1
|
Indurthi DC. The effect of unliganded gating on agonist response in nicotinic receptors. Eur J Pharmacol 2024; 980:176830. [PMID: 39032761 DOI: 10.1016/j.ejphar.2024.176830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Understanding the agonist concentration-response curve (CRC) is the cornerstone in pharmacology. While CRC parameters, agonist potency (EC50) and efficacy (maximum response, Imax) are well-studied, the role of unliganded gating (minimum response, Imin) on CRC is often overlooked. This study explores the effect of unliganded gating on agonist response in muscle-type acetylcholine (ACh) receptors, focusing on the underexplored role of Imin in modulating EC50 and Imax. Three Gain-of-Function (GOF) mutations that increase, and two Loss-of-Function (LOF) mutations that decrease the unliganded gating equilibrium constant (L0) were studied using automated patch-clamp electrophysiology. GOF mutations enhanced agonist potency, whereas LOF mutations reduced it. The calculated CRC aligned well with empirical results, indicating that agonist CRC can be estimated from knowledge of L0. Reduction in agonist efficacy due to LOF mutations was calculated and subsequently validated using single-channel patch-clamp electrophysiology, a factor often obscured in normalized CRC. The study also evaluated the combined impact of mutations (L0) on CRC, confirming the predictive model. Further, no significant energetic coupling between distant residues (>15 Å) was found, indicating that the mutations' effects are localized and do not alter overall agonist affinity. These findings substantiate the role of unliganded gating in modulating agonist responses and establishes a predictive model for estimating CRC parameters from known changes in L0. The study highlights the importance of intrinsic activity in receptor theory.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States.
| |
Collapse
|
2
|
Jackson MB. The impact of diffusion on receptor binding during synaptic transmission. Biophys J 2024; 123:2969-2973. [PMID: 39091027 PMCID: PMC11427808 DOI: 10.1016/j.bpj.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the importance of speed in synaptic transmission, in many synapses, neurotransmitters bind to their receptors at rates that appear to be slower than the diffusion limit. This assessment is generally based on a comparison with the Smoluchowski limit rather than an independent experimental analysis. In many synapses, miniature excitatory postsynaptic currents (mEPSCs) are controlled by the interplay between binding to receptors and diffusion of the neurotransmitter out of the synaptic cleft. A model for mEPSCs that incorporates these features was used to evaluate published data showing that elevated viscosity increases mEPSC amplitude. With diffusion-limited binding, the model predicts that raising the viscosity will decrease the amplitude rather than increase it. Diffusion-independent binding predicts an increase that is larger than that observed. To explore the intermediate behavior between the diffusion-limited and diffusion-independent extremes, a general expression for intermolecular rates was used that depends on both collision frequency and intrinsic reactivity. This analysis yielded an estimate for collision frequency that is about an order of magnitude above the measured rate of association and an order of magnitude below the Smoluchowski limit.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
3
|
Auerbach A. Dynamics of receptor activation by agonists. Biophys J 2024; 123:1915-1923. [PMID: 38178577 PMCID: PMC11309968 DOI: 10.1016/j.bpj.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024] Open
Abstract
How do agonists turn on receptors? The model system we have used to address this question is the adult-type skeletal muscle nicotinic acetylcholine receptor. This ligand-gated ion channel has two orthosteric sites (for neurotransmitters) in the extracellular domain linked to an allosteric site (a gate) in the transmembrane domain. The goal of this perspective is to summarize how measurements of agonist binding energy reveal the dynamics of the neurotransmitter sites and the fundamental link between binding and gating.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
4
|
Borghese CM, Goldschen-Ohm MP. State-dependent energetics of GABA A receptor modulators. Biophys J 2024; 123:1903-1906. [PMID: 38303510 PMCID: PMC11309981 DOI: 10.1016/j.bpj.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Cecilia M Borghese
- University of Texas at Austin, Department of Neuroscience, Austin, Texas
| | | |
Collapse
|
5
|
Lam AKM, Dutzler R. Mechanistic basis of ligand efficacy in the calcium-activated chloride channel TMEM16A. EMBO J 2023; 42:e115030. [PMID: 37984335 PMCID: PMC10711664 DOI: 10.15252/embj.2023115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.
