1
|
Manville RW, Foglia L, Yoshimura RF, Hogenkamp DJ, Nguyen A, Yu A, Abbott GW. A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1. Proc Natl Acad Sci U S A 2025; 122:e2411816122. [PMID: 39793113 PMCID: PMC11745346 DOI: 10.1073/pnas.2411816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 01/30/2025] Open
Abstract
Loss-of-function sequence variants in KCNA1, which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.1 channel function, current therapeutic strategies for KCNA1-linked disorders involve indirect modulation of neuronal excitability. Native Americans have traditionally used conifer extracts to treat paralysis, weakness, and pain, all of which may involve altered electrical activity and/or Kv1.1 dysfunction specifically. Here, screening conifer extracts, we found that Chamaecyparis pisifera increases wild-type (WT) Kv1.1 activity, as does its prominent metabolite, the abietane diterpenoid pisiferic acid. Uniquely, pisiferic acid also restored function in 12/12 EA1-linked mutant Kv1.1 channels tested in vitro. Crucially, pisiferic acid (1 mg/kg) restored WT function in Kv1.1E283K/+ mice, a model of human EA1. Experimentally validated all-atom molecular dynamics simulations in a neuron-like membrane revealed that the Kv1.1 voltage-sensing domain (VSD) also acts as a ligand-binding domain akin to those of classic ligand-gated channels; binding of pisiferic acid induces a conformational shift in the VSD that ligand-dependently opens the pore. Conifer metabolite pisiferic acid is a promising and versatile therapeutic lead for EA1 and other Kv1.1-linked disorders.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Lorenzo Foglia
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Ryan F. Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Derk J. Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Amy Nguyen
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Alvin Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA92697
| |
Collapse
|
2
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Servettini I, Talani G, Megaro A, Setzu MD, Biggio F, Briffa M, Guglielmi L, Savalli N, Binda F, Delicata F, Bru–Mercier G, Vassallo N, Maglione V, Cauchi RJ, Di Pardo A, Collu M, Imbrici P, Catacuzzeno L, D’Adamo MC, Olcese R, Pessia M. An activator of voltage-gated K + channels Kv1.1 as a therapeutic candidate for episodic ataxia type 1. Proc Natl Acad Sci U S A 2023; 120:e2207978120. [PMID: 37487086 PMCID: PMC10401004 DOI: 10.1073/pnas.2207978120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.
Collapse
Affiliation(s)
- Ilenio Servettini
- Section of Physiology, Department of Medicine, University of Perugia, Perugia06123, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato09042, Italy
| | - Alfredo Megaro
- Section of Physiology, Department of Medicine, University of Perugia, Perugia06123, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato09042, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato09042, Italy
| | - Michelle Briffa
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
| | - Luca Guglielmi
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Nicoletta Savalli
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Francesca Binda
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1011, Switzerland
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, StrasbourgF-67000, France
| | - Francis Delicata
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0T5, Canada
| | - Gilles Bru–Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain17666, United Arab Emirates
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
| | - Vittorio Maglione
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli86077, Italy
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
| | - Alba Di Pardo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli86077, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato09042, Italy
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari ‘‘Aldo Moro”, 70125Bari, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia06123, Italy
| | - Maria Cristina D’Adamo
- Department of Medicine and Surgery, Libera Università Mediterranea ‘‘Giuseppe DEGENNARO”, Casamassima 70010, Italy
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MsidaMSD2080, Malta
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain17666, United Arab Emirates
| |
Collapse
|
4
|
Jackson A, Banka S, Stewart H, Robinson H, Lovell S, Clayton-Smith J. Recurrent KCNT2 missense variants affecting p.Arg190 result in a recognizable phenotype. Am J Med Genet A 2021; 185:3083-3091. [PMID: 34061450 DOI: 10.1002/ajmg.a.62370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
KCNT2 variants resulting in substitutions affecting the Arg190 residue have been shown to cause epileptic encephalopathy and a recognizable facial gestalt. We report two additional individuals with intellectual disability, dysmorphic features, hypertrichosis, macrocephaly and the same de novo KCNT2 missense variants affecting the Arg190 residue as previously described. Notably, neither patient has epilepsy. Homology modeling of these missense variants revealed that they are likely to disrupt the stabilization of a closed channel conformation of KCNT2 resulting in a constitutively open state. This is the first report of pathogenic variants in KCNT2 causing a developmental phenotype without epilepsy.
