: 22846437 DOI: 10.1016/j.pbiomolbio.2012.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/31/2022]
Abstract
The ceaseless opening and closing of the voltage-gated channels (VGCs) underlying cardiac rhythmicity is controlled, in each VGC, by four mobile voltage sensors embedded in bilayer. Every action potential necessitates extensive packing/repacking of voltage sensor domains with adjacent interacting lipid molecules. This renders VGC activity mechanosensitive (MS), i.e., energetically sensitive to the bilayer's mechanical state. Irreversible perturbations of sarcolemmal bilayer such as those associated with ischemia, reperfusion, inflammation, cortical-cytoskeleton abnormalities, bilayer-disrupting toxins, diet aberrations, etc, should therefore perturb VGC activity. Disordered/fluidized bilayer states that facilitate voltage sensor repacking, and thus make VGC opening too easy could, therefore, explain VGC-leakiness in these conditions. To study this in membrane patches we impose mechanical blebbing injury during pipette aspiration-induced membrane stretch, a process that modulates VGC activity irreversibly (plastic regime) and then, eventually, reversibly (elastic regime). Because of differences in sensor-to-gate coupling among different VGCs, their responses to stretch fall into two major categories, MS-Speed, MS-Number, exemplified by Nav and Cav channels. For particular VGCs in perturbed bilayers, leak mechanisms depend on whether or not the rate-limiting voltage-dependent step is MS. Mode-switch transitions might also be mechanosensitive and thus play a role. Incorporated mathematically in axon models, plastic-regime Nav responses elicit ectopic firing behaviors typical of peripheral neuropathies. In cardiomyocytes with mild bleb damage, Nav and/or Cav leaks from irreversible MS modulation (MS-Speed, MS-Number, respectively) could, similarly, foster ectopic arrhythmias. Where pathologically leaky VGCs reside in damaged bilayer, peri-channel bilayer disorder/fluidity conditions could be an important "target feature" for anti-arrhythmic VGC drugs.
Collapse
|
30
|
Vardanyan V, Pongs O. Coupling of voltage-sensors to the channel pore: a comparative view. Front Pharmacol 2012; 3:145. [PMID: 22866036 PMCID: PMC3406610 DOI: 10.3389/fphar.2012.00145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/07/2012] [Indexed: 12/11/2022] Open
Abstract
The activation of voltage-dependent ion channels is initiated by potential-induced conformational rearrangements in the voltage-sensor domains that propagates to the pore domain (PD) and finally opens the ion conduction pathway. In potassium channels voltage-sensors are covalently linked to the pore via S4-S5 linkers at the cytoplasmic site of the PD. Transformation of membrane electric energy into the mechanical work required for the opening or closing of the channel pore is achieved through an electromechanical coupling mechanism, which involves local interaction between residues in S4-S5 linker and pore-forming alpha helices. In this review we discuss present knowledge and open questions related to the electromechanical coupling mechanism in most intensively studied voltage-gated Shaker potassium channel and compare structure-functional aspects of coupling with those observed in distantly related ion channels. We focus particularly on the role of electromechanical coupling in modulation of the constitutive conductance of ion channels.
