1
|
Oken AC, Lisi NE, Krishnamurthy I, McCarthy AE, Godsey MH, Glasfeld A, Mansoor SE. High-affinity agonism at the P2X 7 receptor is mediated by three residues outside the orthosteric pocket. Nat Commun 2024; 15:6662. [PMID: 39107314 PMCID: PMC11303814 DOI: 10.1038/s41467-024-50771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
P2X receptors are trimeric ATP-gated ion channels that activate diverse signaling cascades. Due to its role in apoptotic pathways, selective activation of P2X7 is a potential experimental tool and therapeutic approach in cancer biology. However, mechanisms of high-affinity P2X7 activation have not been defined. We report high-resolution cryo-EM structures of wild-type rat P2X7 bound to the high-affinity agonist BzATP as well as significantly improved apo receptor structures in the presence and absence of sodium. Apo structures define molecular details of pore architecture and reveal how a partially hydrated Na+ ion interacts with the conductance pathway in the closed state. Structural, electrophysiological, and direct binding data of BzATP reveal that three residues just outside the orthosteric ATP-binding site are responsible for its high-affinity agonism. This work provides insights into high-affinity agonism for any P2X receptor and lays the groundwork for development of subtype-specific agonists applicable to cancer therapeutics.
Collapse
Affiliation(s)
- Adam C Oken
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nicolas E Lisi
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ipsita Krishnamurthy
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alanna E McCarthy
- Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Michael H Godsey
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Arthur Glasfeld
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Steven E Mansoor
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
3
|
Li W, He H, Du M, Gao M, Sun Q, Wang Y, Lu H, Ou S, Xia C, Xu C, Zhao Q, Sun H. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway. Phytother Res 2024; 38:1990-2006. [PMID: 38372204 DOI: 10.1002/ptr.8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1β. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1β. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1β. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1β-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hebei He
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Min Du
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Mu Gao
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qijie Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yeyang Wang
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hanyu Lu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuanji Ou
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changliang Xia
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongtao Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
5
|
Zorina-Lichtenwalter K, Ase AR, Verma V, Parra AIM, Komarova S, Khadra A, Séguéla P, Diatchenko L. Characterization of Common Genetic Variants in P2RX7 and Their Contribution to Chronic Pain Conditions. THE JOURNAL OF PAIN 2024; 25:545-556. [PMID: 37742908 DOI: 10.1016/j.jpain.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The adenosine triphosphate (ATP)-gated channel P2X7 is encoded by a gene enriched for common nonsynonymous variants. Many of these variants have functional cellular effects, and some have been implicated in chronic pain. In this study, we first systematically characterized all 17 common nonsynonymous variants using whole-cell patch clamp electrophysiology. Then, we analyzed these variants for statistical association with chronic pain phenotypes using both individual P2RX7 variants as predictors and cumulative allele counts of same-direction cellular effect in univariate models. Association and validation analyses were conducted in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) cohort (N = 3260) and in the Complex Persistent Pain Conditions (CPPC) cohort (N = 900), respectively. Our results showed an association between allele A of rs7958311 and an increased risk of chronic pelvic pain, with convergent evidence for contribution to fibromyalgia and irritable bowel syndrome, confirmed in a meta-analysis. This allelic variant produced a unique cellular phenotype: a gain-of-function in channel opening, and a loss-of-function in pore opening. A computational study using a 12-state Markov model of ATP binding to the P2X7 receptor suggested that this cellular phenotype arises from an increased ATP binding affinity and an increased open channel conductance combined with a loss of sensitization. Cumulative allele count analysis did not provide additional insights. In conclusion, our results go beyond reproducing association for rs7958311 with chronic pain and suggest that its unique combination of gain-of-function in channel and loss-of-function in pore activity may explain why it is likely the only common P2RX7 variant with contribution to chronic pain. PERSPECTIVE: This study characterizes all common P2RX7 variants using cellular assays and statistical association analyses with chronic pain, with Markov state modeling of the most robustly associated variant.
Collapse
Affiliation(s)
- Katerina Zorina-Lichtenwalter
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Ariel R Ase
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Vivek Verma
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arturo I M Parra
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Svetlana Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Huang L, Mut-Arbona P, Varga B, Török B, Brunner J, Arszovszki A, Iring A, Kisfali M, Vizi ES, Sperlágh B. P2X7 purinergic receptor modulates dentate gyrus excitatory neurotransmission and alleviates schizophrenia-like symptoms in mouse. iScience 2023; 26:107560. [PMID: 37649698 PMCID: PMC10462828 DOI: 10.1016/j.isci.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
ATP-gated P2X7 receptors (P2X7Rs) play a crucial role in brain disorders. However, how they affect normal and pathological synaptic transmission is still largely unclear. Here, by using whole-cell patch-clamp technique to record AMPA- and NMDA receptor-mediated excitatory postsynaptic currents (s/mEPSCs) in dentate gyrus granule cells (DG GCs), we revealed a modulation by P2X7Rs of presynaptic sites, especially originated from entorhinal cortex (EC)-GC path but not the mossy cell (MC)-GC path. The involvement of P2X7Rs was confirmed using a pharmacological approach. Additionally, the acute activation of P2X7Rs directly elevated calcium influx from EC-GC terminals. In postnatal phencyclidine (PCP)-induced mouse model of schizophrenia, we observed that P2X7R deficiency restored the EC-GC synapse alteration and alleviated PCP-induced symptoms. To summarize, P2X7Rs participate in the modulation of GC excitatory neurotransmission in the DG via EC-GC pathway, contributing to pathological alterations of neuronal functions leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiana Török
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Antonia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - E. Sylvester Vizi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Al-Aqtash R, Ross MS, Collier DM. Extracellular histone proteins activate P2XR7 channel current. J Gen Physiol 2023; 155:e202213317. [PMID: 37199689 PMCID: PMC10200710 DOI: 10.1085/jgp.202213317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Extracellular histone proteins are elevated in circulation after injury or activation of the innate immune response. In resistance-size arteries, extracellular histone proteins increased endothelial cell (EC) Ca2+ influx and propidium iodide (PI) labeling, but paradoxically decreased vasodilation. These observations could be explained by the activation of an EC resident non-selective cation channel. We tested the hypothesis that the ionotropic purinergic receptor 7 (P2XR7), a non-selective cation channel associated with cationic dye uptake, is activated by histone proteins. We expressed mouse P2XR7 (C57BL/6J variant 451L) in heterologous cells and measured inward cation current using two-electrode voltage clamp (TEVC). Cells expressing mouse P2XR7 had robust ATP- and histone-evoked inward cation currents. ATP- and histone-evoked currents reversed approximately at the same potential. Current decay with agonist removal was slower for histone-evoked than ATP- or BzATP-evoked currents. As with ATP-evoked P2XR7 currents, histone-evoked currents were inhibited by non-selective P2XR7 antagonists (Suramin, PPADS, and TNP-ATP). Selective P2XR7 antagonists, AZ10606120, A438079, GW791343, and AZ11645373, inhibited ATP-evoked P2XR7 currents but did not inhibit histone-evoked P2XR7 currents. As previously reported with ATP-evoked currents, histone-evoked P2XR7 currents were also increased in conditions of low extracellular Ca2+. These data demonstrate that P2XR7 is necessary and sufficient for histone-evoked inward cation currents in a heterologous expression system. These results provide insight into a new allosteric mechanism of P2XR7 activation by histone proteins.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| | - Maxwell S. Ross
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| |
Collapse
|
8
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Zhang JR, Yin SY, Shen ZQ, Li B, Zhang YQ, Yu J. Bullatine A has an antidepressant effect in chronic social defeat stress mice; Implication of microglial inflammasome. Brain Res Bull 2023; 195:130-140. [PMID: 36828203 DOI: 10.1016/j.brainresbull.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Inflammatory microglia and P2X7R are involved in the development of stress-induced depression. Endoplasmic reticulum (ER) stress and mitochondrial damage play an important role in depression and microglial activation. Bullatine A (BLA) has anti-inflammatory and anti-rheumatic effects, and can be used as a P2X7R antagonist. We found that Bullatine A can effectively inhibit the calcium overload of mitochondria and the increase of ER and mitochondrial colocalization caused by eATP (extracellular ATP) in BV2-cells. Bullatine A can also inhibit the activation of PERK-elF-2α unfolded protein response (UPR), lysosome production and the increase of NLRP3 inflammasome protein expression in BV2-cells Both intragastric administration and intra-hippocampal microinjection of Bullatine A can significantly improve the despair behavior but not anhedonia of Chronic chronic social defeat stress (CSDS) mice. Bullatine A may have a beneficial therapeutic effect in treating diseases related to stress stimulation, such as depression.