Collapse
Affiliation(s)
- Adam Jackson
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Helen Stewart
- Department of Clinical Genetics, Oxford Centre for Genomic Medicine, Oxford Radcliffe Hospitals NHS Trust, Nuffield Orthopaedic Hospital, Oxford, UK
| | -
- Genomics England, London, UK
| | - Hannah Robinson
- Department of Peninsula Clinical Genetics, Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Simon Lovell
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| |
Collapse
|
5
|
Ambrosino P, Soldovieri MV, Bast T, Turnpenny PD, Uhrig S, Biskup S, Döcker M, Fleck T, Mosca I, Manocchio L, Iraci N, Taglialatela M, Lemke JR. De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy. Ann Neurol 2019; 83:1198-1204. [PMID: 29740868 DOI: 10.1002/ana.25248] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
Variants in several potassium channel genes have been found in developmental and epileptic encephalopathies (DEE). We report on 2 females with de novo variants in KCNT2 with West syndrome followed by Lennox-Gastaut syndrome or with DEE with migrating focal seizures. After in vitro analysis suggested quinidine-responsive gain-of-function effects, we treated 1 of the girls with quinidine add-on therapy and achieved marked clinical improvements. This suggests that the new spectrum of KCNT2-related disorders do not only share similar phenotypic and in vitro functional and pharmacological features with previously known KCNT1-related disorders, but also represents a further example for possible precision medicine approaches. Ann Neurol 2018;83:1198-1204.
Collapse
Affiliation(s)
- Paolo Ambrosino
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Thomas Bast
- Epilepsy Center Kork, Kehl, Germany.,Faculty of Medicine of the University of Freiburg, Freiburg, Germany
| | - Peter D Turnpenny
- Clinical Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Sabine Uhrig
- Institute of Clinical Genetics, Klinikum Stuttgart, Stuttgart, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Miriam Döcker
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Thilo Fleck
- University Heart Center Freiburg-Bad Krozingen, Department of Congenital Heart Disease and Pediatric Cardiology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ilaria Mosca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| |
Collapse
|
6
|
Gururaj S, Palmer EE, Sheehan GD, Kandula T, Macintosh R, Ying K, Morris P, Tao J, Dias KR, Zhu Y, Dinger ME, Cowley MJ, Kirk EP, Roscioli T, Sachdev R, Duffey ME, Bye A, Bhattacharjee A. A De Novo Mutation in the Sodium-Activated Potassium Channel KCNT2 Alters Ion Selectivity and Causes Epileptic Encephalopathy. Cell Rep 2018; 21:926-933. [PMID: 29069600 DOI: 10.1016/j.celrep.2017.09.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Early infantile epileptic encephalopathies (EOEE) are a debilitating spectrum of disorders associated with cognitive impairments. We present a clinical report of a KCNT2 mutation in an EOEE patient. The de novo heterozygous variant Phe240Leu SLICK was identified by exome sequencing and confirmed by Sanger sequencing. Phe240Leu rSlick and hSLICK channels were electrophysiologically, heterologously characterized to reveal three significant alterations to channel function. First, [Cl-]i sensitivity was reversed in Phe240Leu channels. Second, predominantly K+-selective WT channels were made to favor Na+ over K+ by Phe240Leu. Third, and consequent to altered ion selectivity, Phe240Leu channels had larger inward conductance. Further, rSlick channels induced membrane hyperexcitability when expressed in primary neurons, resembling the cellular seizure phenotype. Taken together, our results confirm that Phe240Leu is a "change-of-function" KCNT2 mutation, demonstrating unusual altered selectivity in KNa channels. These findings establish pathogenicity of the Phe240Leu KCNT2 mutation in the reported EOEE patient.
