1
|
Choi J, Holmes JB, Campbell KS, Stelzer JE. Effect of the Novel Myotrope Danicamtiv on Cross-Bridge Behavior in Human Myocardium. J Am Heart Assoc 2023; 12:e030682. [PMID: 37804193 PMCID: PMC10757519 DOI: 10.1161/jaha.123.030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/13/2023] [Indexed: 10/09/2023]
Abstract
Background Omecamtiv mecarbil (OM) and danicamtiv both increase myocardial force output by selectively activating myosin within the cardiac sarcomere. Enhanced force generation is presumably due to an increase in the total number of myosin heads bound to the actin filament; however, detailed comparisons of the molecular mechanisms of OM and danicamtiv are lacking. Methods and Results The effect of OM and danicamtiv on Ca2+ sensitivity of force generation was analyzed by exposing chemically skinned myocardial samples to a series of increasing Ca2+ solutions. The results showed that OM significantly increased Ca2+ sensitivity of force generation, whereas danicamtiv showed similar Ca2+ sensitivity of force generation to untreated preparations. A direct comparison of OM and danicamtiv on dynamic cross-bridge behavior was performed at a concentration that produced a similar force increase when normalized to predrug levels at submaximal force (pCa 6.1). Both OM and danicamtiv-treated groups slowed the rates of cross-bridge detachment from the strongly bound state and cross-bridge recruitment into the force-producing state. Notably, the significant OM-induced prolongation in the time to reach force relaxation and subsequent commencement of force generation following rapid stretch was dramatically reduced in danicamtiv-treated myocardium. Conclusions This is the first study to directly compare the effects of OM and danicamtiv on cross-bridge kinetics. At a similar level of force enhancement, danicamtiv had a less pronounced effect on the slowing of cross-bridge kinetics and, therefore, may provide a similar improvement in systolic function as OM without excessively prolonging systolic ejection time and slowing cardiac relaxation facilitating diastolic filling at the whole-organ level.
Collapse
Affiliation(s)
- Joohee Choi
- Department of Physiology and Biophysics, School of MedicineCase Western Reserve UniversityClevelandOH
| | - Joshua B. Holmes
- Department of Physiology and Biophysics, School of MedicineCase Western Reserve UniversityClevelandOH
| | - Kenneth S. Campbell
- Division of Cardiovascular MedicineUniversity of KentuckyLexingtonKY
- Department of PhysiologyUniversity of KentuckyLexingtonKY
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of MedicineCase Western Reserve UniversityClevelandOH
| |
Collapse
|
2
|
Robinett JC, Hanft LM, Biesiadecki B, McDonald KS. Molecular regulation of stretch activation. Am J Physiol Cell Physiol 2022; 323:C1728-C1739. [PMID: 36280392 PMCID: PMC9744651 DOI: 10.1152/ajpcell.00101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Stretch activation is defined as a delayed increase in force after rapid stretches. Although there is considerable evidence for stretch activation in isolated cardiac myofibrillar preparations, few studies have measured mechanisms of stretch activation in mammalian skeletal muscle fibers. We measured stretch activation following rapid step stretches [∼1%-4% sarcomere length (SL)] during submaximal Ca2+ activations of rat permeabilized slow-twitch skeletal muscle fibers before and after protein kinase A (PKA), which phosphorylates slow myosin binding protein-C. PKA significantly increased stretch activation during low (∼25%) Ca2+ activation and accelerated rates of delayed force development (kef) during both low and half-maximal Ca2+ activation. Following the step stretches and subsequent force development, fibers were rapidly shortened to original sarcomere length, which often elicited a shortening-induced transient force overshoot. After PKA, step shortening-induced transient force overshoot increased ∼10-fold following an ∼4% SL shortening during low Ca2+ activation levels. kdf following step shortening also increased after PKA during low and half-maximal Ca2+ activations. We next investigated thin filament regulation of stretch activation. We tested the interplay between cardiac troponin I (cTnI) phosphorylation at the canonical PKA and novel tyrosine kinase sites on stretch activation. Native slow-skeletal Tn complexes were exchanged with recombinant human cTn complex with different human cTnI N-terminal pseudo-phosphorylation molecules: 1) nonphosphorylated wild type (WT), 2) the canonical S22/23D PKA sites, 3) the tyrosine kinase Y26E site, and 4) the combinatorial S22/23D + Y26E cTnI. All three pseudo-phosphorylated cTnIs elicited greater stretch activation than WT. Following stretch activation, a new, elevated stretch-induced steady-state force was reached with pseudo-phosphorylated cTnI. Combinatorial S22/23D + Y26E pseudo-phosphorylated cTnI increased kdf. These results suggest that slow-skeletal myosin binding protein-C (sMyBP-C) phosphorylation modulates stretch activation by a combination of cross-bridge recruitment and faster cycling kinetics, whereas cTnI phosphorylation regulates stretch activation by both redundant and synergistic mechanisms; and, taken together, these sarcomere phosphoproteins offer precision targets for enhanced contractility.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
3
|
Yoneda K, Kanada R, Okada JI, Watanabe M, Sugiura S, Hisada T, Washio T. A thermodynamically consistent monte carlo cross-bridge model with a trapping mechanism reveals the role of stretch activation in heart pumping. Front Physiol 2022; 13:855303. [PMID: 36160842 PMCID: PMC9498833 DOI: 10.3389/fphys.2022.855303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Changes in intracellular calcium concentrations regulate heart beats. However, the decline in the left ventricular pressure during early diastole is much sharper than that of the Ca2+ transient, resulting in a rapid supply of blood to the left ventricle during the diastole. At the tissue level, cardiac muscles have a distinct characteristic, known as stretch activation, similar to the function of insect flight muscles. Stretch activation, which is a delayed increase in force following a rapid muscle length increase, has been thought to be related to autonomous control in these muscles. In this numerical simulation study, we introduced a molecular mechanism of stretch activation and investigated the role of this mechanism in the pumping function of the heart, using the previously developed coupling multiple-step active stiffness integration scheme for a Monte Carlo (MC) cross-bridge model and a bi-ventricular finite element model. In the MC cross-bridge model, we introduced a mechanism for trapping the myosin molecule in its post-power stroke state. We then determined the rate constants of transitions for trapping and escaping in a thermodynamically consistent manner. Based on our numerical analysis, we draw the following conclusions regarding the stretch activation mechanism: (i) the delayed force becomes larger than the original isometric force because the population of trapped myosin molecules and their average force increase after stretching; (ii) the delayed force has a duration of more than a few seconds owing to a fairly small rate constant of escape from the trapped state. For the role of stretch activation in heart pumping, we draw the following conclusions: (iii) for the regions in which the contraction force decreases earlier than the neighboring region in the end-systole phase, the trapped myosin molecules prevent further lengthening of the myocytes, which then prevents further shortening of neighboring myocytes; (iv) as a result, the contraction forces are sustained longer, resulting in a larger blood ejection, and their degeneration is synchronized.
Collapse
Affiliation(s)
- Kazunori Yoneda
- Section Solutions Division, Healthcare Solutions Development Unit, Fujitsu Japan Limited, Shiodome City Center, Tokyo, Japan
| | - Ryo Kanada
- RIKEN Center for Computational Science HPC- and AI-driven Drug Development Platform Division, AI-driven Drug Discovery Collaborative Unit, Kobe, Japan
| | - Jun-ichi Okada
- UT-Heart Inc., Kashiwanoha Campus Satellite, Kashiwa, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha Campus Satellite, Kashiwa, Japan
| | - Masahiro Watanabe
- Section Solutions Division, Healthcare Solutions Development Unit, Fujitsu Japan Limited, Shiodome City Center, Tokyo, Japan
| | - Seiryo Sugiura
- UT-Heart Inc., Kashiwanoha Campus Satellite, Kashiwa, Japan
| | | | - Takumi Washio
- UT-Heart Inc., Kashiwanoha Campus Satellite, Kashiwa, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha Campus Satellite, Kashiwa, Japan
- *Correspondence: Takumi Washio,
| |
Collapse
|
4
|
Lewalle A, Campbell KS, Campbell SG, Milburn GN, Niederer SA. Functional and structural differences between skinned and intact muscle preparations. J Gen Physiol 2022; 154:e202112990. [PMID: 35045156 PMCID: PMC8929306 DOI: 10.1085/jgp.202112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.
Collapse
Affiliation(s)
- Alex Lewalle
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Stuart G. Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Gregory N. Milburn
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Steven A. Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
5
|
Jarvis KJ, Bell KM, Loya AK, Swank DM, Walcott S. Force-velocity and tension transient measurements from Drosophila jump muscle reveal the necessity of both weakly-bound cross-bridges and series elasticity in models of muscle contraction. Arch Biochem Biophys 2021; 701:108809. [PMID: 33610561 PMCID: PMC7986577 DOI: 10.1016/j.abb.2021.108809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
Muscle contraction is a fundamental biological process where molecular interactions between the myosin molecular motor and actin filaments result in contraction of a whole muscle, a process spanning size scales differing in eight orders of magnitude. Since unique behavior is observed at every scale in between these two extremes, to fully understand muscle function it is vital to develop multi-scale models. Based on simulations of classic measurements of muscle heat generation as a function of work, and shortening rate as a function of applied force, we hypothesize that a model based on molecular measurements must be modified to include a weakly-bound interaction between myosin and actin in order to fit measurements at the muscle fiber or whole muscle scales. This hypothesis is further supported by the model's need for a weakly-bound state in order to qualitatively reproduce the force response that occurs when a muscle fiber is rapidly stretched a small distance. We tested this hypothesis by measuring steady-state force as a function of shortening velocity, and the force transient caused by a rapid length step in Drosophila jump muscle fibers. Then, by performing global parameter optimization, we quantitatively compared the predictions of two mathematical models, one lacking a weakly-bound state and one with a weakly-bound state, to these measurements. Both models could reproduce our force-velocity measurements, but only the model with a weakly-bound state could reproduce our force transient measurements. However, neither model could concurrently fit both measurements. We find that only a model that includes weakly-bound cross-bridges with force-dependent detachment and an elastic element in series with the cross-bridges is able to fit both of our measurements. This result suggests that the force response after stretch is not a reflection of distinct steps in the cross-bridge cycle, but rather arises from the interaction of cross-bridges with a series elastic element. Additionally, the model suggests that the curvature of the force-velocity relationship arises from a combination of the force-dependence of weakly- and strongly-bound cross-bridges. Overall, this work presents a minimal cross-bridge model that has predictive power at the fiber level.