Collapse
Affiliation(s)
- Jia-Rui Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Yin
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zu-Qi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Yu-Qiu Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Scarpellino G, Genova T, Quarta E, Distasi C, Dionisi M, Fiorio Pla A, Munaron L. P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium. Cancers (Basel) 2022; 14:2743. [PMID: 35681724 PMCID: PMC9179260 DOI: 10.3390/cancers14112743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 µM), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Tullio Genova
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Elisa Quarta
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Carla Distasi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (C.D.); (M.D.)
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (C.D.); (M.D.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Luca Munaron
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| |
Collapse
|
11
|
Liang X, Janks L, Egan TM. Using Whole-Cell Electrophysiology and Patch-Clamp Photometry to Characterize P2X7 Receptor Currents. Methods Mol Biol 2022; 2510:217-237. [PMID: 35776327 DOI: 10.1007/978-1-0716-2384-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental property of P2X7 receptor (P2X7R) channels is the transport of cations across the cell surface membrane. Electrophysiology and patch-clamp photometry are readily accessible methods of measuring this flux in a wide range of cell types. They are important tools used to characterize the functional properties of native cells studied in cell culture, in vitro tissue slices, and, in some cases, in situ single cells. Further, they are efficient methods of probing the relation of structure to function of recombinant receptors expressed in heterologous systems. Here, we provide step-by-step procedures for use of two standard recording protocols, broken-patch and perforated-patch voltage clamp. Further, we describe a third technique, called the dye-overload method, that uses simultaneous measurement of membrane current and fura-2 fluorescence to quantify the contribution of Ca2+ flux to the ATP-gated current.
Collapse
Affiliation(s)
- Xin Liang
- The China-America Cancer Research Institute, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, P. R. China
| | - Laura Janks
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
- Checkpoint Immunology, Immunology and Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terrance M Egan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Mikolajewicz N, Smith D, Komarova SV, Khadra A. High-affinity P2Y2 and low-affinity P2X7 receptor interaction modulates ATP-mediated calcium signaling in murine osteoblasts. PLoS Comput Biol 2021; 17:e1008872. [PMID: 34153025 PMCID: PMC8248741 DOI: 10.1371/journal.pcbi.1008872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/01/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The P2 purinergic receptor family implicated in many physiological processes, including neurotransmission, mechanical adaptation and inflammation, consists of ATP-gated non-specific cation channels P2XRs and G-protein coupled receptors P2YRs. Different cells, including bone forming osteoblasts, express multiple P2 receptors; however, how P2X and P2Y receptors interact in generating cellular responses to various doses of [ATP] remains poorly understood. Using primary bone marrow and compact bone derived osteoblasts and BMP2-expressing C2C12 osteoblastic cells, we demonstrated conserved features in the P2-mediated Ca2+ responses to ATP, including a transition of Ca2+ response signatures from transient at low [ATP] to oscillatory at moderate [ATP], and back to transient at high [ATP], and a non-monotonic changes in the response magnitudes which exhibited two troughs at 10-4 and 10-2 M [ATP]. We identified P2Y2 and P2X7 receptors as predominantly contributing to these responses and constructed a mathematical model of P2Y2R-induced inositol trisphosphate (IP3) mediated Ca2+ release coupled to a Markov model of P2X7R dynamics to study this system. Model predictions were validated using parental and CRISPR/Cas9-generated P2Y2 and P2Y7 knockouts in osteoblastic C2C12-BMP cells. Activation of P2Y2 by progressively increasing [ATP] induced a transition from transient to oscillatory to transient Ca2+ responses due to the biphasic nature of IP3Rs and the interaction of SERCA pumps with IP3Rs. At high [ATP], activation of P2X7R modulated the response magnitudes through an interplay between the biphasic nature of IP3Rs and the desensitization kinetics of P2X7Rs. Moreover, we found that P2Y2 activity may alter the kinetics of P2X7 towards favouring naïve state activation. Finally, we demonstrated the functional consequences of lacking P2Y2 or P2X7 in osteoblast mechanotransduction. This study thus provides important insights into the biophysical mechanisms underlying ATP-dependent Ca2+ response signatures, which are important in mediating bone mechanoadaptation.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Canada
- Shriners Hospitals for Children–Canada, Montreal, Canada
| | - Delaney Smith
- Department of Physiology, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Faculty of Dentistry, McGill University, Montreal, Canada
- Shriners Hospitals for Children–Canada, Montreal, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
13
|
BDNF Participates in Chronic Constriction Injury-Induced Neuropathic Pain via Transcriptionally Activating P2X 7 in Primary Sensory Neurons. Mol Neurobiol 2021; 58:4226-4236. [PMID: 33963520 DOI: 10.1007/s12035-021-02410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Neuropathic pain, resulting from the pathological changes of the somatosensory nervous system, remains a severe public health problem worldwide. The effect of treatment targeting neuropathic pain is very limited, as the underlying mechanism of neuropathic pain is largely unknown. In this study, we demonstrated that the expression level of brain-derived neurotrophic factor (BDNF) was remarkably and time-dependently increased in dorsal root ganglion (DRG) neurons. DRG microinjection of BDNF siRNA in DRG ameliorated chronic constriction injury (CCI) induced mechanical, thermal, and cold nociceptive hypersensitivities. Overexpressing BDNF through microinjection of the AAV5-BDNF in DRG caused enhanced responses to basal mechanical, thermal, and cold stimuli in mice exposed to CCI. Mechanically, the P2X7 promoter activity was enhanced by CCI-induced increase of DRG BDNF protein and was involved in the CCI-induced upregulation of DRG P2X7 protein. The overexpression of BDNF also increased P2X7 expression in DRG neurons, which was validated in in vivo and in vitro experiments. BDNF may exert crucial effect via transcriptionally activating the P2X7 gene in primary sensory neurons, since P2X7 acts as a role of endogenous agitator in neuropathic pain and BDNF largely co-expresses with P2X7 in DRG neurons. Therefore, our data provide evidence that BDNF may be a promising therapeutic target for neuropathic pain.