Collapse
Affiliation(s)
- Sushmitha Gururaj
- Pharmacology and Toxicology, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA
| | - Elizabeth Emma Palmer
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia; Genetics of Learning Disability Service, Waratah, NSW 2298, Australia
| | - Garrett D Sheehan
- Pharmacology and Toxicology, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA
| | - Tejaswi Kandula
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia
| | | | - Kevin Ying
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Paula Morris
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Jiang Tao
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Kerith-Rae Dias
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Ying Zhu
- Genetics of Learning Disability Service, Waratah, NSW 2298, Australia; SEALS Pathology, Randwick, NSW 2031, Australia
| | - Marcel E Dinger
- University of New South Wales, Sydney, NSW 2031, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Mark J Cowley
- University of New South Wales, Sydney, NSW 2031, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia; SEALS Pathology, Randwick, NSW 2031, Australia
| | - Tony Roscioli
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia; SEALS Pathology, Randwick, NSW 2031, Australia
| | - Rani Sachdev
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia
| | - Michael E Duffey
- Physiology and Biophysics, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA
| | - Ann Bye
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia
| | - Arin Bhattacharjee
- Pharmacology and Toxicology, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA; Program for Neuroscience, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Tomasello DL, Hurley E, Wrabetz L, Bhattacharjee A. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. J Exp Neurosci 2017; 11:1179069517726996. [PMID: 28943756 PMCID: PMC5602212 DOI: 10.1177/1179069517726996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023] Open
Abstract
The Slick (Kcnt2) sodium-activated potassium (KNa) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.
Collapse
Affiliation(s)
- Danielle L Tomasello
- Neuroscience Program, The State University of New York - University at Buffalo, Buffalo, NY, USA
| | - Edward Hurley
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York - University at Buffalo, Buffalo, NY, USA
| | - Lawrence Wrabetz
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York - University at Buffalo, Buffalo, NY, USA
| | - Arin Bhattacharjee
- Neuroscience Program, The State University of New York - University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York - University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
9
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
10
|
Giese MH, Gardner A, Hansen A, Sanguinetti MC. Molecular mechanisms of Slo2 K + channel closure. J Physiol 2016; 595:2321-2336. [PMID: 27682982 DOI: 10.1113/jp273225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Intracellular Na+ -activated Slo2 potassium channels are in a closed state under normal physiological conditions, although their mechanisms of ion permeation gating are not well understood. A cryo-electron microscopy structure of Slo2.2 suggests that the ion permeation pathway of these channels is closed by a single constriction of the inner pore formed by the criss-crossing of the cytoplasmic ends of the S6 segments (the S6 bundle crossing) at a conserved Met residue. Functional characterization of mutant Slo2 channels suggests that hydrophobic interactions between Leu residues in the upper region of the S6 segments contribute to stabilizing the inner pore in a non-conducting state. Mutation of the conserved Met residues in the S6 segments to the negatively-charged Glu did not induce constitutive opening of Slo2.1 or Slo2.2, suggesting that ion permeation of Slo2 channels is not predominantly gated by the S6 bundle crossing. ABSTRACT Large conductance K+ -selective Slo2 channels are in a closed state unless activated by elevated [Na+ ]i . Our previous studies suggested that the pore helix/selectivity filter serves as the activation gate in Slo2 channels. In the present study, we evaluated two other potential mechanisms for stabilization of Slo2 channels in a closed state: (1) dewetting and collapse of the inner pore (hydrophobic gating) and (2) constriction of the inner pore by tight criss-crossing of the cytoplasmic ends of the S6 α-helical segments. Slo2 channels contain two conserved Leu residues in each of the four S6 segments that line the inner pore region nearest the bottom of the selectivity filter. To evaluate the potential role of these residues in hydrophobic gating, Leu267 and Leu270 in human Slo2.1 were each replaced by 15 different residues. The relative conductance of mutant channels was highly dependent on hydrophilicity and volume of the amino acid substituted for Leu267 and was maximal with L267H. Consistent with their combined role in hydrophobic gating, replacement of both Leu residues with the isosteric but polar residue Asn (L267N/L270N) stabilized channels in a fully open state. In a recent cryo-electron microscopy structure of chicken Slo2.2, the ion permeation pathway of the channel is closed by a constriction of the inner pore formed by criss-crossing of the S6 segments at a conserved Met. Inconsistent with the S6 segment crossing forming the activation gate, replacement of the homologous Met residues in human Slo2.1 or Slo2.2 with the negatively-charged Glu did not induce constitutive channel opening.