Collapse
Affiliation(s)
- Katelyn J Jarvis
- Department of Mathematics, University of California, Davis, CA, USA
| | - Kaylyn M Bell
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Amy K Loya
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas M Swank
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
6
|
Mamidi R, Holmes JB, Doh CY, Dominic KL, Madugula N, Stelzer JE. cMyBPC phosphorylation modulates the effect of omecamtiv mecarbil on myocardial force generation. J Gen Physiol 2021; 153:211867. [PMID: 33688929 PMCID: PMC7953254 DOI: 10.1085/jgp.202012816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Omecamtiv mecarbil (OM), a direct myosin motor activator, is currently being tested as a therapeutic replacement for conventional inotropes in heart failure (HF) patients. It is known that HF patients exhibit dysregulated β-adrenergic signaling and decreased cardiac myosin-binding protein C (cMyBPC) phosphorylation, a critical modulator of myocardial force generation. However, the functional effects of OM in conditions of altered cMyBPC phosphorylation have not been established. Here, we tested the effects of OM on force generation and cross-bridge (XB) kinetics using murine myocardial preparations isolated from wild-type (WT) hearts and from hearts expressing S273A, S282A, and S302A substitutions (SA) in the M domain, between the C1 and C2 domains of cMyBPC, which cannot be phosphorylated. At submaximal Ca2+ activations, OM-mediated force enhancements were less pronounced in SA than in WT myocardial preparations. Additionally, SA myocardial preparations lacked the dose-dependent increases in force that were observed in WT myocardial preparations. Following OM incubation, the basal differences in the rate of XB detachment (krel) between WT and SA myocardial preparations were abolished, suggesting that OM differentially affects the XB behavior when cMyBPC phosphorylation is reduced. Similarly, in myocardial preparations pretreated with protein kinase A to phosphorylate cMyBPC, incubation with OM significantly slowed krel in both the WT and SA myocardial preparations. Collectively, our data suggest there is a strong interplay between the effects of OM and XB behavior, such that it effectively uncouples the sarcomere from cMyBPC phosphorylation levels. Our findings imply that OM may significantly alter the in vivo cardiac response to β-adrenergic stimulation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Katherine L Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Nikhil Madugula
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
7
|
Muir WW, Hamlin RL. Myocardial Contractility: Historical and Contemporary Considerations. Front Physiol 2020; 11:222. [PMID: 32296340 PMCID: PMC7137917 DOI: 10.3389/fphys.2020.00222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The term myocardial contractility is thought to have originated more than 125 years ago and has remained and enigma ever since. Although the term is frequently used in textbooks, editorials and contemporary manuscripts its definition remains illusive often being conflated with cardiac performance or inotropy. The absence of a universally accepted definition has led to confusion, disagreement and misconceptions among physiologists, cardiologists and safety pharmacologists regarding its definition particularly in light of new discoveries regarding the load dependent kinetics of cardiac contraction and their translation to cardiac force-velocity and ventricular pressure-volume measurements. Importantly, the Starling interpretation of force development is length-dependent while contractility is length independent. Most historical definitions employ an operational approach and define cardiac contractility in terms of the hearts mechanical properties independent of loading conditions. Literally defined the term contract infers that something has become smaller, shrunk or shortened. The addition of the suffix “ility” implies the quality of this process. The discovery and clinical investigation of small molecules that bind to sarcomeric proteins independently altering force or velocity requires that a modern definition of the term myocardial contractility be developed if the term is to persist. This review reconsiders the historical and contemporary interpretations of the terms cardiac performance and inotropy and recommends a modern definition of myocardial contractility as the preload, afterload and length-independent intrinsic kinetically controlled, chemo-mechanical processes responsible for the development of force and velocity.
Collapse
Affiliation(s)
- William W Muir
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Robert L Hamlin
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Straight CR, Bell KM, Slosberg JN, Miller MS, Swank DM. A myosin-based mechanism for stretch activation and its possible role revealed by varying phosphate concentration in fast and slow mouse skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C1143-C1152. [PMID: 31532715 DOI: 10.1152/ajpcell.00206.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretch activation (SA) is a delayed increase in force following a rapid muscle length increase. SA is best known for its role in asynchronous insect flight muscle, where it has replaced calcium's typical role of modulating muscle force levels during a contraction cycle. SA also occurs in mammalian skeletal muscle but has previously been thought to be too low in magnitude, relative to calcium-activated (CA) force, to be a significant contributor to force generation during locomotion. To test this supposition, we compared SA and CA force at different Pi concentrations (0-16 mM) in skinned mouse soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscle fibers. CA isometric force decreased similarly in both muscles with increasing Pi, as expected. SA force decreased with Pi in EDL (40%), leaving the SA to CA force ratio relatively constant across Pi concentrations (17-25%). In contrast, SA force increased in soleus (42%), causing a quadrupling of the SA to CA force ratio, from 11% at 0 mM Pi to 43% at 16 mM Pi, showing that SA is a significant force modulator in slow-twitch mammalian fibers. This modulation would be most prominent during prolonged muscle use, which increases Pi concentration and impairs calcium cycling. Based upon our previous Drosophila myosin isoform studies and this work, we propose that in slow-twitch fibers a rapid stretch in the presence of Pi reverses myosin's power stroke, enabling quick rebinding to actin and enhanced force production, while in fast-twitch fibers, stretch and Pi cause myosin to detach from actin.
Collapse
Affiliation(s)
- Chad R Straight
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Kaylyn M Bell
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Jared N Slosberg
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Mark S Miller
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Douglas M Swank
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
9
|
Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. J Muscle Res Cell Motil 2019; 40:99-110. [PMID: 31292801 PMCID: PMC6726838 DOI: 10.1007/s10974-019-09536-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 01/15/2023]
Abstract
Both insect flight muscle and cardiac muscle contract rhythmically, but the way in which repetitive contractions are controlled is different in the two types of muscle. We have compared the flight muscle of the water bug, Lethocerus, with cardiac muscle. Both have relatively high resting elasticity and are activated by an increase in sarcomere length or a quick stretch. The larger response of flight muscle is attributed to the highly ordered lattice of thick and thin filaments and to an isoform of troponin C that has no exchangeable Ca2+-binding site. The Ca2+ sensitivity of cardiac muscle and flight muscle can be manipulated so that cardiac muscle responds to Ca2+ like flight muscle, and flight muscle responds like cardiac muscle, showing the malleability of regulation. The interactions of the subunits in flight muscle troponin are described; a model of the complex, using the structure of cardiac troponin as a template, shows an overall similarity of cardiac and flight muscle troponin complexes. The dual regulation by thick and thin filaments in skeletal and cardiac muscle is thought to operate in flight muscle. The structure of inhibited myosin heads folded back on the thick filament in relaxed Lethocerus fibres has not been seen in other species and may be an adaptation to the rapid contractions of flight muscle. A scheme for regulation by thick and thin filaments during oscillatory contraction is described. Cardiac and flight muscle have much in common, but the differing mechanical requirements mean that regulation by both thick and thin filaments is adapted to the particular muscle.
Collapse
|
10
|
Reda SM, Gollapudi SK, Chandra M. Developmental increase in β-MHC enhances sarcomere length-dependent activation in the myocardium. J Gen Physiol 2019; 151:635-644. [PMID: 30602626 PMCID: PMC6504293 DOI: 10.1085/jgp.201812183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 01/10/2023] Open
Abstract
The expression of β-myosin heavy chain (β-MHC) in the guinea pig heart increases during postnatal development. Reda et al. show that this increase in β-MHC enhances length-mediated increases in myofilament Ca2+ sensitivity and sarcomere length–dependent changes in contractile function. Shifts in myosin heavy chain (MHC) isoforms in cardiac myocytes have been shown to alter cardiac muscle function not only in healthy developing hearts but also in diseased hearts. In guinea pig hearts, there is a large age-dependent shift in MHC isoforms from 80% α-MHC/20% β-MHC at 3 wk to 14% α-MHC/86% β-MHC at 11 wk. Because kinetic differences in α- and β-MHC cross-bridges (XBs) are known to impart different cooperative effects on thin filaments, we hypothesize here that differences in α- and β-MHC expression in guinea pig cardiac muscle impact sarcomere length (SL)–dependent contractile function. We therefore measure steady state and dynamic contractile parameters in detergent-skinned cardiac muscle preparations isolated from the left ventricles of young (3 wk old) or adult (11 wk old) guinea pigs at two different SLs: short (1.9 µm) and long (2.3 µm). Our data show that SL-dependent effects on contractile parameters are augmented in adult guinea pig cardiac muscle preparations. Notably, the SL-mediated increase in myofilament Ca2+ sensitivity (ΔpCa50) is twofold greater in adult guinea pig muscle preparations (ΔpCa50 being 0.11 units in adult preparations but only 0.05 units in young preparations). Furthermore, adult guinea pig cardiac muscle preparations display greater SL-dependent changes than young muscle preparations in (1) the magnitude of length-mediated increase in the recruitment of new force-bearing XBs, (2) XB detachment rate, (3) XB strain-mediated effects on other force-bearing XBs, and (4) the rate constant of force redevelopment. Our findings suggest that increased β-MHC expression enhances length-dependent activation in the adult guinea pig cardiac myocardium.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
11
|
Mamidi R, Li J, Doh CY, Holmes JB, Stelzer JE. Lost in translation: Interpreting cardiac muscle mechanics data in clinical practice. Arch Biochem Biophys 2019; 662:213-218. [PMID: 30576628 PMCID: PMC6345594 DOI: 10.1016/j.abb.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023]
Abstract