Collapse
|
14
|
Functional P2X 7 Receptors in the Auditory Nerve of Hearing Rodents Localize Exclusively to Peripheral Glia. J Neurosci 2021; 41:2615-2629. [PMID: 33563723 DOI: 10.1523/jneurosci.2240-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 11/21/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are associated with numerous pathophysiological mechanisms, and this promotes them as therapeutic targets for certain neurodegenerative conditions. However, the identity of P2X7R-expressing cells in the nervous system remains contentious. Here, we examined P2X7R functionality in auditory nerve cells from rodents of either sex, and determined their functional and anatomic expression pattern. In whole-cell recordings from rat spiral ganglion cultures, the purinergic agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) activated desensitizing currents in spiral ganglion neurons (SGNs) but non-desensitizing currents in glia that were blocked by P2X7R-specific antagonists. In imaging experiments, BzATP gated sustained Ca2+ entry into glial cells. BzATP-gated uptake of the fluorescent dye YO-PRO-1 was reduced and slowed by P2X7R-specific antagonists. In rats, P2X7Rs were immuno-localized predominantly within satellite glial cells (SGCs) and Schwann cells (SCs). P2X7R expression was not detected in the portion of the auditory nerve within the central nervous system. Mouse models allowed further exploration of the distribution of cochlear P2X7Rs. In GENSAT reporter mice, EGFP expression driven via the P2rx7 promoter was evident in SGCs and SCs but was undetectable in SGNs. A second transgenic model showed a comparable cellular distribution of EGFP-tagged P2X7Rs. In wild-type mice the discrete glial expression was confirmed using a P2X7-specific nanobody construct. Our study shows that P2X7Rs are expressed by peripheral glial cells, rather than by afferent neurons. Description of functional signatures and cellular distributions of these enigmatic proteins in the peripheral nervous system (PNS) will help our understanding of ATP-dependent effects contributing to hearing loss and other sensory neuropathies.SIGNIFICANCE STATEMENT P2X7 receptors (P2X7Rs) have been the subject of much scrutiny in recent years. They have been promoted as therapeutic targets in a number of diseases of the nervous system, yet the specific cellular location of these receptors remains the subject of intense debate. In the auditory nerve, connecting the inner ear to the brainstem, we show these multimodal ATP-gated channels localize exclusively to peripheral glial cells rather than the sensory neurons, and are not evident in central glia. Physiologic responses in the peripheral glia display classical hallmarks of P2X7R activation, including the formation of ion-permeable and also macromolecule-permeable pores. These qualities suggest these proteins could contribute to glial-mediated inflammatory processes in the auditory periphery under pathologic disease states.
Collapse
|
15
|
Zhang Y, Wang K, Yu Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J Med Chem 2020; 63:15258-15278. [PMID: 33253554 DOI: 10.1021/acs.jmedchem.0c01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ion channels have been characterized as promising drug targets for treatment of numerous human diseases. Functions of ion channels can be fine-tuned by allosteric modulators, which interact with channels and modulate their activities by binding to sites spatially discrete from those of orthosteric ligands. Positive and negative allosteric modulators have presented a plethora of potential therapeutic advantages over traditionally orthosteric agonists and antagonists in terms of selectivity and safety. This thematic review highlights the discovery of representative allosteric modulators for ligand-gated and voltage-gated ion channels, discussing in particular their identifications, locations, and therapeutic uses in the treatment of a range of channelopathies. Additionally, structures and functions of selected ion channels are briefly described to aid in the rational design of channel modulators. Overall, allosteric modulation represents an innovative targeting approach, and the corresponding modulators provide an abundant but challenging landscape for novel therapeutics targeting ligand-gated and voltage-gated ion channels.
Collapse
Affiliation(s)
- Yanyun Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
16
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
17
|
Sivcev S, Slavikova B, Rupert M, Ivetic M, Nekardova M, Kudova E, Zemkova H. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating. J Neurochem 2019; 150:28-43. [PMID: 31069814 DOI: 10.1111/jnc.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
P2X receptors (P2XRs) are ATP-gated cationic channels that are allosterically modulated by numerous compounds, including steroids and neurosteroids. These compounds may both inhibit and potentiate the activity of P2XRs, but sex steroids such as 17β-estradiol or progesterone are reported to be inactive. Here, we tested a hypothesis that testosterone, another sex hormone, modulates activity of P2XRs. We examined actions of native testosterone and a series of testosterone derivatives on the gating of recombinant P2X2R, P2X4R and P2X7R and native channels expressed in pituitary cells and hypothalamic neurons. The 17β-ester derivatives of testosterone rapidly and positively modulate the 1 µM ATP-evoked currents in P2X2R- and P2X4R-expressing cells, but not agonist-evoked currents in P2X7R-expressing cells. In general, most of the tested testosterone derivatives are more potent modulators than endogenous testosterone. The comparison of chemical structures and whole-cell recordings revealed that their interactions with P2XRs depend on the lipophilicity and length of the alkyl chain at position C-17. Pre-treatment with testosterone butyrate or valerate increases the sensitivity of P2X2R and P2X4R to ATP by several fold, reduces the rate of P2X4R desensitization, accelerates resensitization, and enhances ethidium uptake by P2X4R. Native channels are also potentiated by testosterone derivatives, while endogenously expressed GABA receptors type A are inhibited. The effect of ivermectin, a P2X4R-specific allosteric modulator, on deactivation is antagonized by testosterone derivatives in a concentration-dependent manner. Together, our results provide evidence for potentiation of particular subtypes of P2XRs by testosterone derivatives and suggest a potential role of ivermectin binding site for steroid-induced modulation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marian Rupert
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Nekardova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Khan MT, Liu J, Nerlich J, Tang Y, Franke H, Illes P. Regulation of P2X7 receptor function of neural progenitor cells in the hippocampal subgranular zone by neuronal activity in the dentate gyrus. Neuropharmacology 2018; 140:139-149. [PMID: 30092245 DOI: 10.1016/j.neuropharm.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
P2X7 receptors (Rs) mediate apoptosis/necrosis in neuronal and non-neuronal systems. Patch-clamp recordings from dentate gyrus (DG) granule cells in acutely prepared hippocampal slices of mice showed that incubation with 4-aminopyridine (4-AP) causes an excitability increase. This led to an enhanced sensitivity of P2X7Rs of the underlying subgranular zone neural progenitor cells (NPCs) towards dibenzoyl-ATP (Bz-ATP). The glutamatergic agonists NMDA and AMPA, as well as the purinergic agonist ATP also increased the Bz-ATP-induced current amplitudes (IBzATP). Tetrodotoxin as well as the standard antiepileptic drugs phenytoin, valproic acid and gabapentin counteracted the effect of 4-AP, most likely by decreasing the firing rate and/or action potential duration of DG granule cells and in consequence the release of ATP/glutamate onto NPCs. Experiments with organotypic hippocampal slice cultures confirmed these results also under conditions when 4-AP was applied for longer time periods and at much lower concentrations than used in acute slices. It was concluded that pathological firing modelled by 4-AP might trigger a sensitivity increase of P2X7Rs leading to necrosis/apoptosis of NPCs with the subsequent decrease of NPC, and in consequence, granule cell number. Hence, supersensitive P2X7Rs may exert a beneficial counter-regulatory effect by reducing the chances for the evolution of chronic temporal lobe epilepsy by ectopically located granule cells.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany
| | - Juan Liu
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of TCM, 610075, Chengdu, China
| | - Jana Nerlich
- Carl-Ludwig-Institut für Physiologie, Universität Leipzig, 04103, Leipzig, Germany
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, 610075, Chengdu, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of TCM, 610075, Chengdu, China.