Collapse
Affiliation(s)
- M Hunter Giese
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Alison Gardner
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Angela Hansen
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research & Training Institute.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Suzuki T, Hansen A, Sanguinetti MC. Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:783-92. [PMID: 26724206 DOI: 10.1016/j.bbamem.2015.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Under normal physiological conditions, Slo2.1K(+) channels are in a closed state unless activated by an elevation in [Na(+)]i. Fenamates such as niflumic acid also activate Slo2.1. Previous studies suggest that activation of Slo2.1 channels is mediated by a conformational change in the selectivity filter, and not a widening of the aperture formed by the S6 segment bundle crossing as occurs in voltage-gated K(+) channels. It is unclear how binding of Na(+) or fenamates is allosterically linked to opening of the presumed selectivity filter activation gate in Slo2.1. Here we examined the role of the S5 transmembrane segment in the activation of Slo2.1. Channels were heterologously expressed in Xenopus laevis oocytes and whole cell currents measured with the voltage-clamp technique. Ala substitution of five residues located on a single face of the S5 α-helical segment induced constitutive channel activity. Leu-209, predicted to face towards Phe-240 in the pore helix was investigated by further mutagenesis. Mutation of Leu-209 to Glu or Gln induced maximal channel activation as did the combined mutation to Ala of all three hydrophobic S5 residues predicted to be adjacent to Phe-240. Together these results suggest that hydrophobic interactions between residues in S5 and the C-terminal end of the pore helix stabilize Slo2.1 channels in a closed state.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Angela Hansen
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Nature 2015; 527:198-203. [PMID: 26436452 PMCID: PMC4886347 DOI: 10.1038/nature14958] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022]
Abstract
Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism.
Collapse
|
13
|
Thomson SJ, Hansen A, Sanguinetti MC. Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels. J Biol Chem 2015; 290:14528-35. [PMID: 25903137 DOI: 10.1074/jbc.m115.653089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 01/14/2023] Open
Abstract
Slo2 potassium channels have a very low open probability under normal physiological conditions, but are readily activated in response to an elevated [Na(+)]i (e.g. during ischemia). An intracellular Na(+) coordination motif (DX(R/K)XXH) was previously identified in Kir3.2, Kir3.4, Kir5.1, and Slo2.2 channel subunits. Based loosely on this sequence, we identified five potential Na(+) coordination motifs in the C terminus of the Slo2.1 subunit. The Asp residue in each sequence was substituted with Arg, and single mutant channels were heterologously expressed in Xenopus oocytes. The Na(+) sensitivity of each of the mutant channels was assessed by voltage clamp of oocytes using micropipettes filled with 2 M NaCl. Wild-type channels and four of the mutant Slo2.1 channels were rapidly activated by leakage of NaCl solution into the cytoplasm. D757R Slo2.1 channels were not activated by NaCl, but were activated by the fenamate niflumic acid, confirming their functional expression. In whole cell voltage clamp recordings of HEK293 cells, wild-type but not D757R Slo2.1 channels were activated by a [NaCl]i of 70 mM. Thus, a single Asp residue can account for the sensitivity of Slo2.1 channels to intracellular Na(+). In excised inside-out macropatches of HEK293 cells, activation of wild-type Slo2.1 currents by 3 mM niflumic acid was 14-fold greater than activation achieved by increasing [NaCl]i from 3 to 100 mM. Thus, relative to fenamates, intracellular Na(+) is a poor activator of Slo2.1.
Collapse
Affiliation(s)
- Steven J Thomson
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute and
| | - Angela Hansen
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute and
| | - Michael C Sanguinetti
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute and Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
14
|
Abstract
Under normal physiological conditions, the open probability of Slo2.1 K(+) channels is low. Elevation of cytosolic [Na(+)] and [Cl(-)] caused by ischemia or rapid electrical pacing of cells increases the open probability of Slo2.1 channels and the resulting outward current can stabilize the resting state of cells. Initial characterization of heterologously expressed human Slo2.1 indicated that these channels were inhibited by physiological levels of intracellular ATP. However, a subsequent study found that intracellular ATP had no effect on Slo2.1 channels. Here, we re-examine the effects of intracellular ATP on cloned human Slo2.1 channels heterologously expressed in Xenopus oocytes. Our studies provide both direct and indirect evidence that changes in intracellular [ATP] have no effect on Slo2.1 channels. First, we directly examined the effects of intracellular ATP on Slo2.1 channel activity in excised inside-out macropatches from Xenopus oocytes. Application of 5 mmol/L ATP to the intracellular solution did not inhibit Slo2.1 currents activated by niflumic acid. Second, we lowered the [ATP]i in whole oocytes using the metabolic inhibitor NaN3. Depletion of [ATP]i in oocytes by 3 mmol/L NaN3 rapidly activated heterologously expressed KATP channels, but did not increase wild-type Slo2.1 channel currents activated by niflumic acid or currents conducted by constitutively active mutant (E275D) Slo2.1 channels. Third, mutation of a conserved residue in the ATP binding consensus site in the C-terminal domain of the channel did not enhance the magnitude of Slo2.1 current as expected if binding to this site inhibited channel function. We conclude that Slo2.1 channels are not inhibited by intracellular ATP.