Current inotropic therapies improve systolic function in heart failure patients but also elicit undesirable side effects such as arrhythmias and increased intracellular Ca2+ transients. In order to maintain myocyte Ca2+ homeostasis, the increased cytosolic Ca2+ needs to be actively transported back to sarcoplasmic reticulum leading to depleted ATP reserves. Thus, an emerging approach is to design sarcomere-based treatments to correct impaired contractility via a direct and allosteric modulation of myosin's intrinsic force-generating behavior -a concept that potentially avoids the "off-target" effects. To achieve this goal, various biophysical approaches are utilized to investigate the mechanistic impact of sarcomeric modulators but information derived from diverse approaches is not fully integrated into therapeutic applications. This is in part due to the lack of information that provides a coherent connecting link between biophysical data to in vivo function. Hence, our ability to clearly discern the drug-mediated impact on whole-heart function is diminished. Reducing this translational barrier can significantly accelerate clinical progress related to sarcomere-based therapies by optimizing drug-dosing and treatment duration protocols based on information obtained from biophysical studies. Therefore, we attempt to link biophysical mechanical measurements obtained in isolated cardiac muscle and in vivo contractile function.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Robinett JC, Hanft LM, Geist J, Kontrogianni-Konstantopoulos A, McDonald KS. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C. J Gen Physiol 2019; 151:645-659. [PMID: 30705121 PMCID: PMC6504288 DOI: 10.1085/jgp.201812200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Myosin binding protein C (MyBP-C) is thought to regulate the contraction of skeletal muscle. Robinett et al. show that phosphorylation of slow skeletal MyBP-C modulates contraction by recruiting cross-bridges, modifying cross-bridge kinetics, and altering internal drag forces in the C-zone. Myosin binding protein C (MyBP-C) is a 125–140-kD protein located in the C-zone of each half-thick filament. It is thought to be an important regulator of contraction, but its precise role is unclear. Here we investigate mechanisms by which skeletal MyBP-C regulates myofilament function using rat permeabilized skeletal muscle fibers. We mount either slow-twitch or fast-twitch skeletal muscle fibers between a force transducer and motor, use Ca2+ to activate a range of forces, and measure contractile properties including transient force overshoot, rate of force development, and loaded sarcomere shortening. The transient force overshoot is greater in slow-twitch than fast-twitch fibers at all Ca2+ activation levels. In slow-twitch fibers, protein kinase A (PKA) treatment (a) augments phosphorylation of slow skeletal MyBP-C (sMyBP-C), (b) doubles the magnitude of the relative transient force overshoot at low Ca2+ activation levels, and (c) increases force development rates at all Ca2+ activation levels. We also investigate the role that phosphorylated and dephosphorylated sMyBP-C plays in loaded sarcomere shortening. We test the hypothesis that MyBP-C acts as a brake to filament sliding within the myofilament lattice by measuring sarcomere shortening as thin filaments traverse into the C-zone during lightly loaded slow-twitch fiber contractions. Before PKA treatment, shortening velocity decelerates as sarcomeres traverse from ∼3.10 to ∼3.00 µm. After PKA treatment, sarcomeres shorten a greater distance and exhibit less deceleration during similar force clamps. After sMyBP-C dephosphorylation, sarcomere length traces display a brief recoil (i.e., “bump”) that initiates at ∼3.06 µm during loaded shortening. Interestingly, the timing of the bump shifts with changes in load but manifests at the same sarcomere length. Our results suggest that sMyBP-C and its phosphorylation state regulate sarcomere contraction by a combination of cross-bridge recruitment, modification of cross-bridge cycling kinetics, and alteration of drag forces that originate in the C-zone.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD
| | | | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO
| |
Collapse
|
13
|
Doh CY, Li J, Mamidi R, Stelzer JE. The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure. Biochim Biophys Acta Mol Basis Dis 2019; 1865:661-677. [PMID: 30611859 DOI: 10.1016/j.bbadis.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
Mutations in cardiac myosin binding protein C (cMyBPC) are a major cause of hypertrophic cardiomyopathy (HCM). In particular, a single amino acid substitution of tyrosine to serine at residue 237 in humans (residue 235 in mice) has been linked to HCM with strong disease association. Although cMyBPC truncations, deletions and insertions, and frame shift mutations have been studied, relatively little is known about the functional consequences of missense mutations in cMyBPC. In this study, we characterized the functional and structural effects of the HCM-causing Y235S mutation by performing mechanical experiments and molecular dynamics simulations (MDS). cMyBPC null mouse myocardium was virally transfected with wild-type (WT) or Y235S cMyBPC (KOY235S). We found that Y235S cMyBPC was properly expressed and incorporated into the cardiac sarcomere, suggesting that the mechanism of disease of the Y235S mutation is not haploinsufficiency or poison peptides. Mechanical experiments in detergent-skinned myocardium isolated from KOY235S hearts revealed hypercontractile behavior compared to KOWT hearts, evidenced by accelerated cross-bridge kinetics and increased Ca2+ sensitivity of force generation. In addition, MDS revealed that the Y235S mutation causes alterations in important intramolecular interactions, surface conformations, and electrostatic potential of the C1 domain of cMyBPC. Our combined in vitro and in silico data suggest that the Y235S mutation directly disrupts internal and surface properties of the C1 domain of cMyBPC, which potentially alters its ligand-binding interactions. These molecular changes may underlie the mechanism for hypercontractile cross-bridge behavior, which ultimately results in the development of cardiac hypertrophy and in vivo cardiac dysfunction.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Mamidi R, Li J, Doh CY, Verma S, Stelzer JE. Impact of the Myosin Modulator Mavacamten on Force Generation and Cross-Bridge Behavior in a Murine Model of Hypercontractility. J Am Heart Assoc 2018; 7:e009627. [PMID: 30371160 PMCID: PMC6201428 DOI: 10.1161/jaha.118.009627] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
Background Recent studies suggest that mavacamten (Myk461), a small myosin-binding molecule, decreases hypercontractility in myocardium expressing hypertrophic cardiomyopathy-causing missense mutations in myosin heavy chain. However, the predominant feature of most mutations in cardiac myosin binding protein-C ( cMyBPC ) that cause hypertrophic cardiomyopathy is reduced total cMyBPC expression, and the impact of Myk461 on cMyBPC -deficient myocardium is currently unknown. Methods and Results We measured the impact of Myk461 on steady-state and dynamic cross-bridge ( XB ) behavior in detergent-skinned mouse wild-type myocardium and myocardium lacking cMyBPC (knockout (KO)). KO myocardium exhibited hypercontractile XB behavior as indicated by significant accelerations in rates of XB detachment (krel) and recruitment (kdf) at submaximal Ca2+ activations. Incubation of KO and wild-type myocardium with Myk461 resulted in a dose-dependent force depression, and this impact was more pronounced at low Ca2+ activations. Interestingly, Myk461-induced force depressions were less pronounced in KO myocardium, especially at low Ca2+ activations, which may be because of increased acto-myosin XB formation and potential disruption of super-relaxed XB s in KO myocardium. Additionally, Myk461 slowed krel in KO myocardium but not in wild-type myocardium, indicating increased XB " on" time. Furthermore, the greater degree of Myk461-induced slowing in kdf and reduction in XB recruitment magnitude in KO myocardium normalized the XB behavior back to wild-type levels. Conclusions This is the first study to demonstrate that Myk461-induced force depressions are modulated by cMyBPC expression levels in the sarcomere, and emphasizes that clinical use of Myk461 may need to be optimized based on the molecular trigger that underlies the hypertrophic cardiomyopathy phenotype.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Jiayang Li
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Chang Yoon Doh
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Sujeet Verma
- Department of Horticulture SciencesIFAS, Gulf Coast Research and Education CenterUniversity of FloridaWimauma
| | - Julian E. Stelzer
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| |
Collapse
|
15
|
Reda SM, Chandra M. Cardiomyopathy mutation (F88L) in troponin T abolishes length dependency of myofilament Ca 2+ sensitivity. J Gen Physiol 2018; 150:809-819. [PMID: 29776992 PMCID: PMC5987878 DOI: 10.1085/jgp.201711974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
The F88L mutation in cardiac troponin T (TnTF88L) is associated with hypertrophic cardiomyopathy. Reda and Chandra reveal that it abolishes length-mediated increase in myofilament Ca2+ sensitivity and attenuates cooperative mechanisms governing length-dependent activation. Recent clinical studies have revealed a new hypertrophic cardiomyopathy–associated mutation (F87L) in the central region of human cardiac troponin T (TnT). However, despite its implication in several incidences of sudden cardiac death in young and old adults, whether F87L is associated with cardiac contractile dysfunction is unknown. Because the central region of TnT is important for modulating the muscle length–mediated recruitment of new force-bearing cross-bridges (XBs), we hypothesize that the F87L mutation causes molecular changes that are linked to the length-dependent activation of cardiac myofilaments. Length-dependent activation is important because it contributes significantly to the Frank–Starling mechanism, which enables the heart to vary stroke volume as a function of changes in venous return. We measured steady-state and dynamic contractile parameters in detergent-skinned guinea pig cardiac muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or the guinea pig analogue (TnTF88L) of the human mutation at two different sarcomere lengths (SLs): short (1.9 µm) and long (2.3 µm). TnTF88L increases pCa50 (−log [Ca2+]free required for half-maximal activation) to a greater extent at short SL than at long SL; for example, pCa50 increases by 0.25 pCa units at short SL and 0.17 pCa units at long SL. The greater increase in pCa50 at short SL leads to the abolishment of the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTF88L fibers, ΔpCa50 being 0.10 units in TnTWT fibers but only 0.02 units in TnTF88L fibers. Furthermore, at short SL, TnTF88L attenuates the negative impact of strained XBs on force-bearing XBs and augments the magnitude of muscle length–mediated recruitment of new force-bearing XBs. Our findings suggest that the TnTF88L-mediated effects on cardiac thin filaments may lead to a negative impact on the Frank–Starling mechanism.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
16
|
Washio T, Sugiura S, Kanada R, Okada JI, Hisada T. Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function. Front Physiol 2018; 9:333. [PMID: 29681861 PMCID: PMC5898180 DOI: 10.3389/fphys.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm) and temporal (from 1 ns to 1 ms) gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz) accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to maintaining the systolic blood pressure by providing sufficient blood volume without slowing the diastolic process.
