1
|
Hu J, Venturi E, Sigalas C, Murayama T, Nishi M, Takeshima H, Sitsapesan R. The biophysical properties of TRIC-A and TRIC-B and their interactions with RyR2. J Gen Physiol 2023; 155:e202113070. [PMID: 37756589 PMCID: PMC10522464 DOI: 10.1085/jgp.202113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Trimeric intracellular cation channels (TRIC-A and TRIC-B) are thought to provide counter-ion currents to enable charge equilibration across the sarco/endoplasmic reticulum (SR) and nuclear membranes. However, there is also evidence that TRIC-A may interact directly with ryanodine receptor type 1 (RyR1) and 2 (RyR2) to alter RyR channel gating. It is therefore possible that the reverse is also true, where the presence of RyR channels is necessary for fully functional TRIC channels. We therefore coexpressed mouse TRIC-A or TRIC-B with mouse RyR2 in HEK293 cells to examine if after incorporating membrane vesicles from these cells into bilayers, the presence of TRIC affects RyR2 function, and to characterize the permeability and gating properties of the TRIC channels. Importantly, we used no purification techniques or detergents to minimize damage to TRIC and RyR2 proteins. We found that both TRIC-A and TRIC-B altered the gating behavior of RyR2 and its response to cytosolic Ca2+ but that TRIC-A exhibited a greater ability to stimulate the opening of RyR2. Fusing membrane vesicles containing TRIC-A or TRIC-B into bilayers caused the appearance of rapidly gating current fluctuations of multiple amplitudes. The reversal potentials of bilayers fused with high numbers of vesicles containing TRIC-A or TRIC-B revealed both Cl- and K+ fluxes, suggesting that TRIC channels are relatively non-selective ion channels. Our results indicate that the physiological roles of TRIC-A and TRIC-B may include direct, complementary regulation of RyR2 gating in addition to the provision of counter-ion currents of both cations and anions.
Collapse
Affiliation(s)
- Jianshu Hu
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Miyuki Nishi
- Department of Biological Chemistry, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
2
|
Greene D, Luchko T, Shiferaw Y. The role of subunit cooperativity on ryanodine receptor 2 calcium signaling. Biophys J 2023; 122:215-229. [PMID: 36348625 PMCID: PMC9822801 DOI: 10.1016/j.bpj.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The ryanodine receptor type 2 (RyR2) is composed of four subunits that control calcium (Ca) release in cardiac cells. RyR2 serves primarily as a Ca sensor and can respond to rapid sub-millisecond pulses of Ca while remaining shut at resting concentrations. However, it is not known how the four subunits interact for the RyR2 to function as an effective Ca sensor. To address this question, and to understand the role of subunit cooperativity in Ca-mediated signal transduction, we have developed a computational model of the RyR2 composed of four interacting subunits. We first analyze the statistical properties of a single RyR2 tetramer, where each subunit can exist in a closed or open conformation. Our findings indicate that the number of subunits in the open state is a crucial parameter that dictates RyR2 kinetics. We find that three or four open subunits are required for the RyR2 to harness cooperative interactions to respond to sub-millisecond changes in Ca, while at the same time remaining shut at the resting Ca levels in the cardiac cell. If the required number of open subunits is lowered to one or two, the RyR2 cannot serve as a robust Ca sensor, as the large cooperativity required to stabilize the closed state prevents channel activation. Using this four-subunit model, we analyze the kinetics of Ca release from a RyR2 cluster. We show that the closure of a cluster of RyR2 channels is highly sensitive to the balance of cooperative interactions between closed and open subunits. Based on this result, we analyze how specific interactions between RyR2 subunits can induce persistent Ca leak from the sarcoplasmic reticulum (SR), which is believed to be arrhythmogenic. Thus, these results provide a framework to analyze how a pharmacologic or genetic modification of RyR2 subunit cooperativity can induce abnormal Ca cycling that can potentially lead to life-threatening arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics & Astronomy, California State University, Northridge
| | - Tyler Luchko
- Department of Physics & Astronomy, California State University, Northridge
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge.