Collapse
Affiliation(s)
- Priyanka Garg
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, Utah, USA Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, Utah, USA Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Garg P, Gardner A, Garg V, Sanguinetti MC. Structural basis of ion permeation gating in Slo2.1 K+ channels. ACTA ACUST UNITED AC 2014; 142:523-42. [PMID: 24166878 PMCID: PMC3813382 DOI: 10.1085/jgp.201311064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The activation gate of ion channels controls the transmembrane flux of permeant ions. In voltage-gated K+ channels, the aperture formed by the S6 bundle crossing can widen to open or narrow to close the ion permeation pathway, whereas the selectivity filter gates ion flux in cyclic-nucleotide gated (CNG) and Slo1 channels. Here we explore the structural basis of the activation gate for Slo2.1, a weakly voltage-dependent K+ channel that is activated by intracellular Na+ and Cl−. Slo2.1 channels were heterologously expressed in Xenopus laevis oocytes and activated by elevated [NaCl]i or extracellular application of niflumic acid. In contrast to other voltage-gated channels, Slo2.1 was blocked by verapamil in an activation-independent manner, implying that the S6 bundle crossing does not gate the access of verapamil to its central cavity binding site. The structural basis of Slo2.1 activation was probed by Ala scanning mutagenesis of the S6 segment and by mutation of selected residues in the pore helix and S5 segment. Mutation to Ala of three S6 residues caused reduced trafficking of channels to the cell surface and partial (K256A, I263A, Q273A) or complete loss (E275A) of channel function. P271A Slo2.1 channels trafficked normally, but were nonfunctional. Further mutagenesis and intragenic rescue by second site mutations suggest that Pro271 and Glu275 maintain the inner pore in an open configuration by preventing formation of a tight S6 bundle crossing. Mutation of several residues in S6 and S5 predicted by homology modeling to contact residues in the pore helix induced a gain of channel function. Substitution of the pore helix residue Phe240 with polar residues induced constitutive channel activation. Together these findings suggest that (1) the selectivity filter and not the bundle crossing gates ion permeation and (2) dynamic coupling between the pore helix and the S5 and S6 segments mediates Slo2.1 channel activation.
Collapse
Affiliation(s)
- Priyanka Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 2 Department of Pharmaceutics and Pharmaceutical Chemistry, and 3 Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | | | | | | |
Collapse
|
16
|
Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. [PMID: 23962792 PMCID: PMC4042478 DOI: 10.4161/chan.26100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
17
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|
18
|
de Los Angeles Tejada M, Stolpe K, Meinild AK, Klaerke DA. Clofilium inhibits Slick and Slack potassium channels. Biologics 2012; 6:465-70. [PMID: 23271893 PMCID: PMC3526865 DOI: 10.2147/btt.s33827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na+ and Cl−, and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.