Collapse
Affiliation(s)
- Vitya Vardanyan
- Ion Channel Research Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia Yerevan, Armenia
| | | |
Collapse
|
31
|
Bocksteins E, Labro AJ, Snyders DJ, Mohapatra DP. The electrically silent Kv6.4 subunit confers hyperpolarized gating charge movement in Kv2.1/Kv6.4 heterotetrameric channels. PLoS One 2012; 7:e37143. [PMID: 22615922 PMCID: PMC3355112 DOI: 10.1371/journal.pone.0037143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/18/2012] [Indexed: 12/20/2022] Open
Abstract
The voltage-gated K(+) (Kv) channel subunit Kv6.4 does not form functional homotetrameric channels but co-assembles with Kv2.1 to form functional Kv2.1/Kv6.4 heterotetrameric channels. Compared to Kv2.1 homotetramers, Kv6.4 exerts a ~40 mV hyperpolarizing shift in the voltage-dependence of Kv2.1/Kv6.4 channel inactivation, without a significant effect on activation gating. However, the underlying mechanism of this Kv6.4-induced modulation of Kv2.1 channel inactivation, and whether the Kv6.4 subunit participates in the voltage-dependent gating of heterotetrameric channels is not well understood. Here we report distinct gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels, compared to Kv2.1 homotetramers, as revealed by gating current recordings from mammalian cells expressing these channels. The gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels displayed an extra component around the physiological K(+) equilibrium potential, characterized by a second sigmoidal relationship of the voltage-dependence of gating charge movement. This distinct gating charge displacement reflects movement of the Kv6.4 voltage-sensing domain and has a voltage-dependency that matches the hyperpolarizing shift in Kv2.1/Kv6.4 channel inactivation. These results provide a mechanistic basis for the modulation of Kv2.1 channel inactivation gating kinetics by silent Kv6.4 subunits.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerpen, Belgium
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alain J. Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerpen, Belgium
| | - Dirk J. Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerpen, Belgium
- * E-mail: (DPM); (DJS)
| | - Durga P. Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (DPM); (DJS)
| |
Collapse
|
32
|
Mechanism of accelerated current decay caused by an episodic ataxia type-1-associated mutant in a potassium channel pore. J Neurosci 2012; 31:17449-59. [PMID: 22131406 DOI: 10.1523/jneurosci.2940-11.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Kv1.1, single point mutants found below the channel activation gate at residue V408 are associated with human episodic ataxia type-1, and impair channel function by accelerating decay of outward current during periods of membrane depolarization and channel opening. This decay is usually attributed to C-type inactivation, but here we provide evidence that this is not the case. Using voltage-clamp fluorimetry in Xenopus oocytes, and single-channel patch clamp in mouse ltk- cells, of the homologous Shaker channel (with the equivalent mutation V478A), we have determined that the mutation may cause current decay through a local effect at the activation gate, by destabilizing channel opening. We demonstrate that the effect of the mutant is similar to that of trapped 4-aminopyridine in antagonizing channel opening, as the mutation and 10 mm 4-AP had similar, nonadditive effects on fluorescence recorded from the voltage-sensitive S4 helix. We propose a model where the Kv1.1 activation gate fails to enter a stabilized open conformation, from which the channel would normally C-type inactivate. Instead, the lower pore lining helix is able to enter an activated-not-open conformation during depolarization. These results provide an understanding of the molecular etiology underlying episodic ataxia type-1 due to V408A, as well as biophysical insights into the links between the potassium channel activation gate, the voltage sensor and the selectivity filter.
Collapse
|
33
|
Kalia J, Swartz KJ. Elucidating the molecular basis of action of a classic drug: guanidine compounds as inhibitors of voltage-gated potassium channels. Mol Pharmacol 2011; 80:1085-95. [PMID: 21926190 DOI: 10.1124/mol.111.074989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Guanidine and its alkyl analogs stimulate the neuromuscular junction presynaptically by inhibiting voltage-gated potassium (Kv) channels, leading to enhanced release of acetylcholine in the synaptic cleft. This stimulatory effect of guanidine underlies its use in the therapy for the neuromuscular diseases myasthenic syndrome of Lambert-Eaton and botulism. The therapeutic use of guanidine is limited, however, because of side effects that accompany its administration. Therefore, the design of guanidine analogs with improved therapeutic indices is desirable. Progress toward this goal is hindered by the lack of knowledge of the mechanism by which these molecules inhibit Kv channels. Here we examine an array of possible mechanisms, including charge screening, disruption of the protein-lipid interfaces, direct interaction with the voltage sensors, and pore-binding. Our results demonstrate that guanidines bind within the intracellular pore of the channel and perturb a hydrophobic subunit interface to stabilize a closed state of the channel. This mechanism provides a foundation for the design of guanidine analogs for the therapeutic intervention of neuromuscular diseases.