Collapse
Affiliation(s)
- Takumi Washio
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Seiryo Sugiura
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Ryo Kanada
- Predictive Health Team, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| | - Jun-Ichi Okada
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Toshiaki Hisada
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
17
|
Mamidi R, Li J, Gresham KS, Verma S, Doh CY, Li A, Lal S, Dos Remedios CG, Stelzer JE. Dose-Dependent Effects of the Myosin Activator Omecamtiv Mecarbil on Cross-Bridge Behavior and Force Generation in Failing Human Myocardium. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004257. [PMID: 29030372 DOI: 10.1161/circheartfailure.117.004257] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Omecamtiv mecarbil (OM) enhances systolic function in vivo by directly binding the myosin cross-bridges (XBs) in the sarcomere. However, the mechanistic details governing OM-induced modulation of XB behavior in failing human myocardium are unclear. METHODS AND RESULTS The effects of OM on steady state and dynamic XB behavior were measured in chemically skinned myocardial preparations isolated from human donor and heart failure (HF) left ventricle. HF myocardium exhibited impaired contractile function as evidenced by reduced maximal force, magnitude of XB recruitment (Pdf), and a slowed rate of XB detachment (krel) at submaximal Ca2+ activations. Ca2+ sensitivity of force generation (pCa50) was higher in HF myocardium when compared with donor myocardium, both prior to and after OM incubations. OM incubation (0.5 and 1.0 μmol/L) enhanced force generation at submaximal Ca2+ activations in a dose-dependent manner. Notably, OM induced a slowing in krel with 1.0 μmol/L OM but not with 0.5 μmol/L OM in HF myocardium. Additionally, OM exerted other differential effects on XB behavior in HF myocardium as evidenced by a greater enhancement in Pdf and slowing in the time course of cooperative XB recruitment (Trec), which collectively prolonged achievement of peak force development (Tpk), compared with donor myocardium. CONCLUSIONS Our findings demonstrate that OM augments force generation but also prolongs the time course of XB transitions to force-bearing states in remodeled HF myocardium, which may extend the systolic ejection time in vivo. Optimal OM dosing is critical for eliciting enhanced systolic function without excessive prolongation of systolic ejection time, which may compromise diastolic filling.
Collapse
Affiliation(s)
- Ranganath Mamidi
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Jiayang Li
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Kenneth S Gresham
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Sujeet Verma
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Chang Yoon Doh
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Amy Li
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Sean Lal
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Cristobal G Dos Remedios
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.)
| | - Julian E Stelzer
- From the Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH (R.M., J.L., C.Y.D., J.E.S.); Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (K.S.G); Department of Horticulture Sciences, IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma (S.V.); Sydney Heart Bank, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Australia (A.L., S.L., C.G.d.R.).
| |
Collapse
|
18
|
Gollapudi SK, Reda SM, Chandra M. Omecamtiv Mecarbil Abolishes Length-Mediated Increase in Guinea Pig Cardiac Myofiber Ca 2+ Sensitivity. Biophys J 2017; 113:880-888. [PMID: 28834724 DOI: 10.1016/j.bpj.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 01/14/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a pharmacological agent that augments cardiac contractile function by enhancing myofilament Ca2+ sensitivity. Given that interventions that increase myofilament Ca2+ sensitivity have the potential to alter length-dependent activation (LDA) of cardiac myofilaments, we tested the influence of OM on this fundamental property of the heart. This is significant not only because LDA is prominent in cardiac muscle but also because it contributes to the Frank-Starling law, a mechanism by which the heart increases stroke volume in response to an increase in venous return. We measured steady-state and dynamic contractile indices in detergent-skinned guinea pig (Cavia porcellus) cardiac muscle fibers in the absence and presence of 0.3 and 3.0 μM OM at two different sarcomere lengths (SLs), short SL (1.9 μm) and long SL (2.3 μm). Myofilament Ca2+ sensitivity, as measured by pCa50 (-log of [Ca2+]free concentration required for half-maximal activation), increased significantly at both short and long SLs in OM-treated fibers when compared to untreated fibers; however, the magnitude of increase in pCa50 was twofold greater at short SL than at long SL. A consequence of this greater increase in pCa50 at short SL was that pCa50 did not increase any further at long SL, suggesting that OM abolished the SL dependency of pCa50. Furthermore, the SL dependency of rate constants of cross-bridge distortion dynamics (c) and force redevelopment (ktr) was abolished in 0.3-μM-OM-treated fibers. The negative impact of OM on the SL dependency of pCa50, c, and ktr was also observed in 3.0-μM-OM-treated fibers, indicating that cooperative mechanisms linked to LDA were altered by the OM-mediated effects on cardiac myofilaments.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington
| | - Sherif M Reda
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington.
| |
Collapse
|
19
|
Li Y, Zhu G, Paolocci N, Zhang P, Takahashi C, Okumus N, Heravi A, Keceli G, Ramirez-Correa G, Kass DA, Murphy AM. Heart Failure-Related Hyperphosphorylation in the Cardiac Troponin I C Terminus Has Divergent Effects on Cardiac Function In Vivo. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003850. [PMID: 28899987 PMCID: PMC5612410 DOI: 10.1161/circheartfailure.117.003850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND In human heart failure, Ser199 (equivalent to Ser200 in mouse) of cTnI (cardiac troponin I) is significantly hyperphosphorylated, and in vitro studies suggest that it enhances myofilament calcium sensitivity and alters calpain-mediated cTnI proteolysis. However, how its hyperphosphorylation affects cardiac function in vivo remains unknown. METHODS AND RESULTS To address the question, 2 transgenic mouse models were generated: a phospho-mimetic cTnIS200D and a phospho-silenced cTnIS200A, each driven by the cardiomyocyte-specific α-myosin heavy chain promoter. Cardiac structure assessed by echocardiography and histology was normal in both transgenic models compared with littermate controls (n=5). Baseline in vivo hemodynamics and isolated muscle studies showed that cTnIS200D significantly prolonged relaxation and lowered left ventricular peak filling rate, whereas ejection fraction and force development were normal (n=5). However, with increased heart rate or β-adrenergic stimulation, cTnIS200D mice had less enhanced ejection fraction or force development versus controls, whereas relaxation improved similarly to controls (n=5). By contrast, cTnIS200A was functionally normal both at baseline and under the physiological stresses. To test whether either mutation impacted cardiac response to ischemic stress, isolated hearts were subjected to ischemia/reperfusion. cTnIS200D were protected, recovering 88±8% of contractile function versus 35±15% in littermate controls and 28±8% in cTnIS200A (n=5). This was associated with less cTnI proteolysis in cTnIS200D hearts. CONCLUSIONS Hyperphosphorylation of this serine in cTnI C terminus impacts heart function by depressing diastolic function at baseline and limiting systolic reserve under physiological stresses. However, paradoxically, it preserves heart function after ischemia/reperfusion injury, potentially by decreasing proteolysis of cTnI.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Guangshuo Zhu
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Nazareno Paolocci
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Pingbo Zhang
- Deparment of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Cyrus Takahashi
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Nazli Okumus
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD,Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Amir Heravi
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Gizem Keceli
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - Genaro Ramirez-Correa
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| | - David A Kass
- Department of Medicine/Division of Cardiology, Johns Hopkins University, Baltimore, MD,Department of Pharmacology and Molecular Sciences, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Anne M Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
20
|
Mickelson AV, Chandra M. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers. Am J Physiol Heart Circ Physiol 2017; 313:H1180-H1189. [PMID: 28842439 DOI: 10.1152/ajpheart.00369.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023]
Abstract
The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnTR94H)-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnTWT) and the guinea pig analog of the human R94H mutation (TnTR95H) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnTR95H increased pCa50 (-log of free Ca2+ concentration) to a greater extent at short SL; TnTR95H increased pCa50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa50) was attenuated nearly twofold in TnTR95H fibers; ΔpCa50 was 0.09 pCa units for TnTWT fibers but only 0.05 pCa units for TnTR95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnTR95H Collectively, our observations on the SL dependency of pCa50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnTR95HNEW & NOTEWORTHY Mutant cardiac troponin T (TnTR95H) differently affects myofilament Ca2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnTR95H TnTR95H enhances myofilament Ca2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
21
|
Glasheen BM, Eldred CC, Sullivan LC, Zhao C, Reedy MK, Edwards RJ, Swank DM. Stretch activation properties of Drosophila and Lethocerus indirect flight muscle suggest similar calcium-dependent mechanisms. Am J Physiol Cell Physiol 2017; 313:C621-C631. [PMID: 28835434 DOI: 10.1152/ajpcell.00110.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle stretch activation (SA) is critical for optimal cardiac and insect indirect flight muscle (IFM) power generation. The SA mechanism has been investigated for decades with many theories proposed, but none proven. One reason for the slow progress could be that multiple SA mechanisms may have evolved in multiple species or muscle types. Laboratories studying IFM SA in the same or different species have reported differing SA functional properties which would, if true, suggest divergent mechanisms. However, these conflicting results might be due to different experimental methodologies. Thus, we directly compared SA characteristics of IFMs from two SA model systems, Drosophila and Lethocerus, using two different fiber bathing solutions. Compared with Drosophila IFM, Lethocerus IFM isometric tension is 10- or 17-fold higher and SA tension was 5- or 10-fold higher, depending on the bathing solution. However, the rate of SA tension generation was 9-fold faster for Drosophila IFM. The inverse differences between rate and tension in the two species causes maximum power output to be similar, where Drosophila power is optimized in the bathing solution that favors faster muscle kinetics and Lethocerus in the solution that favors greater tension generation. We found that isometric tension and SA tension increased with calcium concentration for both species in both solutions, reaching a maximum plateau around pCa 5.0. Our results favor a similar mechanism for both species, perhaps involving a troponin complex that does not fully calcium activate the thin filament thus leaving room for further tension generation by SA.