Collapse
Affiliation(s)
- Maria de Los Angeles Tejada
- Department of Physiology and Biochemistry, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
19
|
Garg P, Sanguinetti MC. Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol Pharmacol 2012; 82:795-802. [PMID: 22851714 PMCID: PMC3477229 DOI: 10.1124/mol.112.079194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022] Open
Abstract
Niflumic acid, 2-{[3-(trifluoromethyl)phenyl]amino}pyridine-3-carboxylic acid (NFA), a nonsteroidal anti-inflammatory drug that blocks cyclooxygenase (COX), was shown previously to activate [Na(+)](i)-regulated Slo2.1 channels. In this study, we report that other fenamates, including flufenamic acid, mefenamic acid, tolfenamic acid, meclofenamic acid, and a phenyl acetic acid derivative, diclofenac, also are low-potency (EC(50) = 80 μM to 2.1 mM), partial agonists of human Slo2.1 channels heterologously expressed in Xenopus oocytes. Substituent analysis determined that N-phenylanthranilic acid was the minimal pharmacophore for fenamate activation of Slo2.1 channels. The effects of fenamates were biphasic, with an initial rapid activation phase followed by a slow phase of current inhibition. Ibuprofen, a structurally dissimilar COX inhibitor, did not activate Slo2.1. Preincubation of oocytes with ibuprofen did not significantly alter the effects of NFA, suggesting that neither channel activation nor inhibition is associated with COX activity. A point mutation (A278R) in the pore-lining S6 segment of Slo2.1 increased the sensitivity to activation and reduced the inhibition induced by NFA. Together, our results suggest that fenamates bind to two sites on Slo2.1 channels: an extracellular accessible site to activate and a cytoplasmic accessible site in the pore to inhibit currents.
Collapse
Affiliation(s)
- Priyanka Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Department of Physiology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
20
|
Gwanyanya A, Macianskiene R, Mubagwa K. Insights into the effects of diclofenac and other non-steroidal anti-inflammatory agents on ion channels. ACTA ACUST UNITED AC 2012; 64:1359-75. [PMID: 22943167 DOI: 10.1111/j.2042-7158.2012.01479.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Diclofenac and other non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of inflammation and pain. Most effects of NSAIDs are attributed to the inhibition of cyclooxygenases (COX). However, many NSAIDs may have other effects not related to COX, including the modulation of various ion channels. The clinical implications of the effects on channels are not fully understood. This review outlines the effects of NSAIDs, with special attention to diclofenac, on ion channels and highlights the possible underlying mechanisms. KEY FINDINGS NSAIDs have effects on channels such as inhibition, activation or changes in expression patterns. The channels affected include voltage-gated Na(+) , Ca(2+) , or K(+) channels, ligand-gated K(+) channels, transient receptor potential and other cation channels as well as chloride channels in several types of cells. The mechanisms of drug actions not related to COX inhibition may involve drug-channel interactions, interference with the generation of second messengers, changes in channel expression, or synergistic/antagonist interactions with other channel modulators. SUMMARY The effects on ion channels may account for novel therapeutic actions of NSAIDs or for adverse effects. Among the NSAIDs, diclofenac may serve as a template for developing new channel modulators and as a tool for investigating the actions of other drugs.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
21
|
Wiemuth D, Gründer S. The pharmacological profile of brain liver intestine Na+ channel: inhibition by diarylamidines and activation by fenamates. Mol Pharmacol 2011; 80:911-9. [PMID: 21828194 DOI: 10.1124/mol.111.073726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The brain liver intestine Na(+) channel (BLINaC) is a member of the degenerin/epithelial Na(+) channel gene family of unknown function. Elucidation of the physiological function of BLINaC would benefit greatly from pharmacological tools that specifically affect BLINaC activity. Guided by the close molecular relation of BLINaC to acid-sensing ion channels, we discovered in this study that rat BLINaC (rBLINaC) and mouse BLINaC are inhibited by micromolar concentrations of diarylamidines and nafamostat, similar to acid-sensing ion channels. Inhibition was voltage-dependent, suggesting pore block as the mechanism of inhibition. Furthermore, we identified the fenamate flufenamic acid and related compounds as agonists of rBLINaC. Application of millimolar concentrations of flufenamic acid to rBLINaC induced a robust, Na(+)-selective current, which was blocked partially by amiloride. The identification of an artificial agonist of rBLINaC supports the hypothesis that rBLINaC is opened by an unknown physiological ligand. Inhibition by diarylamidines and activation by fenamates define a unique pharmacological profile for BLINaC, which will be useful to unravel the physiological function of this ion channel.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Department of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | |
Collapse
|
22
|
Antinociceptive and anti-inflammatory activities of nicotinamide and its isomers in different experimental models. Pharmacol Biochem Behav 2011; 99:782-8. [DOI: 10.1016/j.pbb.2011.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/31/2022]
|