Collapse
Affiliation(s)
- Jeet Kalia
- Porter Neuroscience Research Center, Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Bosmans F, Puopolo M, Martin-Eauclaire MF, Bean BP, Swartz KJ. Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. ACTA ACUST UNITED AC 2011; 138:59-72. [PMID: 21670206 PMCID: PMC3135324 DOI: 10.1085/jgp.201110614] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The voltage-activated sodium (Nav) channel Nav1.9 is expressed in dorsal root ganglion (DRG) neurons where it is believed to play an important role in nociception. Progress in revealing the functional properties and pharmacological sensitivities of this non-canonical Nav channel has been slow because attempts to express this channel in a heterologous expression system have been unsuccessful. Here, we use a protein engineering approach to dissect the contributions of the four Nav1.9 voltage sensors to channel function and pharmacology. We define individual S3b–S4 paddle motifs within each voltage sensor, and show that they can sense changes in membrane voltage and drive voltage sensor activation when transplanted into voltage-activated potassium channels. We also find that the paddle motifs in Nav1.9 are targeted by animal toxins, and that these toxins alter Nav1.9-mediated currents in DRG neurons. Our results demonstrate that slowly activating and inactivating Nav1.9 channels have functional and pharmacological properties in common with canonical Nav channels, but also show distinctive pharmacological sensitivities that can potentially be exploited for developing novel treatments for pain.
Collapse
Affiliation(s)
- Frank Bosmans
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. Frank.Bosmans@-nih.gov
| | | | | | | | | |
Collapse
|
35
|
Phillips LR, Swartz KJ. Position and motions of the S4 helix during opening of the Shaker potassium channel. ACTA ACUST UNITED AC 2011; 136:629-44. [PMID: 21115696 PMCID: PMC2995149 DOI: 10.1085/jgp.201010517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four voltage sensors in voltage-gated potassium (Kv) channels activate upon membrane depolarization and open the pore. The location and motion of the voltage-sensing S4 helix during the early activation steps and the final opening transition are unresolved. We studied Zn2+ bridges between two introduced His residues in Shaker Kv channels: one in the R1 position at the outer end of the S4 helix (R362H), and another in the S5 helix of the pore domain (A419H or F416H). Zn2+ bridges readily form between R362H and A419H in open channels after the S4 helix has undergone its final motion. In contrast, a distinct bridge forms between R362H and F416H after early S4 activation, but before the final S4 motion. Both bridges form rapidly, providing constraints on the average position of S4 relative to the pore. These results demonstrate that the outer ends of S4 and S5 remain in close proximity during the final opening transition, with the S4 helix translating a significant distance normal to the membrane plane.
Collapse
Affiliation(s)
- L Revell Phillips
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Gagnon DG, Bezanilla F. The contribution of individual subunits to the coupling of the voltage sensor to pore opening in Shaker K channels: effect of ILT mutations in heterotetramers. ACTA ACUST UNITED AC 2011; 136:555-68. [PMID: 20974773 PMCID: PMC2964516 DOI: 10.1085/jgp.201010487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Voltage-gated ion channels couple conformational change(s) of the voltage-sensing domain to those of the opening of an intracellular gate to allow ionic conduction. Much larger positive potentials are required to couple these conformational changes to the opening of the gate of Shaker K(+) channels with the concurrent mutations V369I, I372L, and S376T (ILT) at the N-terminal end of the S4 segment. We used cut-open oocyte voltage clamp to study the biophysical and thermodynamical properties of heterotetrameric concatemerized channels with different stoichiometries of ILT mutations. The voltage-sensing domains of ILT mutant channels require smaller depolarization to activate but their intracellular gate does not immediately follow the movement of the voltage-sensing domain, requiring larger depolarization to open. Our results demonstrate that each subunit contributes equally to the rightward shift of the conductance-voltage relationship and that a single ILT-containing subunit is sufficient to induce a large enthalpic and entropic barrier, limiting opening of the intracellular gate.