Collapse
Affiliation(s)
- Andy KM Lam
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Raimund Dutzler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Indurthi DC, Auerbach A. Agonist efficiency links binding and gating in a nicotinic receptor. eLife 2023; 12:e86496. [PMID: 37399234 DOI: 10.7554/elife.86496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Receptors signal by switching between resting (C) and active (O) shapes ('gating') under the influence of agonists. The receptor's maximum response depends on the difference in agonist binding energy, O minus C. In nicotinic receptors, efficiency (η) represents the fraction of agonist binding energy applied to a local rearrangement (an induced fit) that initiates gating. In this receptor, free energy changes in gating and binding can be interchanged by the conversion factor η. Efficiencies estimated from concentration-response curves (23 agonists, 53 mutations) sort into five discrete classes (%): 0.56 (17), 0.51(32), 0.45(13), 0.41(26), and 0.31(12), implying that there are 5 C versus O binding site structural pairs. Within each class efficacy and affinity are corelated linearly, but multiple classes hide this relationship. η unites agonist binding with receptor gating and calibrates one link in a chain of coupled domain rearrangements that comprises the allosteric transition of the protein.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| |
Collapse
|
7
|
Goldschen-Ohm MP. Benzodiazepine Modulation of GABA A Receptors: A Mechanistic Perspective. Biomolecules 2022; 12:1784. [PMID: 36551212 PMCID: PMC9775625 DOI: 10.3390/biom12121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that target GABAA receptors (GABAARs) to tune inhibitory synaptic signaling throughout the central nervous system. Despite knowing their molecular target for over 40 years, we still do not fully understand the mechanism of modulation at the level of the channel protein. Nonetheless, functional studies, together with recent cryo-EM structures of GABAA(α1)2(βX)2(γ2)1 receptors in complex with BZDs, provide a wealth of information to aid in addressing this gap in knowledge. Here, mechanistic interpretations of functional and structural evidence for the action of BZDs at GABAA(α1)2(βX)2(γ2)1 receptors are reviewed. The goal is not to describe each of the many studies that are relevant to this discussion nor to dissect in detail all the effects of individual mutations or perturbations but rather to highlight general mechanistic principles in the context of recent structural information.
Collapse
|
8
|
Bueno RV, Davis S, Dawson A, Ondachi PW, Carroll FI, Hunter WN. Interactions between 2′-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues and acetylcholine-binding protein inform on potent antagonist activity against nicotinic receptors. Acta Crystallogr D Struct Biol 2022; 78:353-362. [PMID: 35234149 PMCID: PMC8900824 DOI: 10.1107/s2059798322000754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
The binding of a series of epibatidine derivatives to acetylcholine-binding protein was investigated using biolayer interferometry. The structures of three complexes inform discussion on the biological implications for interactions with nicotinic acetylcholine receptor subtypes, which are important targets for control of pain. Low-nanomolar binding constants were recorded for a series of six 2′-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues with acetylcholine-binding protein (AChBP). The crystal structures of three complexes with AChBP reveal details of molecular recognition in the orthosteric binding site and imply how the other three ligands bind. Comparisons exploiting AChBP as a surrogate for α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) suggest that the key interactions are conserved. The ligands interact with the same residues as the archetypal nAChR agonist nicotine yet display greater affinity, thereby rationalizing their in vivo activity as potent antagonists of nicotine-induced antinociception. An oxyanion-binding site is formed on the periphery of the AChBP orthosteric site by Lys42, Asp94, Glu170 and Glu210. These residues are highly conserved in the human α4, β2 and α7 nAChR sequences. However, specific sequence differences are discussed that could contribute to nAChR subtype selectivity and in addition may represent a point of allosteric modulation. The ability to engage with this peripheral site may explain, in part, the function of a subset of ligands to act as agonists of α7 nAChR.
Collapse
|
9
|
Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron 2022; 110:1358-1370.e5. [PMID: 35139364 DOI: 10.1016/j.neuron.2022.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Fast synaptic communication requires receptors that respond to the presence of neurotransmitter by opening an ion channel across the post-synaptic membrane. The muscle-type nicotinic acetylcholine receptor from the electric fish, Torpedo, is the prototypic ligand-gated ion channel, yet the structural changes underlying channel activation remain undefined. Here we use cryo-EM to solve apo and agonist-bound structures of the Torpedo nicotinic receptor embedded in a lipid nanodisc. Using both a direct biochemical assay to define the conformational landscape and molecular dynamics simulations to assay flux through the pore, we correlate structures with functional states and elucidate the motions that lead to pore activation of a heteromeric nicotinic receptor. We highlight an underappreciated role for the complementary subunit in channel gating, establish the structural basis for the differential agonist affinities of α/δ versus α /γ sites, and explain why nicotine is less potent at muscle nicotinic receptors compared to neuronal ones.