Collapse
Affiliation(s)
- Bernadette M Glasheen
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Catherine C Eldred
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Leah C Sullivan
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Cuiping Zhao
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Michael K Reedy
- Department of Cell Biology, Duke University , Durham North Carolina
| | - Robert J Edwards
- Department of Cell Biology, Duke University , Durham North Carolina
| | - Douglas M Swank
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
22
|
Mickelson AV, Gollapudi SK, Chandra M. Cardiomyopathy-related mutation (A30V) in mouse cardiac troponin T divergently alters the magnitude of stretch activation in α- and β-myosin heavy chain fibers. Am J Physiol Heart Circ Physiol 2017; 312:H141-H149. [PMID: 27769999 PMCID: PMC5283911 DOI: 10.1152/ajpheart.00487.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/29/2016] [Accepted: 10/15/2016] [Indexed: 01/19/2023]
Abstract
The present study investigated the functional consequences of the human hypertrophic cardiomyopathy (HCM) mutation A28V in cardiac troponin T (TnT). The A28V mutation is located within the NH2 terminus of TnT, a region known to be important for full activation of cardiac thin filaments. The functional consequences of the A28V mutation in TnT remain unknown. Given how α- and β-myosin heavy chain (MHC) isoforms differently alter the functional effect of the NH2 terminus of TnT, we hypothesized that the A28V-induced effects would be differently modulated by α- and β-MHC isoforms. Recombinant wild-type mouse TnT (TnTWT) and the mouse equivalent of the human A28V mutation (TnTA30V) were reconstituted into detergent-skinned cardiac muscle fibers extracted from normal (α-MHC) and transgenic (β-MHC) mice. Dynamic and steady-state contractile parameters were measured in reconstituted muscle fibers. Step-like length perturbation experiments demonstrated that TnTA30V decreased the magnitude of the muscle length-mediated recruitment of new force-bearing cross bridges (ER) by 30% in α-MHC fibers. In sharp contrast, TnTA30V increased ER by 55% in β-MHC fibers. Inferences drawn from other dynamic contractile parameters suggest that directional changes in ER in TnTA30V + α-MHC and TnTA30V + β-MHC fibers result from a divergent impact on cross bridge-regulatory unit (troponin-tropomyosin complex) cooperativity. TnTA30V-mediated effects on Ca2+-activated maximal tension and instantaneous muscle fiber stiffness (ED) were also divergently affected by α- and β-MHC. Our study demonstrates that TnTA30V + α-MHC and TnTA30V + β-MHC fibers show contrasting contractile phenotypes; however, only the observations from β-MHC fibers are consistent with the clinical data for A28V in humans. NEW & NOTEWORTHY The differential impact of α- and β-myosin heavy chain (MHC) on contractile dynamics causes a mutant cardiac troponin T (TnTA30V) to differently modulate cardiac contractile function. TnTA30V attenuated Ca2+-activated maximal tension and length-mediated cross-bridge recruitment against α-MHC but augmented these parameters against β-MHC, suggesting divergent contractile phenotypes.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
23
|
Zhao C, Swank DM. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type. Am J Physiol Cell Physiol 2016; 312:C111-C118. [PMID: 27881413 DOI: 10.1152/ajpcell.00284.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/22/2022]
Abstract
Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (FSA), whereas the jump muscle produces only minimal FSA We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA Highly SA muscle types, such as IFM, likely use a different or additional mechanism.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Biological Sciences, Department of Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas M Swank
- Department of Biological Sciences, Department of Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
24
|
Stovall S, Midgett M, Thornburg K, Rugonyi S. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:116003. [PMID: 27812694 PMCID: PMC5795889 DOI: 10.1117/1.jbo.21.11.116003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
Abnormal blood flow during early cardiovascular development has been identified as a key factor in the pathogenesis of congenital heart disease; however, the mechanisms by which altered hemodynamics induce cardiac malformations are poorly understood. This study used outflow tract (OFT) banding to model increased afterload, pressure, and blood flow velocities at tubular stages of heart development and characterized the immediate changes in cardiac wall motion due to banding in chicken embryo models with light microscopy-based video densitometry. Optical videos were used to acquire two-dimensional heart image sequences over the cardiac cycle, from which intensity data were extracted along the heart centerline at several locations in the heart ventricle and OFT. While no changes were observed in the synchronous contraction of the ventricle with banding, the peristaltic-like wall motion in the OFT was significantly affected. Our data provide valuable insight into early cardiac biomechanics and its characterization using a simple light microscopy-based imaging modality.
Collapse
Affiliation(s)
- Stephanie Stovall
- Oregon Health and Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
| | - Madeline Midgett
- Oregon Health and Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
| | - Kent Thornburg
- Oregon Health and Science University, Center for Developmental Health, Knight Cardiovascular Institute, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
| | - Sandra Rugonyi
- Oregon Health and Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
- Oregon Health and Science University, Center for Developmental Health, Knight Cardiovascular Institute, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
- Address all correspondence to: Sandra Rugonyi, E-mail:
| |
Collapse
|
25
|
Gollapudi SK, Chandra M. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain. Front Physiol 2016; 7:443. [PMID: 27757084 PMCID: PMC5047882 DOI: 10.3389/fphys.2016.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant-such as myofilament Ca2+ sensitivity-is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
26
|
Toepfer CN, West TG, Ferenczi MA. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion. J Physiol 2016; 594:5237-54. [PMID: 27291932 PMCID: PMC5023691 DOI: 10.1113/jp272441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
Key points Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Abstract Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin‐associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr) in maximally activating [Ca2+]. Activation was achieved by rapidly increasing the temperature (temperature‐jump of 0.5–20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85–1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC‐exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two‐state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross‐bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+] and are not explained by changes in the Ca2+‐sensitivity of acto‐myosin interactions. The length‐dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank–Starling law of the heart. Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Collapse
Affiliation(s)
- Christopher N Toepfer
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK. .,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy G West
- Structure & Motion Laboratory, Royal Veterinary College London, North Mymms, UK
| | - Michael A Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Michael JJ, Gollapudi SK, Chandra M. Interplay between the effects of a Protein Kinase C phosphomimic (T204E) and a dilated cardiomyopathy mutation (K211Δ or R206W) in rat cardiac troponin T blunts the magnitude of muscle length-mediated crossbridge recruitment against the β-myosin heavy chain background. J Muscle Res Cell Motil 2016; 37:83-93. [PMID: 27411801 DOI: 10.1007/s10974-016-9448-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
Failing hearts of dilated cardiomyopathy (DCM)-patients reveal systolic dysfunction and upregulation of several Protein Kinase C (PKC) isoforms. Recently, we demonstrated that the functional effects of T204E, a PKC phosphomimic of cardiac troponin T (TnT), were differently modulated by α- and β-myosin heavy chain (MHC) isoforms. Therefore, we hypothesized that the interplay between the effects of T204E and a DCM-linked mutation (K211Δ or R206W) in TnT would modulate contractile parameters linked-to systolic function in an MHC-dependent manner. To test our hypothesis, five TnT variants (wildtype, K211Δ, K211Δ + T204E, R206W, and R206W + T204E) were generated and individually reconstituted into demembranated cardiac muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rats. Steady-state and mechano-dynamic measurements were performed on reconstituted fibers. Myofilament Ca(2+) sensitivity (pCa50) was decreased by both K211Δ and R206W to a greater extent in α-MHC fibers (~0.15 pCa units) than in β-MHC fibers (~0.06 pCa units). However, T204E exacerbated the attenuating influence of both mutants on pCa50 only in β-MHC fibers. Moreover, the magnitude of muscle length (ML)-mediated crossbridge (XB) recruitment was decreased by K211Δ + T204E (~47 %), R206W (~34 %), and R206W + T204E (~36 %) only in β-MHC fibers. In relevance to human hearts, which predominantly express β-MHC, our data suggest that the interplay between the effects of DCM mutations, PKC phosphomimic in TnT, and β-MHC lead to systolic dysfunction by attenuating pCa50 and the magnitude of ML-mediated XB recruitment.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
28
|
Michael JJ, Chandra M. Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α- and β-Myosin Heavy Chain Isoforms. J Am Heart Assoc 2016; 5:e002777. [PMID: 27001966 PMCID: PMC4943253 DOI: 10.1161/jaha.115.002777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis was based on two observations: (1) α‐ and β‐MHC differentially influence the functional effects of TnT; and (2) PKC isoforms capable of phosphorylating TnT are upregulated in failing human hearts. Methods and Results We generated 4 recombinant TnT variants: wild type; R206L; T204E; and R206L+T204E. Functional effects of the TnT variants were tested in cardiac muscle fibers (minimum 14 per group) from normal (α‐MHC) and propylthiouracil‐treated rats (β‐MHC) using steady‐state and dynamic contractile measurements. Notably, in α‐MHC fibers, Ca2+‐activated maximal tension was attenuated by R206L (≈32%), T204E (≈63%), and R206L+T204E (≈64%). In β‐MHC fibers, maximal tension was unaffected by R206L, but was attenuated by T204E (≈33%) and R206L+T204E (≈40%). Thus, β‐MHC differentially counteracted the attenuating effects of the TnT variants on tension. However, in β‐MHC fibers, R206L+T204E attenuated tension to a greater extent when compared to T204E alone. In β‐MHC fibers, R206L+T204E attenuated the magnitude of the length‐mediated recruitment of new cross‐bridges (≈28%), suggesting that the Frank‐Starling mechanism was impaired. Conclusions Our findings are the first (to our knowledge) to demonstrate that the functional effects of a DCM‐linked TnT mutation are not only modulated by MHC isoforms, but also by the pathology‐associated post‐translational modifications of TnT.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| |
Collapse
|
29
|
Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol 2016; 7:38. [PMID: 26913007 PMCID: PMC4753332 DOI: 10.3389/fphys.2016.00038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-phosphorylatable cMyBP-C [Ser to Ala substitutions at residues Ser273, Ser282, and Ser302 (i.e., 3SA)], at sarcomere length (SL) 1.9 μm or 2.1μm, prior and following protein kinase A (PKA) treatment. Steady-state force generation measurements revealed a blunting in the length-dependent increase in myofilament Ca(2+)-sensitivity of force generation (pCa50) following an increase in SL in 3SA skinned myocardium compared to WT skinned myocardium. Dynamic XB behavior was assessed at submaximal Ca(2+)-activations by imposing an acute rapid stretch of 2% of initial muscle length, and measuring both the magnitudes and rates of resultant phases of force decay due to strain-induced XB detachment and delayed force rise due to recruitment of additional XBs with increased SL (i.e., stretch activation). The magnitude (P2) and rate of XB detachment (k rel) following stretch was significantly reduced in 3SA skinned myocardium compared to WT skinned myocardium at short and long SL, and prior to and following PKA treatment. Furthermore, the length-dependent acceleration of k rel due to decreased SL that was observed in WT skinned myocardium was abolished in 3SA skinned myocardium. PKA treatment accelerated the rate of XB recruitment (k df) following stretch at both SL's in WT but not in 3SA skinned myocardium. The amplitude of the enhancement in force generation above initial pre-stretch steady-state levels (P3) was not different between WT and 3SA skinned myocardium at any condition measured. However, the magnitude of the entire delayed force phase which can dip below initial pre-stretch steady-state levels (Pdf) was significantly lower in 3SA skinned myocardium under all conditions, in part due to a reduced magnitude of XB detachment (P2) in 3SA skinned myocardium compared to WT skinned myocardium. These findings demonstrate that cMyBP-C phospho-ablation regulates SL- and PKA-mediated effects on XB kinetics in the myocardium, which would be expected to contribute to the regulation of the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Sujeet Verma
- Department of Horticultural Science, Institute of Food and Agricultural Sciences Gulf Coast Research and Education Center, University of Florida Wimauma, FL, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
30
|
Mamidi R, Gresham KS, Li A, dos Remedios CG, Stelzer JE. Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C. J Mol Cell Cardiol 2015; 85:262-72. [PMID: 26100051 DOI: 10.1016/j.yjmcc.2015.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
Abstract
Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin activator omecamtiv mecarbil (OM) is a pharmacological drug that specifically targets the myosin XB and recent evidence suggests that OM induces a significant decrease in the in vivo motility velocity and an increase in the XB duty cycle. Thus, the molecular effects of OM maybe beneficial in improving contractile function in skinned myocardium lacking cMyBP-C because absence of cMyBP-C in the sarcomere accelerates XB kinetics and enhances XB turnover rate, which presumably reduces contractile efficiency. Therefore, parameters of XB function were measured in skinned myocardium lacking cMyBP-C prior to and following OM incubation. We measured ktr, the rate of force redevelopment as an index of XB transition from both the weakly- to strongly-bound state and from the strongly- to weakly-bound states and performed stretch activation experiments to measure the rates of XB detachment (krel) and XB recruitment (kdf) in detergent-skinned ventricular preparations isolated from hearts of wild-type (WT) and cMyBP-C knockout (KO) mice. Samples from donor human hearts were also used to assess the effects of OM in cardiac muscle expressing a slow β-myosin heavy chain (β-MHC). Incubation of skinned myocardium with OM produced large enhancements in steady-state force generation which were most pronounced at low levels of [Ca(2+)] activations, suggesting that OM cooperatively recruits additional XB's into force generating states. Despite a large increase in steady-state force generation following OM incubation, parallel accelerations in XB kinetics as measured by ktr were not observed, and there was a significant OM-induced decrease in krel which was more pronounced in the KO skinned myocardium compared to WT skinned myocardium (58% in WT vs. 76% in KO at pCa 6.1), such that baseline differences in krel between KO and WT skinned myocardium were no longer apparent following OM-incubation. A significant decrease in the kdf was also observed following OM incubation in all groups, which may be related to the increase in the number of cooperatively recruited XB's at low Ca(2+)-activations which slows the overall rate of force generation. Our results indicate that OM may be a useful pharmacological approach to normalize hypercontractile XB kinetics in myocardium with decreased cMyBP-C expression due to its molecular effects on XB behavior.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Amy Li
- Muscle Research Unit, Bosch Institute, University of Sydney, Sydney Australia
| | | | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA.