Collapse
Affiliation(s)
- Dominique G Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
37
|
Batulan Z, Haddad GA, Blunck R. An intersubunit interaction between S4-S5 linker and S6 is responsible for the slow off-gating component in Shaker K+ channels. J Biol Chem 2010; 285:14005-19. [PMID: 20202932 DOI: 10.1074/jbc.m109.097717] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated ion channels are controlled by the membrane potential, which is sensed by peripheral, positively charged voltage sensors. The movement of the charged residues in the voltage sensor may be detected as gating currents. In Shaker K(+) channels, the gating currents are asymmetric; although the on-gating currents are fast, the off-gating currents contain a slow component. This slow component is caused by a stabilization of the activated state of the voltage sensor and has been suggested to be linked to ion permeation or C-type inactivation. The molecular determinants responsible for the stabilization, however, remain unknown. Here, we identified an interaction between Arg-394, Glu-395, and Leu-398 on the C termini of the S4-S5 linker and Tyr-485 on the S6 of the neighboring subunit, which is responsible for the development of the slow off-gating component. Mutation of residues involved in this intersubunit interaction modulated the strength of the associated interaction. Impairment of the interaction still led to pore opening but did not exhibit slow gating kinetics. Development of this interaction occurs under physiological ion conduction and is correlated with pore opening. We, thus, suggest that the above residues stabilize the channel in the open state.
Collapse
Affiliation(s)
- Zarah Batulan
- Département de Physique and Groupe d'Etude des Protéines Membranaires, Université de Montréal, Montréal, Quebec H3C 3J7 Canada
| | | | | |
Collapse
|
38
|
Horne AJ, Fedida D. Use of voltage clamp fluorimetry in understanding potassium channel gating: a review of Shaker fluorescence data. Can J Physiol Pharmacol 2010; 87:411-8. [PMID: 19526034 DOI: 10.1139/y09-024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage clamp fluorimetry (VCF) utilizes fluorescent probes that covalently bind to cysteine residues introduced into proteins and emit light as a function of their environment. Measurement of this emitted light during membrane depolarization reveals changes in the emission level as the environment of the labelled residue changes. This allows for the correlation of channel gating events with movement of specific protein moieties, at nanosecond time resolution. Since the pioneering use of this technique to investigate Shaker potassium channel activation movements, VCF has become an invaluable technique used to understand ion channel gating. This review summarizes the theory and some of the data on the application of the VCF technique. Although its usage has expanded beyond voltage-gated potassium channels and VCF is now used in a number of other voltage- and ligand-gated channels, we will focus on studies conducted in Shaker potassium channels, and what they have told us about channel activation and inactivation gating.
Collapse
Affiliation(s)
- A J Horne
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
39
|
Tang QY, Zeng XH, Lingle CJ. Closed-channel block of BK potassium channels by bbTBA requires partial activation. ACTA ACUST UNITED AC 2010; 134:409-36. [PMID: 19858359 PMCID: PMC2768800 DOI: 10.1085/jgp.200910251] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockade of large-conductance Ca2+-activated K+ (BK) channels by the bulky quaternary ammonium compound, N-(4-[benzoyl]benzyl)-N,N,N-tributylammonium (bbTBA), exhibits features consistent with blockade of both closed and open states. Here, we examine block of closed BK channels by bbTBA and how it may differ from block of open channels. Although our observations generally confirm earlier results, we describe three observations that are inconsistent with a model in which closed and open channels are equally accessible to blockade by bbTBA. First, block by bbTBA exhibits Ca2+-dependent features that are inconsistent with strictly state-independent block. Second, the steady-state voltage dependence of bbTBA block at negative potentials shows that any block of completely closed states either does not occur or is completely voltage independent. Third, determination of the fractional unblock by bbTBA at either low or high Ca2+ reveals deviations from a model in which open- and closed-state block is identical. The results support the