Collapse
|
10
|
Abstract
Nicotinic acetylcholine receptors (AChRs) are ligand-gated ion channels that generate transient currents by binding agonists and switching rapidly between closed- and open-channel conformations. Upon sustained exposure to ACh, the cell response diminishes slowly because of desensitization, a process that shuts the channel even with agonists still bound. In liganded receptors, the main desensitization pathway is from the open-channel conformation, but after agonists dissociate the main recovery pathway is to the closed-channel conformation. In this Viewpoint, I discuss two mechanisms that can explain the selection of different pathways, a question that has puzzled the community for 60 yr. The first is based on a discrete-state model (the “prism”), in which closed, open, and desensitized conformational states interconnect directly. This model predicts that 5% of unliganded AChRs are desensitized. Different pathways are taken with versus without agonists because ligands have different energy properties (φ values) at the transition states of the desensitization and recovery reactions. The second is a potential energy surface model (the “monkey saddle”), in which the states connect indirectly at a shared transition state region. Different pathways are taken because agonists shift the position of the gating transition state relative to the point where gating and desensitization conformational trajectories intersect. Understanding desensitization pathways appears to be a problem of kinetics rather than of thermodynamics. Other aspects of the two mechanisms are considered, as are experiments that may someday distinguish them.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
11
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
12
|
White DS, Chowdhury S, Idikuda V, Zhang R, Retterer ST, Goldsmith RH, Chanda B. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 2021; 595:606-610. [PMID: 34194042 PMCID: PMC8513821 DOI: 10.1038/s41586-021-03686-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
Electrical activity in the brain and heart depends on rhythmic generation of action potentials by pacemaker ion channels (HCN) whose activity is regulated by cAMP binding1. Previous work has uncovered evidence for both positive and negative cooperativity in cAMP binding2,3, but such bulk measurements suffer from limited parameter resolution. Efforts to eliminate this ambiguity using single-molecule techniques have been hampered by the inability to directly monitor binding of individual ligand molecules to membrane receptors at physiological concentrations. Here we overcome these challenges using nanophotonic zero-mode waveguides4 to directly resolve binding dynamics of individual ligands to multimeric HCN1 and HCN2 ion channels. We show that cAMP binds independently to all four subunits when the pore is closed, despite a subsequent conformational isomerization to a flip state at each site. The different dynamics in binding and isomerization are likely to underlie physiologically distinct responses of each isoform to cAMP5 and provide direct validation of the ligand-induced flip-state model6-9. This approach for observing stepwise binding in multimeric proteins at physiologically relevant concentrations can directly probe binding allostery at single-molecule resolution in other intact membrane proteins and receptors.
Collapse
Affiliation(s)
- David S White
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandipan Chowdhury
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Vinay Idikuda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ruohan Zhang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
13
|
Agonist efficiency from concentration-response curves: Structural implications and applications. Biophys J 2021; 120:1800-1813. [PMID: 33675765 DOI: 10.1016/j.bpj.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC50) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC50 and the asymptotes of a CRC derived from either single-channel or whole-cell responses. For 20 agonists of skeletal muscle nicotinic receptors, the distribution of η-values is bimodal with population means at 51% (including acetylcholine, nornicotine, and dimethylphenylpiperazinium) and 40% (including epibatidine, varenicline, and cytisine). The value of η is related inversely to the size of the agonist's headgroup, with high- versus low-efficiency ligands having an average volume of 70 vs. 102 Å3. Most binding site mutations have only a small effect on acetylcholine efficiency, except for αY190A (35%), αW149A (60%), and those at αG153 (42%). If η is known, the EC50 and high-concentration asymptote can be calculated from each other. Hence, an entire CRC can be estimated from the response to a single agonist concentration, and efficacy can be estimated from EC50 of a CRC that has been normalized to 1. Given η, the level of constitutive activity can be estimated from a single CRC.