| |
Collapse
|
31
|
Mamidi R, Gresham KS, Stelzer JE. Length-dependent changes in contractile dynamics are blunted due to cardiac myosin binding protein-C ablation. Front Physiol 2014; 5:461. [PMID: 25520665 PMCID: PMC4251301 DOI: 10.3389/fphys.2014.00461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
Enhanced cardiac contractile function with increased sarcomere length (SL) is, in part, mediated by a decrease in the radial distance between myosin heads and actin. The radial disposition of myosin heads relative to actin is modulated by cardiac myosin binding protein-C (cMyBP-C), suggesting that cMyBP-C contributes to the length-dependent activation (LDA) in the myocardium. However, the precise roles of cMyBP-C in modulating cardiac LDA are unclear. To determine the impact of cMyBP-C on LDA, we measured isometric force, myofilament Ca2+-sensitivity (pCa50) and length-dependent changes in kinetic parameters of cross-bridge (XB) relaxation (krel), and recruitment (kdf) due to rapid stretch, as well as the rate of force redevelopment (ktr) in response to a large slack-restretch maneuver in skinned ventricular multicellular preparations isolated from the hearts of wild-type (WT) and cMyBP-C knockout (KO) mice, at SL's 1.9 μm or 2.1 μm. Our results show that maximal force was not significantly different between KO and WT preparations but length-dependent increase in pCa50 was attenuated in the KO preparations. pCa50 was not significantly different between WT and KO preparations at long SL (5.82 ± 0.02 in WT vs. 5.87 ± 0.02 in KO), whereas pCa50 was significantly different between WT and KO preparations at short SL (5.71 ± 0.02 in WT vs. 5.80 ± 0.01 in KO; p < 0.05). The ktr, measured at half-maximal Ca2+-activation, was significantly accelerated at short SL in WT preparations (8.74 ± 0.56 s−1 at 1.9 μm vs. 5.71 ± 0.40 s−1 at 2.1 μm, p < 0.05). Furthermore, krel and kdf were accelerated by 32% and 50%, respectively at short SL in WT preparations. In contrast, ktr was not altered by changes in SL in KO preparations (8.03 ± 0.54 s−1 at 1.9 μm vs. 8.90 ± 0.37 s−1 at 2.1 μm). Similarly, KO preparations did not exhibit length-dependent changes in krel and kdf. Collectively, our data implicate cMyBP-C as an important regulator of LDA via its impact on dynamic XB behavior due to changes in SL.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
32
|
Cheng Y, Wan X, McElfresh TA, Chen X, Gresham KS, Rosenbaum DS, Chandler MP, Stelzer JE. Impaired contractile function due to decreased cardiac myosin binding protein C content in the sarcomere. Am J Physiol Heart Circ Physiol 2013; 305:H52-65. [PMID: 23666674 DOI: 10.1152/ajpheart.00929.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in cardiac myosin binding protein C (MyBP-C) are a common cause of familial hypertrophic cardiomyopathy (FHC). The majority of MyBP-C mutations are expected to reduce MyBP-C expression; however, the consequences of MyBP-C deficiency on the regulation of myofilament function, Ca²⁺ homeostasis, and in vivo cardiac function are unknown. To elucidate the effects of decreased MyBP-C expression on cardiac function, we employed MyBP-C heterozygous null (MyBP-C+/-) mice presenting decreases in MyBP-C expression (32%) similar to those of FHC patients carrying MyBP-C mutations. The levels of MyBP-C phosphorylation were reduced 53% in MyBP-C+/- hearts compared with wild-type hearts. Skinned myocardium isolated from MyBP-C+/- hearts displayed decreased cross-bridge stiffness at half-maximal Ca²⁺ activations, increased steady-state force generation, and accelerated rates of cross-bridge recruitment at low Ca²⁺ activations (<15% and <25% of maximum, respectively). Protein kinase A treatment abolished basal differences in rates of cross-bridge recruitment between MyBP-C+/- and wild-type myocardium. Intact ventricular myocytes from MyBP-C+/- hearts displayed abnormal sarcomere shortening but unchanged Ca²⁺ transient kinetics. Despite a lack of left ventricular hypertrophy, MyBP-C+/- hearts exhibited elevated end-diastolic pressure and decreased peak rate of LV pressure rise, which was normalized following dobutamine infusion. Furthermore, electrocardiogram recordings in conscious MyBP-C+/- mice revealed prolonged QRS and QT intervals, which are known risk factors for cardiac arrhythmia. Collectively, our data show that reduced MyBP-C expression and phosphorylation in the sarcomere result in myofilament dysfunction, contributing to contractile dysfunction that precedes compensatory adaptations in Ca²⁺ handling, and chamber remodeling. Perturbations in mechanical and electrical activity in MyBP-C+/- mice could increase their susceptibility to cardiac dysfunction and arrhythmia.
Collapse
Affiliation(s)
- Y Cheng
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mamidi R, Mallampalli SL, Wieczorek DF, Chandra M. Identification of two new regions in the N-terminus of cardiac troponin T that have divergent effects on cardiac contractile function. J Physiol 2012. [PMID: 23207592 DOI: 10.1113/jphysiol.2012.243394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract Cardiac troponin T (cTnT) has a highly acidic extended N-terminus, the physiological role of which remains poorly understood. To decipher the physiological role of this unique region, we deleted specific regions within the N-terminus of mouse cTnT (McTnT) to create McTnT1-44 and McTnT45-74 proteins. Contractile function and dynamic force-length measurements were made after reconstituting the McTnT deletion proteins into detergent-skinned cardiac papillary fibres harvested from non-transgenic mice that expressed α-tropomyosin (Tm). To further understand how the functional effects of the N-terminus of cTnT are modulated by Tm isoforms, McTnT deletion proteins were reconstituted into detergent-skinned cardiac papillary fibres harvested from transgenic mice that expressed both α- and β-Tm. McTnT1-44, but not McTnT45-74, attenuated maximal activation of the thin filament. Myofilament Ca(2+) sensitivity, as measured by pCa50 (-log of [Ca(2+)]free required for half-maximal activation), decreased in McTnT1-44 (α-Tm) fibres. The desensitizing effect of McTnT1-44 on pCa50 was ablated in β-Tm fibres. McTnT45-74 enhanced pCa50 in both α- and β-Tm fibres, with β-Tm having a bigger effect. The Hill coefficient of tension development was significantly attenuated by McTnT45-74, suggesting an effect on thin-filament cooperativity. The rate of cross-bridge (XB) detachment and the strained XB-mediated impact on other XBs were augmented by McTnT1-44 in β-Tm fibres. The magnitude of the length-mediated recruitment of XBs was attenuated by McTnT1-44 in β-Tm fibres. Our data demonstrate that the 1-44 region of McTnT is essential for maximal activation, whereas the cardiac-specific 45-74 region of McTnT is essential for augmenting cooperativity. Moreover, our data show that α- and β-Tm isoforms have divergent effects on McTnT deletion mutant's ability to modulate cardiac thin-filament activation and Ca(2+) sensitivity. Our results not only provide the first explicit evidence for the existence of two distinct functional regions within the N-terminus of cTnT, but also offer mechanistic insights into the divergent physiological roles of these regions in mediating cardiac contractile activation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA-99164, USA.