| |
Collapse
|
19
|
Diezmos EF, Markus I, Perera DS, Gan S, Zhang L, Sandow SL, Bertrand PP, Liu L. Blockade of Pannexin-1 Channels and Purinergic P2X7 Receptors Shows Protective Effects Against Cytokines-Induced Colitis of Human Colonic Mucosa. Front Pharmacol 2018; 9:865. [PMID: 30127744 PMCID: PMC6087744 DOI: 10.3389/fphar.2018.00865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction: The pannexin-1 (Panx1) channels are found in many cell types, and ATP released from these channels can act on nearby cells activating purinergic P2X7 receptors (P2X7R) which lead to inflammation. Although Panx1 and P2X7R are implicated in the process of inflammation and cell death, few studies have looked at the role they play in inflammatory bowel disease in human. Hence, the aim of the present study was to investigate the function of Panx1 and P2X7R in an ex vivo colitis model developed from human colonic mucosal explants. Materials and Methods: Healthy human colonic mucosal strips (4 × 10 mm) were incubated in carbogenated culture medium at 37°C for 16 h. Proinflammatory cytokines TNFα and IL-1β (each 10 ng/mL) were used to induce colitis in mucosal strips, and the effects of Panx1 and P2X7R on cytokines-induced tissue damage were determined in the presence of the Panx1 channel blocker 10Panx1 (100 μM) and P2X7R antagonist A438079 (100 μM). The effects of 10Panx1 and A438079 on cytokines-enhanced epithelial permeability were also studied using Caco-2 cells. Results: Histological staining showed that the mucosal strips had severe structural damage in the cytokines-only group but not in the incubation-control group (P < 0.01). Compared to the cytokines-only group, crypt damage was significantly decreased in groups receiving cytokines with inhibitors (10Panx1, A438079, or 10Panx1 + A438079, P < 0.05). The immunoreactive signals of tight junction protein zonula occludens-1 (ZO-1) were abundant in all control tissues but were significantly disrupted and lost in the cytokines-only group (P < 0.01). The diminished ZO-1 immunoreactivity induced by cytokines was prevented in the presence of 10Panx1 (P = 0.04). Likewise, 10Panx1 significantly attenuated the cytokines-evoked increase in paracellular permeability of Caco-2 cells. Although the inhibition of P2X7R activity by A438079 diminished cytokines-induced crypt damage, its effect on the maintenance of ZO-1 immunoreactivity and Caco-2 epithelial cell integrity was less evident. Conclusion: The blockade of Panx1 and P2X7R reduced the inflammatory cytokines-induced crypt damage, loss of tight junctions and increase in cell permeability. Thus, Panx1 and P2X7R may have roles in causing mucosal damage, a common clinical feature of inflammatory bowel disease.
Collapse
Affiliation(s)
- Erica F Diezmos
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Irit Markus
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - D S Perera
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Steven Gan
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shaun L Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Inflammation and Healing Cluster, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul P Bertrand
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Kovács G, Környei Z, Tóth K, Baranyi M, Brunner J, Neubrandt M, Dénes Á, Sperlágh B. Modulation of P2X7 purinergic receptor activity by extracellular Zn 2+ in cultured mouse hippocampal astroglia. Cell Calcium 2018; 75:1-13. [PMID: 30098501 DOI: 10.1016/j.ceca.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 02/06/2023]
Abstract
The P2X7R protein, a P2 type purinergic receptor functioning as a non-selective cation channel, is expressed in different cell types of the central nervous system in several regions of the brain. The activation of the P2X7R protein by ATP modulates excitatory neurotransmission and contributes to microglial activation, apoptosis and neuron-glia communication. Zinc is an essential micronutrient that is highly concentrated in the synaptic vesicles of glutamatergic hippocampal neurons where free zinc ions released into the synaptic cleft alter glutamatergic signal transmission. Changes in both P2X7R-mediated signaling and brain zinc homeostasis have been implicated in the pathogenesis of mood disorders. Here, we tested the hypothesis that extracellular zinc regulates P2X7R activity in the hippocampus. We observed that P2X7R is expressed in both neurons and glial cells in primary mouse hippocampal neuron-glia culture. Propidium iodide (PI) uptake through large pores formed by pannexins and P2X7R was dose-dependently inhibited by extracellular zinc ions. Calcium influx mediated by P2X7R in glial cells was also reduced by free zinc ions. Interestingly, no calcium influx was detected in response to ATP or 3'-O-(4-Benzoyl) benzoyl ATP (BzATP) in neurons despite the expression of P2X7R at the plasma membrane. Our results show that free zinc ions can modulate hippocampal glial purinergic signaling, and changes in the activity of P2X7R may contribute to the development of depression-like behaviors associated with zinc deficiency.
Collapse
Affiliation(s)
- Gergely Kovács
- Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary; Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Ifjúság útja 20, Pécs, Hungary.
| | - Zsuzsanna Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, Budapest, HU-1083 Hungary
| | - Krisztina Tóth
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, Budapest, HU-1083 Hungary
| | - Mária Baranyi
- Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| | - Máté Neubrandt
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, Budapest, HU-1083 Hungary
| | - Beáta Sperlágh
- Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| |
Collapse
|
21
|
Rozmer K, Gao P, Araújo MGL, Khan MT, Liu J, Rong W, Tang Y, Franke H, Krügel U, Fernandes MJS, Illes P. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus. Cereb Cortex 2018; 27:3568-3585. [PMID: 27341850 DOI: 10.1093/cercor/bhw178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits.
Collapse
Affiliation(s)
- Katalin Rozmer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Po Gao
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.,Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Michelle G L Araújo
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia da Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Muhammad Tahir Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Juan Liu
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.,Acupuncture and Tuina School, Chengdu University of TCM, 610075 Chengdu, China
| | - Weifang Rong
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, 610075 Chengdu, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Maria José S Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia da Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
22
|
Rokic MB, Castro P, Leiva-Salcedo E, Tomic M, Stojilkovic SS, Coddou C. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel. Int J Mol Sci 2018; 19:ijms19041161. [PMID: 29641486 PMCID: PMC5979340 DOI: 10.3390/ijms19041161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
P2X2 receptors (P2X2R) exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.