view that bbTBA blockade of fully closed channels does not occur. We imagine two general types of explanation. First, a stronger voltage dependence of closed-channel block may minimize the contribution of closed-channel block at negative potentials. Second, voltage-dependent conformational changes among closed-channel states may permit block by bbTBA. The analysis supports the latter view, suggesting that bbTBA blockade of fully closed channels does not occur, but the ability of bbTBA to block a closed channel requires movement of one or more voltage sensors. Models in which block is coupled to voltage sensor movement can qualitatively account for (1) the ability of open-channel block to better fit block of conductance–voltage curves at high Ca2+; (2) the voltage dependence of fractional availability; and (3) the fractional unblock at different open probabilities. BK channels appear to undergo voltage-dependent conformational changes among closed states that are permissive for bbTBA block.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
40
|
Nishizawa M, Nishizawa K. Coupling of S4 helix translocation and S6 gating analyzed by molecular-dynamics simulations of mutated Kv channels. Biophys J 2009; 97:90-100. [PMID: 19580747 DOI: 10.1016/j.bpj.2009.02.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/24/2022] Open
Abstract
The recently determined crystal structure of a chimeric Kv1.2-Kv2.1 Kv channel at 2.4 A resolution motivated this molecular-dynamics simulation study of the chimeric channel and its mutants embedded in a DPPC membrane. For the channel protein, we used two types of C-terminus: E+ and Eo. E+ contains, and Eo lacks, the EGEE residue quartet located distal to the S6 helix. For both E+ and Eo, the following trend was observed: When S4 helices were restrained at the same position as in the x-ray structure (S4high), the S6 gate remained open for 12 ns. The results were similar when the S4 helices were pulled downward 7 A (S4low). However, S4middle (or S4low) facilitated the S6 gate-narrowing for the following mutated channels (shown in order of increasing effect): 1), E395W; 2), E395W-F401A-F402A; and 3), E395W-F401A-F402A-V478W. The amino acid numbering system is that used for the Shaker channel. Even though all four subunits were set at S4low, S6 gate-narrowing was often brought about by movements of only two opposing S6 helices toward the central axis of the pore, resulting in a twofold symmetry-like structure. A free-energy profile analysis over the ion conduction pathway shows that the two opposing S6 helices whose peptide backbones are approximately 10.4 A distant from each other lead to an energetic barrier of approximately 25 kJ/mol. S6 movement was coupled with translocation of the S4-S5 linker toward the central axis of the same subunit, and the coupling was mediated by salt bridges formed between the inner (intracellular side) end of S4 and that of S6. Simulations in which S4 of only one subunit was pulled down to S4low showed that a weak intersubunit coordination is present for S5 movement, whereas the coupling between the S4-S5 linker and S6 is largely an intrasubunit one. In general, whereas subunit-based behavior appears to be dominant and to permit heteromeric conformations of the pore domain, direct intersubunit coupling of S5 or S6 is weak. Therefore, the "concerted transition" of the pore domain that has been predicted based on electrophysiological analyses is likely to be mediated mainly by the dual effects of S4 and the S4-S5 linker; these segments of one subunit can interact with both S5 of the same subunit and that of the adjacent subunit.
Collapse
Affiliation(s)
- Manami Nishizawa
- Department of Laboratory Medicine, Teikyo University School of Medical Technology, Tokyo 173-8605, Japan
| | | |
Collapse
|
41
|
González-Pérez V, Neely A, Tapia C, González-Gutiérrez G, Contreras G, Orio P, Lagos V, Rojas G, Estévez T, Stack K, Naranjo D. Slow inactivation in Shaker K channels is delayed by intracellular tetraethylammonium. ACTA ACUST UNITED AC 2009; 132:633-50. [PMID: 19029372 PMCID: PMC2585862 DOI: 10.1085/jgp.200810057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches--the so called C inactivation--is a constriction of the external mouth of the channel pore that prevents K(+) ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was -90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814-826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a "foot in the door" mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics.