| | | | | | | |
Collapse
|
34
|
Rao VS, Korte FS, Razumova MV, Feest ER, Hsu H, Irving TC, Regnier M, Martyn DA. N-terminal phosphorylation of cardiac troponin-I reduces length-dependent calcium sensitivity of contraction in cardiac muscle. J Physiol 2012; 591:475-90. [PMID: 23129792 DOI: 10.1113/jphysiol.2012.241604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protein kinase A (PKA) phosphorylation of myofibrillar proteins constitutes an important pathway for β-adrenergic modulation of cardiac contractility. In myofilaments PKA targets troponin I (cTnI), myosin binding protein-C (cMyBP-C) and titin. We studied how this affects the sarcomere length (SL) dependence of force-pCa relations in demembranated cardiac muscle. To distinguish cTnI from cMyBP-C/titin phosphorylation effects on the force-pCa relationship, endogenous troponin (Tn) was exchanged in rat ventricular trabeculae with either wild-type (WT) Tn, non-phosphorylatable cTnI (S23/24A) Tn or phosphomimetic cTnI (S23/24D) Tn. PKA cannot phosphorylate either cTnI S23/24 variant, leaving cMyBP-C/titin as PKA targets. Force was measured at 2.3 and 2.0 μm SL. Decreasing SL reduced maximal force (F(max)) and Ca(2+) sensitivity of force (pCa(50)) similarly with WT and S23/24A trabeculae. PKA treatment of WT and S23/24A trabeculae reduced pCa(50) at 2.3 but not at 2.0 μm SL, thus eliminating the SL dependence of pCa(50). In contrast, S23/24D trabeculae reduced pCa(50) at both SL values, primarily at 2.3 μm, also eliminating SL dependence of pCa(50). Subsequent PKA treatment moderately reduced pCa(50) at both SLs. At each SL, F(max) was unaffected by either Tn exchange and/or PKA treatment. Low-angle X-ray diffraction was performed to determine whether pCa(50) shifts were associated with changes in myofilament spacing (d(1,0)) or thick-thin filament interaction. PKA increased d(1,0) slightly under all conditions. The ratios of the integrated intensities of the equatorial X-ray reflections (I(1,1)/I(1,0)) indicate that PKA treatment increased crossbridge proximity to thin filaments under all conditions. The results suggest that phosphorylation by PKA of either cTnI or cMyBP-C/titin independently reduces the pCa(50) preferentially at long SL, possibly through reduced availability of thin filament binding sites (cTnI) or altered crossbridge recruitment (cMyBP-C/titin). Preferential reduction of pCa(50) at long SL may not reduce cardiac output during periods of high metabolic demand because of increased intracellular Ca(2+) during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Vijay S Rao
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mijailovich SM, Kayser-Herold O, Li X, Griffiths H, Geeves MA. Cooperative regulation of myosin-S1 binding to actin filaments by a continuous flexible Tm-Tn chain. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:1015-32. [PMID: 23052974 PMCID: PMC3509328 DOI: 10.1007/s00249-012-0859-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 12/20/2022]
Abstract
The regulation of striated muscle contraction involves cooperative interactions between actin filaments, myosin-S1 (S1), tropomyosin (Tm), troponin (Tn), and calcium. These interactions are modeled by treating overlapping tropomyosins as a continuous flexible chain (CFC), weakly confined by electrostatic interactions with actin. The CFC is displaced locally in opposite directions on the actin surface by the binding of either S1 or Troponin I (TnI) to actin. The apparent rate constants for myosin and TnI binding to and detachment from actin are then intrinsically coupled via the CFC model to the presence of neighboring bound S1s and TnIs. Monte Carlo simulations at prescribed values of the CFC stiffness, the CFC’s degree of azimuthal confinement, and the angular displacements caused by the bound proteins were able to predict the stopped-flow transients of S1 binding to regulated F-actin. The transients collected over a large range of calcium concentrations could be well described by adjusting a single calcium-dependent parameter, the rate constant of TnI detachment from actin, k−I. The resulting equilibrium constant \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{\text{B}} \equiv 1/K_{\text{I}} $$\end{document} varied sigmoidally with the free calcium, increasing from 0.12 at low calcium (pCa >7) to 12 at high calcium (pCa <5.5) with a Hill coefficient of ~2.15. The similarity of the curves for excess-actin and excess-myosin data confirms their allosteric relationship. The spatially explicit calculations confirmed variable sizes for the cooperative units and clustering of bound myosins at low calcium concentrations. Moreover, inclusion of negative cooperativity between myosin units predicted the observed slowing of myosin binding at excess-myosin concentrations.
Collapse
Affiliation(s)
- Srboljub M Mijailovich
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
36
|
Ly S, Lehrer SS. Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 2012; 51:6413-20. [PMID: 22794249 PMCID: PMC3447992 DOI: 10.1021/bi3006835] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac α-tropomyosin (Tm) single-site mutations D175N and E180G cause familial hypertrophic cardiomyopathy (FHC). Previous studies have shown that these mutations increase both Ca(2+) sensitivity and residual contractile activity at low Ca(2+) concentrations, which causes incomplete relaxation during diastole resulting in hypertrophy and sarcomeric disarray. However, the molecular basis for the cause and the difference in the severity of the manifested phenotypes of disease are not known. In this work we have (1) used ATPase studies using reconstituted thin filaments in solution to show that these FHC mutants result in an increase in Ca(2+) sensitivity and an increased residual level of ATPase, (2) shown that both FHC mutants increase the rate of cleavage at R133, ~45 residues N-terminal to the mutations, when free and bound to actin, (3) shown that for Tm-E180G, the increase in the rate of cleavage is greater than that for D175N, and (4) shown that for E180G, cleavage also occurs at a new site 53 residues C-terminal to E180G, in parallel with cleavage at R133. The long-range decreases in dynamic stability due to these two single-site mutations suggest increases in flexibility that may weaken the ability of Tm to inhibit activity at low Ca(2+) concentrations for D175N and to a greater degree for E180G, which may contribute to differences in the severity of FHC.
Collapse
Affiliation(s)
- Socheata Ly
- Cardiovascular Program, Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | | |
Collapse
|
37
|
Merkulov S, Chen X, Chandler MP, Stelzer JE. In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ Heart Fail 2012; 5:635-44. [PMID: 22855556 DOI: 10.1161/circheartfailure.112.968941] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Decreased expression of cardiac myosin binding protein C (cMyBPC) in the heart has been implicated as a consequence of mutations in cMyBPC that lead to abnormal contractile function at the myofilament level, thereby contributing to the development of hypertrophic cardiomyopathy in humans. It has not been established whether increasing the levels of cMyBPC in the intact heart can improve myofilament and in vivo contractile function and attenuate maladaptive remodeling processes because of reduced levels of cMyBPC. METHODS AND RESULTS We performed in vivo gene transfer of cMyBPC by direct injection into the myocardium of cMyBPC-deficient (cMyBPC(-/-)) mice, and mechanical experiments were conducted on skinned myocardium isolated from cMyBPC(-/-) hearts 21 days and 20 weeks after gene transfer. Cross-bridge kinetics in skinned myocardium isolated from cMyBPC(-/-) hearts after cMyBPC gene transfer were significantly slower compared with untreated cMyBPC(-/-) myocardium and were comparable to wild-type myocardium and cMyBPC(-/-) myocardium that was reconstituted with recombinant cMyBPC in vitro. cMyBPC content in cMyBPC(-/-) skinned myocardium after in vivo cMyBPC gene transfer or in vitro cMyBPC reconstitution was similar to wild-type levels. In vivo echocardiography studies of cMyBPC(-/-) hearts after cMyBPC gene transfer revealed improved systolic and diastolic contractile function and reductions in left ventricular wall thickness. CONCLUSIONS This proof-of-concept study demonstrates that gene therapy designed to increase expression of cMyBPC in the cMyBPC-deficient myocardium can improve myofilament and in vivo contractile function, suggesting that cMyBPC gene therapy may be a viable approach for treatment of cardiomyopathies because of mutations in cMyBPC.
Collapse
Affiliation(s)
- Sergei Merkulov
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
38
|
ter Keurs HEDJ. The interaction of Ca2+ with sarcomeric proteins: role in function and dysfunction of the heart. Am J Physiol Heart Circ Physiol 2012; 302:H38-50. [PMID: 22021327 PMCID: PMC3334233 DOI: 10.1152/ajpheart.00219.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 10/11/2011] [Indexed: 12/28/2022]
Abstract
The hallmarks of the normal heartbeat are both rapid onset of contraction and rapid relaxation as well as an inotropic response to both increased end-diastolic volume and increased heart rate. At the microscopic level, Ca(2+) plays a crucial role in normal cardiac contraction. This paper reviews the cycle of Ca(2+) fluxes during the normal heartbeat, which underlie the coupling between excitation and contraction and permit a highly synchronized action of cardiac sarcomeres. Length dependence of the response of the regulatory sarcomeric proteins mediates the Frank-Starling Law of the heart. However, Ca(2+) transport may go astray in heart disease such as in congestive heart failure, and both jeopardize systole and diastole and triggering arrhythmias. The interaction between weak and strong segments in nonuniform cardiac muscle allows partial preservation of force of contraction but may further lead to mechanoelectric feedback or reverse excitation-contraction coupling mediating an early diastolic Ca(2+) transient caused by the rapid force decrease during the relaxation phase. These rapid force changes in nonuniform muscle may cause arrhythmogenic Ca(2+) waves to propagate by the activation of neighboring sarcoplasmic reticulum by diffusing Ca(2+) ions.
Collapse
|
39
|
Desjardins CL, Chen Y, Coulton AT, Hoit BD, Yu X, Stelzer JE. Cardiac myosin binding protein C insufficiency leads to early onset of mechanical dysfunction. Circ Cardiovasc Imaging 2011; 5:127-36. [PMID: 22157650 DOI: 10.1161/circimaging.111.965772] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Decreased expression of cardiac myosin binding protein C (cMyBPC) as a result of genetic mutations may contribute to the development of hypertrophic cardiomyopathy (HCM); however, the mechanisms that link cMyBPC expression and HCM development, especially contractile dysfunction, remain unclear. METHODS AND RESULTS We evaluated cardiac mechanical function in vitro and in vivo in young mice (8-10 weeks of age) carrying no functional cMyBPC alleles (cMyBPC(-/-)) or 1 functional cMyBPC allele (cMyBPC(±)). Skinned myocardium isolated from cMyBPC(-/-) hearts displayed significant accelerations in stretch activation cross-bridge kinetics. Cardiac MRI studies revealed severely depressed in vivo left ventricular (LV) magnitude and rates of LV wall strain and torsion compared with wild-type (WT) mice. Heterozygous cMyBPC(±) hearts expressed 23±5% less cMyBPC than WT hearts but did not display overt hypertrophy. Skinned myocardium isolated from cMyBPC(±) hearts displayed small accelerations in the rate of stretch induced cross-bridge recruitment. MRI measurements revealed reductions in LV torsion and circumferential strain, as well reduced circumferential strain rates in early systole and diastole. CONCLUSIONS Modest decreases in cMyBPC expression in the mouse heart result in early-onset subtle changes in cross-bridge kinetics and in vivo LV mechanical function, which could contribute to the development of HCM later in life.