Collapse
Affiliation(s)
- Milos B Rokic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
- Laboratory of Developmental Physiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile.
| | - Elias Leiva-Salcedo
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Centro para el Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Santiago 9170022, Chile.
| | - Melanija Tomic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Claudio Coddou
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
| |
Collapse
|
23
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
24
|
Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation. Acta Biomater 2017; 57:462-471. [PMID: 28528118 DOI: 10.1016/j.actbio.2017.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Interaction of host blood with biomaterials is the first event occurring after implantation in a bone defect. This study aimed at investigating the cellular and molecular consequences arising at the interface between whole blood and biphasic calcium phosphate (BCP) particles. We observed that, due to calcium capture, BCP inhibited blood coagulation, and that this inhibition was reversed by calcium supplementation. Therefore, we studied the impact of calcium supplementation on BCP effects on blood cells. Comparative analysis of BCP and calcium supplemented-BCP (BCP/Ca) effects on blood cells showed that BCP as well as BCP/Ca induced monocyte proliferation, as well as a weak but significant hemolysis. Our data showed for the first time that calcium supplementation of BCP microparticles had anti-inflammatory properties compared to BCP alone that induced an inflammatory response in blood cells. Our results strongly suggest that the anti-inflammatory property of calcium supplemented-BCP results from its down-modulating effect on P2X7R gene expression and its capacity to inhibit ATP/P2X7R interactions, decreasing the NLRP3 inflammasome activation. Considering that monocytes have a vast regenerative potential, and since the excessive inflammation often observed after bone substitutes implantation limits their performance, our results might have great implications in terms of understanding the mechanisms leading to an efficient bone reconstruction. STATEMENT OF SIGNIFICANCE Although scaffolds and biomaterials unavoidably come into direct contact with blood during bone defect filling, whole blood-biomaterials interactions have been poorly explored. By studying in 3D the interactions between biphasic calcium phosphate (BCP) in microparticulate form and blood, we showed for the first time that calcium supplementation of BCP microparticles (BCP/Ca) has anti-inflammatory properties compared to BCP-induced inflammation in whole blood cells and provided information related to the molecular mechanisms involved. The present study also showed that BCP, as well as BCP/Ca particles stimulate monocyte proliferation. As monocytes represent a powerful target for regenerative therapies and as an excessive inflammation limits the performance of biomaterials in bone tissue engineering, our results might have great implications to improve bone reconstruction.
Collapse
|
25
|
Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models. PLoS Comput Biol 2017; 13:e1005643. [PMID: 28708827 PMCID: PMC5533465 DOI: 10.1371/journal.pcbi.1005643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/28/2017] [Accepted: 06/22/2017] [Indexed: 12/02/2022] Open
Abstract
The P2X4 receptor (P2X4R) is a member of a family of purinergic channels activated by extracellular ATP through three orthosteric binding sites and allosterically regulated by ivermectin (IVM), a broad-spectrum antiparasitic agent. Treatment with IVM increases the efficacy of ATP to activate P2X4R, slows both receptor desensitization during sustained ATP application and receptor deactivation after ATP washout, and makes the receptor pore permeable to NMDG+, a large organic cation. Previously, we developed a Markov model based on the presence of one IVM binding site, which described some effects of IVM on rat P2X4R. Here we present two novel models, both with three IVM binding sites. The simpler one-layer model can reproduce many of the observed time series of evoked currents, but does not capture well the short time scales of activation, desensitization, and deactivation. A more complex two-layer model can reproduce the transient changes in desensitization observed upon IVM application, the significant increase in ATP-induced current amplitudes at low IVM concentrations, and the modest increase in the unitary conductance. In addition, the two-layer model suggests that this receptor can exist in a deeply inactivated state, not responsive to ATP, and that its desensitization rate can be altered by each of the three IVM binding sites. In summary, this study provides a detailed analysis of P2X4R kinetics and elucidates the orthosteric and allosteric mechanisms regulating its channel gating. Ligand-gated ion channels play a crucial role in controlling many physiological and pathophysiological processes. Deciphering the gating kinetics of these channels is thus fundamental to understanding how these processes work. ATP-gated purinergic P2X receptors (P2XRs) are prototypic examples of such channels. They are ubiquitously expressed and play roles in numerous cellular processes, including neurotransmission, inflammation, and chronic pain. Seven P2X subunits, named P2X1 through P2X7, and several splice forms of these subunits have been identified in mammal. The receptors are organized as homo- or heterotrimers, each possessing three ATP-binding sites that, when occupied, lead to receptor activation and channel opening. The P2XRs are non-selective cation channels and the gating properties differ between the various receptors. Previously, we have used biophysical and mathematical modeling approaches to decipher the kinetics of homomeric P2X2aR, P2X2bR, P2X4R, and P2X7R. Here we extended our work on P2X4R gating. We developed two mathematical models that could capture the various patterns of ionic currents recorded experimentally and explain the particularly complex kinetics of the receptor during orthosteric activation and allosteric modulation. This was achieved by designing a computationally efficient, inference-based fitting algorithm that allowed for parameter optimization and model comparisons.
Collapse
|
26
|
Gao P, Ding X, Khan TM, Rong W, Franke H, Illes P. P2X7 receptor-sensitivity of astrocytes and neurons in the substantia gelatinosa of organotypic spinal cord slices of the mouse depends on the length of the culture period. Neuroscience 2017; 349:195-207. [PMID: 28237817 DOI: 10.1016/j.neuroscience.2017.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
The whole-cell patch-clamp technique was used to record current responses to AMPA, N-methyl-d-aspartate (NMDA), muscimol and dibenzoyl-ATP (Bz-ATP) in superficial (reactive/gliotic) substantia gelatinosa (SG) astrocytes and neurons of spinal cord slices kept for different periods of time in organotypic culture. Currents induced by AMPA, NMDA and muscimol confirmed the existence of their specific receptors in 2-week-old neurons; astrocytes cultured for the same period of time responded to AMPA and muscimol, but not to NMDA. AMPA had a larger effect on 2-week-old astrocytes than on the 1-week-old ones, in spite of a similar sensitivity of the age-matched neurons to this amino acid. The effect of the prototypic P2X7 receptor agonist Bz-ATP on superficial astrocytes and neurons depended on the drug concentration applied and increased in parallel with the lengthening of the culture period. The amplitudes of Bz-ATP currents of deep (resting) astrocytes were age-independent. Neurons located in deep layers exhibited after 1week of culturing much larger Bz-ATP currents than the superficial ones of the same age. In conclusion, whereas resting astrocytes had culture period-independent P2X7 receptor-sensitivity, reactive/gliotic astrocytes exhibited P2X7 receptor-sensitivity increasing in parallel with the prolongation of the time spent in culture. The results with Bz-ATP agree with the facilitation of AMPA-induced currents in reactive astrocytes during development, and with the hypothesis that extracellular ATP is an ontogenetically early transmitter/signaling molecule in the CNS.
Collapse
Affiliation(s)
- Po Gao
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Xiaowei Ding
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Tahir Muhammad Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Weifang Rong
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.
| |
Collapse
|
27
|
Shiozaki Y, Sato M, Kimura M, Sato T, Tazaki M, Shibukawa Y. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts. Front Physiol 2017; 8:3. [PMID: 28163685 PMCID: PMC5247440 DOI: 10.3389/fphys.2017.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022] Open
Abstract
ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury.