| |
Collapse
|
3
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Greene D, Shiferaw Y. Mechanistic link between CaM-RyR2 interactions and the genesis of cardiac arrhythmia. Biophys J 2021; 120:1469-1482. [PMID: 33617831 DOI: 10.1016/j.bpj.2021.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, we develop a computational model of the interaction between ryanodine receptor type 2 (RyR2) and calmodulin (CaM) to explore the mechanistic link between CaM-RyR2 interactions and cardiac arrhythmia. Our starting point is a biophysically based computational model of CaM binding to a single RyR2 subunit, which reproduces single-channel RyR2 measurements in lipid bilayers. We then integrate this CaM-RyR2 model into a spatially distributed whole-cell model of Ca cycling, which is used to investigate the relationship between CaM and Ca cycling homeostasis. We show that a reduction in CaM concentration leads to a substantial increase in the rate of spontaneous Ca sparks, and this induces a marked reduction in sarcoplasmic reticulum Ca load during steady-state pacing. Also, we show that a reduction in CaM modifies the RyR2 open probability, which makes the cell more prone to Ca wave propagation. These results indicate that aberrant Ca cycling activity during pacing is determined by the interplay between sarcoplasmic reticulum load reduction and the threshold for Ca wave propagation. Based on these results, we show that when CaM is reduced, Ca waves can occur in a cell and induce action potential perturbations that are arrhythmogenic. Thus, this study outlines a novel, to our knowledge, mechanistic link between CaM-RyR2 binding kinetics and the induction of arrhythmias in the heart.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics, California State University Northridge, Los Angeles, California
| | - Yohannes Shiferaw
- Department of Physics, California State University Northridge, Los Angeles, California.
| |
Collapse
|
5
|
Gillespie D. Recruiting RyRs to Open in a Ca 2+ Release Unit: Single-RyR Gating Properties Make RyR Group Dynamics. Biophys J 2019; 118:232-242. [PMID: 31839264 DOI: 10.1016/j.bpj.2019.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
In cardiac myocytes, clusters of type-2 ryanodine receptors (RyR2s) release Ca2+ from the sarcoplasmic reticulum (SR) via a positive feedback mechanism in which fluxed Ca2+ activates nearby RyRs. Although the general principles of this are understood, less is known about how single-RyR gating properties define the RyR group dynamics in an array of many channels. Here, we examine this using simulations with three models of RyR gating that have identical open probabilities: the commonly used two-state Markov gating model, one that utilizes multiple exponentials to fit single-channel open time (OT) and closed time (CT) distributions, and an extension of this multiexponential model that also includes experimentally measured correlations between single-channel OTs and CTs. The simulations of RyR clusters that utilize the multiexponential gating model produce infrequent Ca2+ release events with relatively few open RyRs. Ca2+ release events become even smaller when OT/CT correlations are included. This occurs because the correlations produce a small but consistent bias against recruiting more RyRs to open during the middle of a Ca2+ release event, between the initiation and termination phases (which are unaltered compared to the uncorrelated simulations). In comparison, the two-state model produces frequent, large, and long Ca2+ release events because it had a recruitment bias in favor of opening more RyRs. This difference stems from the two-state model's single-RyR OT and CT distributions being qualitatively different from the experimental ones. Thus, the details of single-RyR gating can profoundly affect SR Ca2+ release even if open probability and mean OTs and CTs are identical. We also show that Ca2+ release events can terminate spontaneously without any reduction in SR [Ca2+], luminal regulation, Ca2+-dependent inactivation, or physical coupling between RyRs when Ca2+ flux is below a threshold value. This supports and extends the pernicious attrition/induction decay hypothesis that SR Ca2+ release events terminate below a threshold Ca2+ flux.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
6
|
Hartel AJW, Shekar S, Ong P, Schroeder I, Thiel G, Shepard KL. High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. Anal Chim Acta 2019; 1061:13-27. [PMID: 30926031 PMCID: PMC6860018 DOI: 10.1016/j.aca.2019.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations.