Collapse
Affiliation(s)
- Candida L Desjardins
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
40
|
The 3-state model of muscle regulation revisited: is a fourth state involved? J Muscle Res Cell Motil 2011; 32:203-8. [DOI: 10.1007/s10974-011-9263-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
41
|
Schoffstall B, LaBarbera VA, Brunet NM, Gavino BJ, Herring L, Heshmati S, Kraft BH, Inchausti V, Meyer NL, Moonoo D, Takeda AK, Chase PB. Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle. DNA Cell Biol 2011; 30:653-9. [PMID: 21438758 DOI: 10.1089/dna.2010.1163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.
Collapse
|
42
|
Electromechanical coupling in the cardiac myocyte; stretch-arrhythmia feedback. Pflugers Arch 2011; 462:165-75. [PMID: 21373861 DOI: 10.1007/s00424-011-0944-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/29/2022]
Abstract
The macroscopic hallmarks of the normal heartbeat are rapid onset of contraction and rapid relaxation and an inotropic response to both increased end diastolic volume and increased heart rate. At the microscopic level, the calcium ion (Ca(2+)) plays a crucial role in normal cardiac contraction. This paper reviews the cycle of Ca(2+) fluxes during the normal heartbeat, which underlie the coupling between excitation and contraction (ECC) and permit a highly synchronized action of cardiac sarcomeres. Length dependence of the response of the regulatory sarcomeric proteins mediates the Frank-Starling Law of the heart. However, Ca(2+) transport may go astray in heart disease and both jeopardize the exquisite mechanism of systole and diastole and triggering arrhythmias. The interplay between weakened and strong segments in nonuniform cardiac muscle may further lead to mechanoelectric feedback-or reverse excitation contraction coupling (RECC) mediating an early diastolic Ca(2+) transient caused by the rapid force decrease during the relaxation phase. These rapid force changes in nonuniform muscle may cause arrhythmogenic Ca(2+) waves to propagate by activation of neighbouring SR by diffusing Ca(2+) ions.
Collapse
|
43
|
Stretch increases the force by decreasing cross-bridge weakening rate in the rat cardiac trabeculae. J Mol Cell Cardiol 2010; 49:962-71. [DOI: 10.1016/j.yjmcc.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022]
|
44
|
Ford SJ, Chandra M, Mamidi R, Dong W, Campbell KB. Model representation of the nonlinear step response in cardiac muscle. ACTA ACUST UNITED AC 2010; 136:159-77. [PMID: 20660660 PMCID: PMC2912065 DOI: 10.1085/jgp.201010467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motivated by the need for an analytical tool that can be used routinely to analyze data collected from isolated, detergent-skinned cardiac muscle fibers, we developed a mathematical model for representing the force response to step changes in muscle length (i.e., quick stretch and release). Our proposed model is reasonably simple, consisting of only five parameters representing: (1) the rate constant by which length change–induced distortion of elastic elements is dissipated; (2) the stiffness of the muscle fiber; (3) the amplitude of length-mediated recruitment of stiffness elements; (4) the rate constant by which this length-mediated recruitment takes place; and (5) the magnitude of the nonlinear interaction term by which distortion of elastic elements affects the number of recruited stiffness elements. Fitting this model to a family of force recordings representing responses to eight amplitudes of step length change (±2.0% baseline muscle length in 0.5% increments) enabled four things: (1) reproduction of all the identifiable features seen in a family of force responses to both positive and negative length changes; (2) close fitting of all records from the whole family of these responses with very little residual error; (3) estimation of all five model parameters with a great degree of certainty; and (4) importantly, ready discrimination between cardiac muscle fibers with different contractile regulatory proteins but showing only subtly different contractile function. We recommend this mathematical model as an analytic tool for routine use in studies of cardiac muscle fiber contractile function. Such model-based analysis gives novel insight to the contractile behavior of cardiac muscle fibers, and it is useful for characterizing the mechanistic effects that alterations of cardiac contractile proteins have on cardiac contractile function.
Collapse
Affiliation(s)
- Steven J Ford
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
45
|
Chen Y, Somji A, Yu X, Stelzer JE. Altered in vivo left ventricular torsion and principal strains in hypothyroid rats. Am J Physiol Heart Circ Physiol 2010; 299:H1577-87. [PMID: 20729398 DOI: 10.1152/ajpheart.00406.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twisting and untwisting motions of the left ventricle (LV) lead to efficient ejection of blood during systole and filling of the ventricle during diastole. Global LV mechanical performance is dependent on the contractile properties of cardiac myocytes; however, it is not known how changes in contractile protein expression affect the pattern and timing of LV rotation. At the myofilament level, contractile performance is largely dependent on the isoforms of myosin heavy chain (MHC) that are expressed. Therefore, in this study, we used MRI to examine the in vivo mechanical consequences of altered MHC isoform expression by comparing the contractile properties of hypothyroid rats, which expressed only the slow β-MHC isoform, and euthyroid rats, which predominantly expressed the fast α-MHC isoform. Unloaded shortening velocity (V(o)) and apparent rate constants of force development (k(tr)) were measured in the skinned ventricular myocardium isolated from euthyroid and hypothyroid hearts. Increased expression of β-MHC reduced LV torsion and fiber strain and delayed the development of peak torsion and strain during systole. Depressed in vivo mechanical performance in hypothyroid rats was related to slowed cross-bridge performance, as indicated by significantly slower V(o) and k(tr), compared with euthyroid rats. Dobutamine infusion in hypothyroid hearts produced smaller increases in torsion and strain and aberrant transmural torsion patterns, suggesting that the myocardial response to β-adrenergic stress is compromised. Thus, increased expression of β-MHC alters the pattern and decreases the magnitude of LV rotation, contributing to reduced mechanical performance during systole, especially in conditions of increased workload.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
46
|
Campbell KS. Distorting the sarcomere. J Gen Physiol 2010; 136:155-7. [PMID: 20660659 PMCID: PMC2912064 DOI: 10.1085/jgp.201010497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
47
|
Cho EJ, Caracciolo G, Khandheria BK, Steidley DE, Scott R, Abhayaratna WP, Chandrasekaran K, Sengupta PP. Tissue Doppler image-derived measurements during isovolumic contraction predict exercise capacity in patients with reduced left ventricular ejection fraction. JACC Cardiovasc Imaging 2010; 3:1-9. [PMID: 20129524 DOI: 10.1016/j.jcmg.2009.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We explored the incremental value of quantification of tissue Doppler (TD) velocity during the brief isovolumic contraction (IVC) phase of the cardiac cycle for the prediction of exercise performance in patients referred for cardiopulmonary exercise testing (CPET). BACKGROUND Experimental studies have shown that rapid left ventricular (LV) shape change during IVC is essential for optimal onset of LV ejection. However, the incremental value of measuring IVC velocities in clinical settings remains unclear. METHODS A total of 82 subjects (age 53+/-14 years, 56 men) were studied with echocardiography and CPET. Reduced LV ejection fraction (EF) (EF<50%) was present in 38 (46%) subjects. Pulsed-wave annular TD velocities were averaged from the LV lateral and septal annulus during isovolumic contraction (IVCa), ejection, isovolumic relaxation, and early and late diastole (Aa) and compared with peak oxygen consumption (VO2) and percentage of the predicted peak VO2 (% predicted peak VO2) obtained from CPET. RESULTS Patients with reduced EF had lower IVCa (6.3 vs. 4.5 cm/s, p=0.04), ejection (7.7 vs. 5.5 cm/s, p<0.001), and Aa velocities (7.9 vs. 6.6 cm/s, p=0.04). Similarly, % predicted peak VO2 was lower in patients with reduced EF (52.9% vs. 73.1%, p<0.001) and correlated with the variations in IVCa (r=0.7, p=0.001). Multivariate analysis of 2-dimensional and Doppler variables in the presence of reduced LV EF revealed only IVCa and Aa as independent predictors of % predicted peak VO2 (r2=0.612, p=0.02 for IVCa and p=0.009 for Aa). The overall performance of IVCa in the prediction of exercise capacity was good (area under the curve=0.86, p<0.001). CONCLUSIONS Assessment of TD-derived IVC and atrial stretch velocities provide independent prediction of exercise capacity in patients with reduced LV EF. Assessment of LV pre-ejectional stretch and shortening mechanics at rest may be useful for determining the myocardial functional reserve of patients with reduced EF.
Collapse
Affiliation(s)
- Eun Joo Cho
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Myofilament length dependent activation. J Mol Cell Cardiol 2010; 48:851-8. [PMID: 20053351 DOI: 10.1016/j.yjmcc.2009.12.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 01/04/2023]
Abstract
The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca(2+) ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the "Frank-Starling law of the heart" constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.
Collapse
|
49
|
Qualitatively different cross-bridge attachments in fast and slow muscle fiber types. Biochem Biophys Res Commun 2009; 385:44-8. [DOI: 10.1016/j.bbrc.2009.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
|
50
|
Stelzer JE, Norman HS, Chen PP, Patel JR, Moss RL. Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle. J Physiol 2008; 586:5203-14. [PMID: 18787035 DOI: 10.1113/jphysiol.2008.160390] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have shown that the sequence and timing of mechanical activation of myocardium vary across the ventricular wall. However, the contributions of variable expression of myofilament protein isoforms in mediating the timing of myocardial activation in ventricular systole are not well understood. To assess the functional consequences of transmural differences in myofilament protein expression, we studied the dynamic mechanical properties of multicellular skinned preparations isolated from the sub-endocardial and sub-epicardial regions of the porcine ventricular midwall. Compared to endocardial fibres, epicardial fibres exhibited significantly faster rates of stretch activation and force redevelopment (k(tr)), although the amount of force produced at a given [Ca2+] was not significantly different. Consistent with these results, SDS-PAGE analysis revealed significantly elevated expression of alpha myosin heavy chain (MHC) isoform in epicardial fibres (13 +/- 1%) versus endocardial fibres (3 +/- 1%). Linear regression analysis revealed that the apparent rates of delayed force development and force decay following stretch correlated with MHC isoform expression (r2 = 0.80 and r2 = 0.73, respectively, P < 0.05). No differences in the relative abundance or phosphorylation status of other myofilament proteins were detected. These data show that transmural differences in MHC isoform expression contribute to regional differences in dynamic mechanical function of porcine left ventricles, which in turn modulate the timing of force generation across the ventricular wall and work production during systole.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 601 Science Drive, Madison, WI 53711, USA.
| | | | | | | | | |
Collapse
|