Collapse
Affiliation(s)
- Yuta Shiozaki
- Department of Physiology, Tokyo Dental CollegeTokyo, Japan; Department of Crown and Bridge Prosthodontics, Tokyo Dental CollegeTokyo, Japan
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College Tokyo, Japan
| | | | | |
Collapse
|
28
|
Fujiwara M, Ohbori K, Ohishi A, Nishida K, Uozumi Y, Nagasawa K. Species Difference in Sensitivity of Human and Mouse P2X7 Receptors to Inhibitory Effects of Divalent Metal Cations. Biol Pharm Bull 2017; 40:375-380. [DOI: 10.1248/bpb.b16-00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Makiko Fujiwara
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Kenshi Ohbori
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Akihiro Ohishi
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | | | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
29
|
The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2X 7 receptor in the dorsal root ganglia. Neurochem Int 2016; 103:24-35. [PMID: 28027922 DOI: 10.1016/j.neuint.2016.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 12/15/2016] [Indexed: 02/02/2023]
Abstract
The P2X7 receptor mediates afferent nerve activation and is related to chronic neuropathic pain. Resveratrol (RES) has also been reported to exhibit anti-inflammatory effects. In this study, we investigated the neuroprotective effect of RES on the transmission of neuropathic pain mediated by the P2X7 receptor. The P2X7 mRNA and protein expression levels in L4-L5 dorsal root ganglia (DRG)s of the chronic constriction injury (CCI) group were significantly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups. RES increased the threshold of thermal and mechanical hypersensitivity in rats with chronic neuropathic pain. The P2X7 mRNA and protein expression levels in the CCI + RES group were decreased compared with those in the CCI group. Our results showed that RES inhibited the upregulated co-expression of P2X7 and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in satellite glial cells of DRG in the CCI group. The results demonstrated that the expression of GFAP was increased in the CCI group and that RES inhibited the upregulated expression of GFAP in the rats in the CCI group. In addition, the phosphorylation levels of p38 and extracellular regulated protein kinases (ERK)1/2 in the CCI group were markedly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups, whereas the phosphorylation levels of p38 and ERK1/2 in CCI + RES group were markedly lower than those observed in the CCI group. RES inhibited BzATP-activated currents in DRG non-neurons in the CCI rats. Our data provide evidence that RES may suppress the transmission of neuropathic pain mediated by the P2X7 receptor in the satellite glial cells of dorsal root ganglia.
Collapse
|
30
|
Migita K, Ozaki T, Shimoyama S, Yamada J, Nikaido Y, Furukawa T, Shiba Y, Egan TM, Ueno S. HSP90 Regulation of P2X7 Receptor Function Requires an Intact Cytoplasmic C-Terminus. Mol Pharmacol 2016; 90:116-26. [PMID: 27301716 PMCID: PMC11037447 DOI: 10.1124/mol.115.102988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are ATP-gated ion channels that display the unusual property of current facilitation during long applications of agonists. Here we show that facilitation disappears in chimeric P2X7Rs containing the C-terminus of the P2X2 receptor (P2X2R), and in a truncated P2X7R missing the cysteine-rich domain of the C-terminus. The chimeric and truncated receptors also show an apparent decreased permeability to N-methyl-d-glucamine(+) (NMDG(+)). The effects of genetic modification of the C-terminus on NMDG(+) permeability were mimicked by preapplication of the HSP90 antagonist geldanamycin to the wild-type receptor. Further, the geldanamycin decreased the shift in the reversal potential of the ATP-gated current measured under bi-ionic NMDG(+)/Na(+) condition without affecting the ability of the long application of agonist to facilitate current amplitude. Taken together, the results suggest that HSP90 may be essential for stabilization and function of P2X7Rs through an action on the cysteine-rich domain of the cytoplasmic the C-terminus.
Collapse
Affiliation(s)
- Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Taku Ozaki
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Shuji Shimoyama
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Junko Yamada
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Yoshikazu Nikaido
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Tomonori Furukawa
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Yuko Shiba
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Terrance M Egan
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| | - Shinya Ueno
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Neurophysiology (T.O., S.S., Y.N., T.F., Y.S., S.U.) and Research Center for Child Mental Development (T.O., S.S., S.U.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan (J.Y.); and Department of Pharmacology and Physiology, and The Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.E.)
| |
Collapse
|
31
|
Plotkin LI, Laird DW, Amedee J. Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 2016; 17 Suppl 1:19. [PMID: 27230612 PMCID: PMC4896274 DOI: 10.1186/s12860-016-0088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush Veterans Administration Medical Center Indiana, Indianapolis, IN, 46202, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A-5C1, Canada
| | - Joelle Amedee
- INSERM U1026, Tissue Bioengineering, Université Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
32
|
Nörenberg W, Plötz T, Sobottka H, Chubanov V, Mittermeier L, Kalwa H, Aigner A, Schaefer M. TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells. J Gen Physiol 2016; 147:467-83. [PMID: 27185858 PMCID: PMC4886280 DOI: 10.1085/jgp.201611595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP activates receptors such as P2X ligand-gated ion channels, but it also chelates divalent cations. Nörenberg et al. find that experimental conditions designed to measure P2X7 activity also activate TRPM7 channels, by relieving inhibition by extracellular divalent cations, in HEK293 and rat C6 glioma cells. Within the ion channel–coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1–10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca2+ influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na+-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg2+ homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation.
Collapse
Affiliation(s)
- Wolfgang Nörenberg
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Tanja Plötz
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Helga Sobottka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Lorenz Mittermeier
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Hermann Kalwa
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Michael Schaefer
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| |
Collapse
|
33
|
Insights into the channel gating of P2X receptors from structures, dynamics and small molecules. Acta Pharmacol Sin 2016; 37:44-55. [PMID: 26725734 DOI: 10.1038/aps.2015.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022] Open
Abstract
P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na(+), K(+) and Ca(2+). Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors.