Collapse
Affiliation(s)
- Vivian González-Pérez
- Centro de Neurociencias de Valparaíso and Departamento de Neurociencias, Universidad de Valparaíso, 2349400 Valparaíso, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wynia-Smith SL, Gillian-Daniel AL, Satyshur KA, Robertson GA. hERG gating microdomains defined by S6 mutagenesis and molecular modeling. ACTA ACUST UNITED AC 2009; 132:507-20. [PMID: 18955593 PMCID: PMC2571969 DOI: 10.1085/jgp.200810083] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human ether-à-go-go–related gene (hERG) channels mediate cardiac repolarization and bind drugs that can cause acquired long QT syndrome and life-threatening arrhythmias. Drugs bind in the vestibule formed by the S6 transmembrane domain, which also contains the activation gate that traps drugs in the vestibule and contributes to their efficacy of block. Although drug-binding residues have been identified, we know little about the roles of specific S6 residues in gating. We introduced cysteine mutations into the hERG channel S6 domain and measured mutational effects on the steady-state distribution and kinetics of transitions between the closed and open states. Energy-minimized molecular models based on the crystal structures of rKv1.2 (open state) and MlotiK1 and KcsA (closed state) provided structural contexts for evaluating mutant residues. The majority of mutations slowed deactivation, shifted conductance voltage curves to more negative potentials, or conferred a constitutive conductance over voltages that normally cause the channel to close. At the most intracellular extreme of the S6 region, Q664, Y667, and S668 were especially sensitive and together formed a ringed domain that occludes the pore in the closed state model. In contrast, mutation of S660, more than a full helical turn away and corresponding by alignment to a critical Shaker gate residue (V478), had little effect on gating. Multiple substitutions of chemically distinct amino acids at the adjacent V659 suggested that, upon closing, the native V659 side chain moves into a hydrophobic pocket but likely does not form the occluding gate itself. Overall, the study indicated that S6 mutagenesis disrupts the energetics primarily of channel closing and identified several residues critical for this process in the native channel.
Collapse
Affiliation(s)
- Sarah L Wynia-Smith
- Department of Physiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
43
|
Vaid M, Claydon TW, Rezazadeh S, Fedida D. Voltage clamp fluorimetry reveals a novel outer pore instability in a mammalian voltage-gated potassium channel. ACTA ACUST UNITED AC 2008; 132:209-22. [PMID: 18625849 PMCID: PMC2483330 DOI: 10.1085/jgp.200809978] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions in mammalian Kv1.5 channels. Despite the homology between Kv1.5 and the Shaker channel, attaching TMRM or PyMPO fluorescent probes to substituted cysteine residues in the S3-S4 linker of Kv1.5 (M394C-V401C) revealed unique and unusual fluorescence signals. Whereas the fluorescence during voltage sensor movement in Shaker channels was monoexponential and occurred with a similar time course to ionic current activation, the fluorescence report of Kv1.5 voltage sensor motions was transient with a prominent rapidly dequenching component that, with TMRM at A397C (equivalent to Shaker A359C), represented 36 +/- 3% of the total signal and occurred with a tau of 3.4 +/- 0.6 ms at +60 mV (n = 4). Using a number of approaches, including 4-AP drug block and the ILT triple mutation, which dissociate channel opening from voltage sensor movement, we demonstrate that the unique dequenching component of fluorescence is associated with channel opening. By regulating the outer pore structure using raised (99 mM) external K(+) to stabilize the conducting configuration of the selectivity filter, or the mutations W472F (equivalent to Shaker W434F) and H463G to stabilize the nonconducting (P-type inactivated) configuration of the selectivity filter, we show that the dequenching of fluorescence reflects rapid structural events at the selectivity filter gate rather than the intracellular pore gate.