Collapse
Affiliation(s)
- Andreas J W Hartel
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| | - Siddharth Shekar
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Peijie Ong
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kenneth L Shepard
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| |
Collapse
|
7
|
Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes. Proc Natl Acad Sci U S A 2018; 115:E1789-E1798. [PMID: 29432144 DOI: 10.1073/pnas.1712313115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca2+-activated intracellular Ca2+-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.
Collapse
|
8
|
|
9
|
Abstract
A new JGP study shows how a disease-causing mutation in RyR2 dramatically alters channel behavior.
Collapse
|
10
|
Uehara A, Murayama T, Yasukochi M, Fill M, Horie M, Okamoto T, Matsuura Y, Uehara K, Fujimoto T, Sakurai T, Kurebayashi N. Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity. J Gen Physiol 2017; 149:199-218. [PMID: 28082361 PMCID: PMC5299618 DOI: 10.1085/jgp.201611624] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
The K4750Q mutation in ryanodine receptor 2 causes severe catecholaminergic polymorphic ventricular tachycardia. Uehara et al. reveal extensive Ca2+ leak through this mutant receptor and show it is caused by altered gating kinetics, increased Ca2+ sensitivity, and the absence of Ca2+-dependent inactivation. Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequences remain unresolved. Here, we study the most severe CPVT-associated RyR2 mutation (K4750Q) known to date. We define the molecular and cellular dysfunction generated by this mutation and detail how it alters RyR2 function, using Ca2+ imaging, ryanodine binding, and single-channel recordings. HEK293 cells and cardiac HL-1 cells expressing RyR2-K4750Q show greatly enhanced spontaneous Ca2+ oscillations. An endoplasmic reticulum–targeted Ca2+ sensor, R-CEPIA1er, revealed that RyR2-K4750Q mediates excessive diastolic Ca2+ leak, which dramatically reduces luminal [Ca2+]. We further show that the K4750Q mutation causes three RyR2 defects: hypersensitization to activation by cytosolic Ca2+, loss of cytosolic Ca2+/Mg2+-mediated inactivation, and hypersensitization to luminal Ca2+ activation. These defects combine to kinetically stabilize RyR2-K4750Q openings, thus explaining the extensive diastolic Ca2+ leak from the sarcoplasmic reticulum, frequent Ca2+ waves, and severe CPVT phenotype. As the multiple concurrent defects are induced by a single point mutation, the K4750 residue likely resides at a critical structural point at which cytosolic and luminal RyR2 control input converge.
Collapse
Affiliation(s)
- Akira Uehara
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Midori Yasukochi
- Laboratory of Human Biology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
11
|
Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating. Sci Rep 2016; 6:34452. [PMID: 27703263 PMCID: PMC5050499 DOI: 10.1038/srep34452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022] Open
Abstract
The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating.
Collapse
|
12
|
Bannister ML, Alvarez-Laviada A, Thomas NL, Mason SA, Coleman S, du Plessis CL, Moran AT, Neill-Hall D, Osman H, Bagley MC, MacLeod KT, George CH, Williams AJ. Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor. Br J Pharmacol 2016; 173:2446-59. [PMID: 27237957 PMCID: PMC4945764 DOI: 10.1111/bph.13521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Flecainide is a use-dependent blocker of cardiac Na(+) channels. Mechanistic analysis of this block showed that the cationic form of flecainide enters the cytosolic vestibule of the open Na(+) channel. Flecainide is also effective in the treatment of catecholaminergic polymorphic ventricular tachycardia but, in this condition, its mechanism of action is contentious. We investigated how flecainide derivatives influence Ca(2) (+) -release from the sarcoplasmic reticulum through the ryanodine receptor channel (RyR2) and whether this correlates with their effectiveness as blockers of Na(+) and/or RyR2 channels. EXPERIMENTAL APPROACH We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca(2) (+) sparks in intact adult rat cardiac myocytes. KEY RESULTS Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca(2) (+) spark frequency. CONCLUSIONS AND IMPLICATIONS Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca(2) (+) sparks is likely, by analogy with flecainide, to result from Na(+) channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na(+) and RyR2 channels.