Collapse
|
34
|
Barros-Barbosa AR, Fonseca AL, Guerra-Gomes S, Ferreirinha F, Santos A, Rangel R, Lobo MG, Correia-de-Sá P, Cordeiro JM. Up-regulation of P2X7 receptor-mediated inhibition of GABA uptake by nerve terminals of the human epileptic neocortex. Epilepsia 2015; 57:99-110. [PMID: 26714441 DOI: 10.1111/epi.13263] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Thirty percent of patients with epilepsy are refractory to medication. The majority of these patients have mesial temporal lobe epilepsy (MTLE). This prompts for new pharmacologic targets, like ATP-mediated signaling pathways, since the extracellular levels of the nucleotide dramatically increase during in vitro epileptic seizures. In this study, we investigated whether sodium-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake by isolated nerve terminals of the human neocortex could be modulated by ATP acting via slow-desensitizing P2X7 receptor (P2X7R). METHODS Modulation of [(3) H]GABA and [(14) C]glutamate uptake by ATP, through activation of P2X7R, was investigated in isolated nerve terminals of the neocortex of cadaveric controls and patients with drug-resistant epilepsy (non-MTLE or MTLE) submitted to surgery. Tissue density and distribution of P2X7R in the human neocortex was assessed by Western blot analysis and immunofluorescence confocal microscopy. RESULTS The P2X7R agonist, 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-100 μm) decreased [(3) H]GABA and [(14) C]glutamate uptake by nerve terminals of the neocortex of controls and patients with epilepsy. The inhibitory effect of BzATP (100 μm) was prevented by the selective P2X7R antagonist, A-438079 (3 μm). Down-modulation of [(14) C]glutamate uptake by BzATP (100 μm) was roughly similar in controls and patients with epilepsy, but the P2X7R agonist inhibited more effectively [(3) H]GABA uptake in the epileptic tissue. Neocortical nerve terminals of patients with epilepsy express higher amounts of the P2X7R protein than control samples. SIGNIFICANCE High-frequency cortical activity during epileptic seizures releases huge amounts of ATP, which by acting on low-affinity slowly desensitizing ionotropic P2X7R, leads to down-modulation of neuronal GABA and glutamate uptake. Increased P2X7R expression in neocortical nerve terminals of patients with epilepsy may, under high-frequency firing, endure GABA signaling and increase GABAergic rundown, thereby unbalancing glutamatergic neuroexcitation. This study highlights the relevance of the ATP-sensitive P2X7R as an important negative modulator of GABA and glutamate transport and prompts for novel antiepileptic therapeutic targets.
Collapse
Affiliation(s)
- Aurora R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana L Fonseca
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sónia Guerra-Gomes
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Agostinho Santos
- Serviço de Patologia Forense, Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Norte (INMLCF-DN), Porto, Portugal
| | - Rui Rangel
- Serviço de Neurocirurgia, Centro Hospitalar do Porto - Hospital Geral de Santo António (CHP - HGSA), Porto, Portugal
| | - M Graça Lobo
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - J Miguel Cordeiro
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
35
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
36
|
Adamczyk M, Griffiths R, Dewitt S, Knäuper V, Aeschlimann D. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2. J Cell Sci 2015; 128:4615-28. [PMID: 26542019 PMCID: PMC4696497 DOI: 10.1242/jcs.175968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. Summary: Purinergic signaling regulates unconventional secretion of transglutaminase-2 (TG2) and explains the link between aberrant protein modifications and inflammatory responses in TG2-dependent autoimmunity.
Collapse
Affiliation(s)
- Magdalena Adamczyk
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Rhiannon Griffiths
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Sharon Dewitt
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Vera Knäuper
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Daniel Aeschlimann
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| |
Collapse
|
37
|
Emerging role of P2X7 receptors in CNS health and disease. Ageing Res Rev 2015; 24:328-42. [PMID: 26478005 DOI: 10.1016/j.arr.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Purinergic signalling in the brain is becoming an important focus in the study of CNS health and disease. Various purinergic receptors are found to be present in different brain cells in varying extent, which get activated upon binding of ATP or its analogues. Conventionally, ATP was considered only as a major metabolic fuel of the cell but its recognition as a neurotransmitter in early 1970s, brought meaningful insights in neuron glia crosstalk, participating in various physiological functions in the brain. P2X7R, a member of ligand gated purinergic receptor (P2X) family, is gaining attention in the field of neuroscience because of its emerging role in broad spectrum of ageing and age related neurological disorders. The aim of this review is to provide an overview about the structure and function of P2X7R highlighting its unique features which distinguish it from the other members of its family. This review critically analyzes the literature mentioning the details about the agonist and antagonist of the P2X7R. It also emphasizes the advancements in understanding the dual role of P2X7R in brain development and disorders inviting meaningful insights about its involvement in Alzheimer's disease, Huntington's disease, Multiple Sclerosis, Neuropathic pain, Spinal Cord Injury and NeuroAIDS. Exploring the roles of P2X7R in detail is critical to identify its therapeutic potential in the treatment of acute and chronic neurodegenerative diseases. Moreover, this review also helps to raise more interest in the neurobiology of the purinergic receptors and thus providing new avenues for future research.
Collapse
|
38
|
Barros-Barbosa AR, Lobo MG, Ferreirinha F, Correia-de-Sá P, Cordeiro JM. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes. Neuroscience 2015; 306:74-90. [PMID: 26299340 DOI: 10.1016/j.neuroscience.2015.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.
Collapse
Affiliation(s)
- A R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - M G Lobo
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| | - J M Cordeiro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
39
|
Fleischer W, Theiss S, Slotta J, Holland C, Schnitzler A. High-frequency voltage oscillations in cultured astrocytes. Physiol Rep 2015; 3:3/5/e12400. [PMID: 25969464 PMCID: PMC4463829 DOI: 10.14814/phy2.12400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP.
Collapse
Affiliation(s)
- Wiebke Fleischer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany RESULT Medical GmbH, Düsseldorf, Germany
| | - Johannes Slotta
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christine Holland
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
40
|
Coddou C, Yan Z, Stojilkovic SS. Role of domain calcium in purinergic P2X2 receptor channel desensitization. Am J Physiol Cell Physiol 2015; 308:C729-36. [PMID: 25673774 DOI: 10.1152/ajpcell.00399.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022]
Abstract
Activation of P2X2 receptor channels (P2X2Rs) is characterized by a rapid current growth accompanied by a decay of current during sustained ATP application, a phenomenon known as receptor desensitization. Using rat, mouse, and human receptors, we show here that two processes contribute to receptor desensitization: bath calcium-independent desensitization and calcium-dependent desensitization. Calcium-independent desensitization is minor and comparable during repetitive agonist application in cells expressing the full size of the receptor but is pronounced in cells expressing shorter versions of receptors, indicating a role of the COOH terminus in control of receptor desensitization. Calcium-dependent desensitization is substantial during initial agonist application and progressively increases during repetitive agonist application in bath ATP and calcium concentration-dependent manners. Experiments with substitution of bath Na(+) with N-methyl-d-glucamine (NMDG(+)), a large organic cation, indicate that receptor pore dilation is a calcium-independent process in contrast to receptor desensitization. A decrease in the driving force for calcium by changing the holding potential from -60 to +120 mV further indicates that calcium influx through the channel pores at least partially accounts for receptor desensitization. Experiments with various receptor chimeras also indicate that the transmembrane and/or intracellular domains of P2X2R are required for development of calcium-dependent desensitization and that a decrease in the amplitude of current slows receptor desensitization. Simultaneous calcium and current recording shows development of calcium-dependent desensitization without an increase in global intracellular calcium concentrations. Combined with experiments with clamping intrapipette concentrations of calcium at various levels, these experiments indicate that domain calcium is sufficient to establish calcium-dependent receptor desensitization in experiments with whole-cell recordings.