Collapse
Affiliation(s)
- Moninder Vaid
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
44
|
Wulff H, Zhorov BS. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008; 108:1744-73. [PMID: 18476673 PMCID: PMC2714671 DOI: 10.1021/cr078234p] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
45
|
Pathak MM, Yarov-Yarovoy V, Agarwal G, Roux B, Barth P, Kohout S, Tombola F, Isacoff EY. Closing in on the resting state of the Shaker K(+) channel. Neuron 2008; 56:124-40. [PMID: 17920020 DOI: 10.1016/j.neuron.2007.09.023] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/14/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Membrane depolarization causes voltage-gated ion channels to transition from a resting/closed conformation to an activated/open conformation. We used voltage-clamp fluorometry to measure protein motion at specific regions of the Shaker Kv channel. This enabled us to construct new structural models of the resting/closed and activated/open states based on the Kv1.2 crystal structure using the Rosetta-Membrane method and molecular dynamics simulations. Our models account for the measured gating charge displacement and suggest a molecular mechanism of activation in which the primary voltage sensors, S4s, rotate by approximately 180 degrees as they move "outward" by 6-8 A. A subsequent tilting motion of the S4s and the pore domain helices, S5s, of all four subunits induces a concerted movement of the channel's S4-S5 linkers and S6 helices, allowing ion conduction. Our models are compatible with a wide body of data and resolve apparent contradictions that previously led to several distinct models of voltage sensing.
Collapse
Affiliation(s)
- Medha M Pathak
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chakrapani S, Cordero-Morales JF, Perozo E. A quantitative description of KcsA gating I: macroscopic currents. ACTA ACUST UNITED AC 2007; 130:465-78. [PMID: 17938230 PMCID: PMC2151670 DOI: 10.1085/jgp.200709843] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prokaryotic K+ channel KcsA is activated by intracellular protons and its gating is modulated by transmembrane voltage. Typically, KcsA functions have been studied under steady-state conditions, using macroscopic Rb+-flux experiments and single-channel current measurements. These studies have provided limited insights into the gating kinetics of KcsA due to its low open probability, uncertainties in the number of channels in the patch, and a very strong intrinsic kinetic variability. In this work, we have carried out a detailed analysis of KcsA gating under nonstationary conditions by examining the influence of pH and voltage on the activation, deactivation, and slow-inactivation gating events. We find that activation and deactivation gating of KcsA are predominantly modulated by pH without a significant effect of voltage. Activation gating showed sigmoidal pH dependence with a pKa of ∼4.2 and a Hill coefficient of ∼2. In the sustained presence of proton, KcsA undergoes a time-dependent decay of conductance. This inactivation process is pH independent but is modulated by voltage and the nature of permeant ion. Recovery from inactivation occurs via deactivation and also appears to be voltage dependent. We further find that inactivation in KcsA is not entirely a property of the open-conducting channel but can also occur from partially “activated” closed states. The time course of onset and recovery of the inactivation process from these pre-open closed states appears to be different from the open-state inactivation, suggesting the presence of multiple inactivated states with diverse kinetic pathways. This information has been analyzed together with a detailed study of KcsA single-channel behavior (in the accompanying paper) in the framework of a kinetic model. Taken together our data constitutes the first quantitative description of KcsA gating.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Institute of Molecular Pediatrics Science, Department of Biochemistry and Molecular Biology, University of Chicago, Center for integrative Science, Chicago, IL 60637, USA
| | | | | |
Collapse
|
47
|
Hardman RM, Stansfeld PJ, Dalibalta S, Sutcliffe MJ, Mitcheson JS. Activation gating of hERG potassium channels: S6 glycines are not required as gating hinges. J Biol Chem 2007; 282:31972-81. [PMID: 17823114 DOI: 10.1074/jbc.m705835200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The opening of ion channels is proposed to arise from bending of the pore inner helices that enables them to pivot away from the central axis creating a cytosolic opening for ion diffusion. The flexibility of the inner helices is suggested to occur either at a conserved glycine located adjacent to the selectivity filter (glycine gating hinge) and/or at a second site occupied by glycine or proline containing motifs. Sequence alignment with other K+ channels shows that hERG possesses glycine residues (Gly648 and Gly657) at each of these putative hinge sites. In apparent contrast to the hinge hypotheses, substitution of both glycine residues for alanine causes little effect on either the voltage-dependence or kinetics of channel activation, and open state block by intracellular blockers. Substitution of the glycines with larger hydrophobic residues causes a greater propensity for the channel to open. We propose that in contrast to Shaker the pore of hERG is intrinsically more stable in the open than the closed conformation and that substitution at Gly648 or Gly657 further shifts the gating equilibrium to favor the open state. Molecular dynamics simulations indicate the S6 helices of hERG are inherently flexible, even in the absence of the glycine residues. Thus hERG activation gating exhibits important differences to other Kv channels. Our findings indicate that the hERG inner helix glycine residues are required for the tight packing of the channel helices and that the flexibility afforded by glycine or proline residues is not universally required for activation gating.