Collapse
Affiliation(s)
- Mark L Bannister
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Anita Alvarez-Laviada
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - N Lowri Thomas
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Sammy A Mason
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Sharon Coleman
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Christo L du Plessis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - Abbygail T Moran
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - David Neill-Hall
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Mark C Bagley
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - Kenneth T MacLeod
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Christopher H George
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Alan J Williams
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
13
|
Bannister ML, Thomas NL, Sikkel MB, Mukherjee S, Maxwell C, MacLeod KT, George CH, Williams AJ. The mechanism of flecainide action in CPVT does not involve a direct effect on RyR2. Circ Res 2015; 116:1324-35. [PMID: 25648700 DOI: 10.1161/circresaha.116.305347] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Flecainide, a class 1c antiarrhythmic, has emerged as an effective therapy in preventing arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) refractory to β-adrenergic receptor blockade. It has been proposed that the clinical efficacy of flecainide in CPVT is because of the combined actions of direct blockade of ryanodine receptors (RyR2) and Na(+) channel inhibition. However, there is presently no direct evidence to support the notion that flecainide blocks RyR2 Ca(2+) flux in the physiologically relevant (luminal-to-cytoplasmic) direction. The mechanism of flecainide action remains controversial. OBJECTIVE To examine, in detail, the effect of flecainide on the human RyR2 channel and to establish whether the direct blockade of physiologically relevant RyR2 ion flow by the drug contributes to its therapeutic efficacy in the clinical management of CPVT. METHODS AND RESULTS Using single-channel analysis, we show that, even at supraphysiological concentrations, flecainide did not inhibit the physiologically relevant, luminal-to-cytosolic flux of cations through the channel. Moreover, flecainide did not alter RyR2 channel gating and had negligible effect on the mechanisms responsible for the sarcoplasmic reticulum charge-compensating counter current. Using permeabilized cardiac myocytes to eliminate any contribution of plasmalemmal Na(+) channels to the observed actions of the drug at the cellular level, flecainide did not inhibit RyR2-dependent sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS The principal action of flecainide in CPVT is not via a direct interaction with RyR2. Our data support a model of flecainide action in which Na(+)-dependent modulation of intracellular Ca(2+) handling attenuates RyR2 dysfunction in CPVT.
Collapse
Affiliation(s)
- Mark L Bannister
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - N Lowri Thomas
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Markus B Sikkel
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Saptarshi Mukherjee
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Chloe Maxwell
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Kenneth T MacLeod
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Christopher H George
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Alan J Williams
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.).
| |
Collapse
|
14
|
Mukherjee S, Thomas NL, Williams AJ. Insights into the gating mechanism of the ryanodine-modified human cardiac Ca2+-release channel (ryanodine receptor 2). Mol Pharmacol 2014; 86:318-29. [PMID: 25002270 DOI: 10.1124/mol.114.093757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptors (RyRs) are intracellular membrane channels playing key roles in many Ca(2+) signaling pathways and, as such, are emerging novel therapeutic and insecticidal targets. RyRs are so named because they bind the plant alkaloid ryanodine with high affinity and although it is established that ryanodine produces profound changes in all aspects of function, our understanding of the mechanisms underlying altered gating is minimal. We address this issue using detailed single-channel gating analysis, mathematical modeling, and energetic evaluation of state transitions establishing that, with ryanodine bound, the RyR pore adopts an extremely stable open conformation. We demonstrate that stability of this state is influenced by interaction of divalent cations with both activating and inhibitory cytosolic sites and, in the absence of activating Ca(2+), trans-membrane voltage. Comparison of the conformational stability of ryanodine- and Imperatoxin A-modified channels identifies significant differences in the mechanisms of action of these qualitatively similar ligands.
Collapse
Affiliation(s)
- Saptarshi Mukherjee
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - N Lowri Thomas
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alan J Williams
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|