Collapse
Affiliation(s)
- Claudio Coddou
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Zonghe Yan
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Liang X, Samways DSK, Wolf K, Bowles EA, Richards JP, Bruno J, Dutertre S, DiPaolo RJ, Egan TM. Quantifying Ca2+ current and permeability in ATP-gated P2X7 receptors. J Biol Chem 2015; 290:7930-42. [PMID: 25645917 DOI: 10.1074/jbc.m114.627810] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-gated P2X7 receptors are prominently expressed in inflammatory cells and play a key role in the immune response. A major consequence of receptor activation is the regulated influx of Ca(2+) through the self-contained cation non-selective channel. Although the physiological importance of the resulting rise in intracellular Ca(2+) is universally acknowledged, the biophysics of the Ca(2+) flux responsible for the effects are poorly understood, largely because traditional methods of measuring Ca(2+) permeability are difficult to apply to P2X7 receptors. Here we use an alternative approach, called dye-overload patch-clamp photometry, to quantify the agonist-gated Ca(2+) flux of recombinant P2X7 receptors of dog, guinea pig, human, monkey, mouse, rat, and zebrafish. We find that the magnitude of the Ca(2+) component of the ATP-gated current depends on the species of origin, the splice variant, and the concentration of the purinergic agonist. We also measured a significant contribution of Ca(2+) to the agonist-gated current of the native P2X7Rs of mouse and human immune cells. Our results provide cross-species quantitative measures of the Ca(2+) current of the P2X7 receptor for the first time, and suggest that the cytoplasmic N terminus plays a meaningful role in regulating the flow of Ca(2+) through the channel.
Collapse
Affiliation(s)
- Xin Liang
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| | - Damien S K Samways
- the Department of Biology, Clarkson University, Potsdam, New York 13699, and
| | - Kyle Wolf
- the Departments of Molecular Microbiology and Immunology and
| | - Elizabeth A Bowles
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| | - Jennifer P Richards
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| | - Jonathan Bruno
- Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Sébastien Dutertre
- the Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier 2, CNRS, Montpellier, France
| | | | - Terrance M Egan
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| |
Collapse
|
42
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2015; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
43
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
44
|
Kaiser M, Sobottka H, Fischer W, Schaefer M, Nörenberg W. Tanshinone II A Sulfonate, but Not Tanshinone II A, Acts as Potent Negative Allosteric Modulator of the Human Purinergic Receptor P2X7. J Pharmacol Exp Ther 2014; 350:531-42. [DOI: 10.1124/jpet.114.214569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Cuadra AE, Custer EE, Bosworth EL, Lemos JR. P2X7 receptors in neurohypophysial terminals: evidence for their role in arginine-vasopressin secretion. J Cell Physiol 2014; 229:333-42. [PMID: 24037803 DOI: 10.1002/jcp.24453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Arginine-vasopressin (AVP) plays a major role in maintaining cardiovascular function and related pathologies. The mechanism involved in its release into the circulation is complex and highly regulated. Recent work has implicated the purinergic receptor, P2X7R, in a role for catecholamine-enhanced AVP release in the rat hypothalamic-neurohypophysial (NH) system. However, the site of P2X7R action in this endocrine system, and whether or not it directly mediates release in secretory neurons have not been determined. We hypothesized that the P2X7R is expressed and mediates AVP release in NH terminals. P2X7R function was first examined by patch-clamp recordings in isolated NH terminals. Results revealed that subpopulations of isolated terminals displayed either high ATP-sensitivity or low ATP-sensitivity, the latter of which was characteristic of the rat P2X7R. Additional recordings showed that terminals showing sensitivity to the P2X7R-selective agonist, BzATP, were further inhibited by P2X7R selective antagonists, AZ10606120 and brilliant blue-G. In confocal micrographs from tissue sections and isolated terminals of the NH P2X7R-immunoreactivity was found to be localized in plasma membranes. Lastly, the role of P2X7R on AVP release was tested. Our results showed that BzATP evoked sustained AVP release in NH terminals, which was inhibited by AZ10606120. Taken together, our data lead us to conclude that the P2X7R is expressed in NH terminals and corroborates its role in AVP secretion.
Collapse
Affiliation(s)
- Adolfo E Cuadra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | |
Collapse
|
46
|
Khadra A, Tomić M, Yan Z, Zemkova H, Sherman A, Stojilkovic SS. Dual gating mechanism and function of P2X7 receptor channels. Biophys J 2014; 104:2612-21. [PMID: 23790369 DOI: 10.1016/j.bpj.2013.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 01/29/2023] Open
Abstract
The ATP-gated P2X7 receptor channel (P2X7R) operates as a cytolytic and apoptotic receptor but also controls sustained cellular responses, including cell growth and proliferation. However, it has not been clarified how the same receptor mediates such opposing effects. To address this question, we have combined electrophysiological, imaging, and mathematical studies using wild-type and mutant rat P2X7Rs. Activation of naïve (not previously stimulated) receptors by low agonist concentrations caused monophasic slow desensitizing currents and internalization of receptors without other changes in the cellular morphology, much like other P2XRs. In contrast, saturating agonist concentrations induced high-amplitude biphasic currents, reflecting pore dilation and causing rapid cell swelling and lysis. The existence of these two signaling patterns was accounted for using a revised Markov-state model that included, in addition to naïve and sensitized states, desensitized states. Occupancy of one or two ATP-binding sites of naïve receptors favored a slow transition to desensitized states, whereas occupancy of the third binding site favored a transition to sensitized/dilated states. Consistent with model predictions, nondilating P2X7R mutants always generated desensitizing currents. These results suggest that the level of saturation of the ligand binding sites determines the nature of the P2X7R gating and cellular actions.
Collapse
Affiliation(s)
- Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
48
|
Rokic MB, Stojilkovic SS. Two open states of P2X receptor channels. Front Cell Neurosci 2013; 7:215. [PMID: 24312007 PMCID: PMC3834609 DOI: 10.3389/fncel.2013.00215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022] Open
Abstract
The occupancy of the orthosteric ligand binding sites of P2X receptor (P2XR) channels causes the rapid opening of a small cation-permeable pore, followed by a gradual dilation that renders the pore permeable to large organic cations. Electrophysiologically, this phenomenon was shown using whole-cell current recording on P2X2R-, P2X2/X5R-, P2X4R- and P2X7R-expressing cells that were bathed in N-methyl-D-glucamine (NMDG+)-containing buffers in the presence and/or absence of small monovalent and divalent cations. The pore dilation of P2X4R and P2X7R caused a secondary current growth, whereas that of P2X2R showed a sustained kinetic coupling of dilation and desensitization, leading to receptor channel closure. The pore size of the P2X7R open and dilated states was estimated to be approximately 0.85 nm and greater than 1 nm, respectively. The P2XR pore dilation was also observed in intact cells by measurement of fluorescent dye uptake/release, application of polyethylene glycols of different sizes, and atomic force microscopy. However, pore dilation was not observed at the single channel level. Structural data describing the dilated state are not available, and the relevance of orthosteric and allosteric ligand interactions to pore dilation was not studied.
Collapse
Affiliation(s)
- Milos B Rokic
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
49
|
Kong F, Liu S, Xu C, Liu J, Li G, Li G, Gao Y, Lin H, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S. Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury. Neurochem Int 2013; 63:230-7. [DOI: 10.1016/j.neuint.2013.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 06/02/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023]
|
50
|
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A 2013; 110:E3455-63. [PMID: 23959888 DOI: 10.1073/pnas.1308088110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Collapse
|