Collapse
Affiliation(s)
- Rachael M Hardman
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Abstract
A blink in history's eye has brought us an understanding of electricity, and with it a revolution in human life. From the frog leg twitch experiments of Galvani and the batteries of Volta, we have progressed to telegraphs, motors, telephones, computers, and the Internet. In the same period, the ubiquitous role of electricity in animal and plant life has become clear. A great milestone in this journey was the elucidation of electrical signaling by Hodgkin & Huxley in 1952. This chapter gives a personal account of a small part of this story, the transformation of the rather abstract electrical conductances of Hodgkin & Huxley into the more tangible gated ion channel.
Collapse
Affiliation(s)
- Clay M Armstrong
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
49
|
Soler-Llavina GJ, Chang TH, Swartz KJ. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 2007; 52:623-34. [PMID: 17114047 DOI: 10.1016/j.neuron.2006.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/04/2006] [Accepted: 10/09/2006] [Indexed: 01/21/2023]
Abstract
Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.
Collapse
Affiliation(s)
- Gilberto J Soler-Llavina
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
50
|
Wang B, Brenner R. An S6 mutation in BK channels reveals beta1 subunit effects on intrinsic and voltage-dependent gating. ACTA ACUST UNITED AC 2007; 128:731-44. [PMID: 17130522 PMCID: PMC2151602 DOI: 10.1085/jgp.200609596] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are exquisitely regulated to suit their diverse roles in a large variety of physiological processes. BK channels are composed of pore-forming alpha subunits and a family of tissue-specific accessory beta subunits. The smooth muscle-specific beta1 subunit has an essential role in regulating smooth muscle contraction and modulates BK channel steady-state open probability and gating kinetics. Effects of beta1 on channel's gating energetics are not completely understood. One of the difficulties is that it has not yet been possible to measure the effects of beta1 on channel's intrinsic closed-to-open transition (in the absence of voltage sensor activation and Ca(2+) binding) due to the very low open probability in the presence of beta1. In this study, we used a mutation of the alpha subunit (F315Y) that increases channel openings by greater than four orders of magnitude to directly compare channels' intrinsic open probabilities in the presence and absence of the beta1 subunit. Effects of beta1 on steady-state open probabilities of both wild-type alpha and the F315Y mutation were analyzed using the dual allosteric HA model. We found that mouse beta1 has two major effects on channel's gating energetics. beta1 reduces the intrinsic closed-to-open equilibrium that underlies the inhibition of BK channel opening seen in submicromolar Ca(2+). Further, P(O) measurements at limiting slope allow us to infer that beta1 shifts open channel voltage sensor activation to negative membrane potentials, which contributes to enhanced channel opening seen at micromolar Ca(2+) concentrations. Using the F315Y alpha subunit with deletion mutants of beta1, we also demonstrate that the small N- and C-terminal intracellular domains of beta1 play important roles in altering channel's intrinsic opening and voltage sensor activation. In summary, these results demonstrate that beta1 has distinct effects on BK channel intrinsic gating and voltage sensor activation that can be functionally uncoupled by mutations in the intracellular domains.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|