Collapse
|
14
|
Weltzin MM, George AA, Lukas RJ, Whiteaker P. Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures. PLoS One 2021; 16:e0247825. [PMID: 33657187 PMCID: PMC7928491 DOI: 10.1371/journal.pone.0247825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of seizure disorders prominently associated with mutations in nicotinic acetylcholine receptors (nAChR). The most prevalent central nervous system nAChR subtype contains α4 and β2 subunits, in two ratios. (α4β2)2β2-nAChR have high agonist sensitivity (HS-isoform), whereas (α4β2)2α4-nAChR agonist responses exhibit a small high-sensitivity, and a predominant low-sensitivity, phase of function (LS-isoform). Multiple non-synonymous mutations in the second and third transmembrane domains of α4 and β2 subunits are associated with SHE. We recently demonstrated that two additional, SHE-associated, missense mutations in the major cytoplasmic loops of these subunits [α4(R336H) and β2(V337G)] cause increased macroscopic function-per receptor. Here, we use single-channel patch-clamp electrophysiology to show that these mutations influence single-channel amplitudes and open- and closed-state kinetics. Pure populations of HS- or LS-isoform α4β2-nAChR were expressed by injecting either 1:10 or 30:1 α4:β2 cRNA ratios, respectively, into Xenopus laevis oocytes. Functional properties of the resulting mutant α4β2-nAChR isoforms were compared to their wildtype counterparts. α4(R336H) subunit incorporation minimally affected single-channel amplitudes, whereas β2(V337G) subunit incorporation reduced them significantly in both isoforms. However, for both mutant subunits, increased function-per-receptor was predominantly caused by altered single channel kinetics. The α4(R336H) mutation primarily destabilizes desensitized states between openings. By contrast, the β2(V337G) mutation principally stabilizes receptor open states. The use of naturally-occurring and physiologically-impactful mutations has allowed us to define valuable new insights regarding the functional roles of nAChR intracellular domains. Further mechanistic context is provided by intracellular-domain structures recently published for other members of the Cys-loop receptor superfamily (α3β4-nAChR and 5-HT3AR).
Collapse
Affiliation(s)
- Maegan M. Weltzin
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Andrew A. George
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| |
Collapse
|
15
|
Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, Gouaux E. Mechanism of gating and partial agonist action in the glycine receptor. Cell 2021; 184:957-968.e21. [PMID: 33567265 PMCID: PMC8115384 DOI: 10.1016/j.cell.2021.01.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.
Collapse
Affiliation(s)
- Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | - Timo Greiner
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | - Juan Du
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wei Lü
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK.
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
16
|
Zhou Y, Kuang G, Li J, Halldin C, Nordberg A, Långström B, Tu Y, Ågren H. In silico studies of ASEM analogues targeting α7-nAChR and experimental verification. RSC Adv 2021; 11:3942-3951. [PMID: 35747361 PMCID: PMC9134020 DOI: 10.1039/d0ra10435c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7-nAChR) is implicated in a variety of neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease (AD) and schizophrenia. The progress of these disorders can be studied using positron emission tomography (PET) with radiotracers for α7-nAChR. [18F]ASEM and [18F] para-ASEM (also referred to as [18F]DBT-10) are novel and potent α7-nAChR PET radiotracers which have successfully been used in human subjects and nonhuman primates, though further improvement of them is still a pressing task in the community of neurodegeneration research. In this work, we demonstrate the use of modern in silico techniques to predict the binding modes, binding strengths, and residence times for molecular PET tracers binding to proteins, using ASEM and DBT-10 as a showcase of the predictive and interpretational power of such techniques, in particular free energy perturbation theory. The corresponding compounds were synthesized and further tested by in vitro binding experiment for validation. Encouragingly, our in silico modeling can correctly predict the binding affinities of the ASEM analogues. The structure-activity relationships for the ortho- and para-substitutions are well explained at the atomistic level and provide structure-based guiding for the future development of PET tracers for α7-nAChR. A discussion is presented on the complementary use of in silico rational methods based on atomic and electronic principles for in vitro characterization of PET tracers.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmacy, Jinan University Guangzhou 510632 China
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Guanglin Kuang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center S-106 91 Stockholm Sweden
| | - Junhao Li
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center S-106 91 Stockholm Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research 171 76 Stockholm Sweden
| | - Agneta Nordberg
- Nordberg Translational Molecular Imaging Lab, Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet 141 84 Stockholm Sweden
- Theme Aging Karolinska University Hospital S-141 86 Stockholm Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University SE- 751 23 Uppsala Sweden
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center S-106 91 Stockholm Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
- College of Chemistry and Chemical Engineering, Henan University Kaifeng Henan 475004 P.R. China
| |
Collapse
|
17
|
Jatczak-Śliwa M, Kisiel M, Czyzewska MM, Brodzki M, Mozrzymas JW. GABA A Receptor β 2E155 Residue Located at the Agonist-Binding Site Is Involved in the Receptor Gating. Front Cell Neurosci 2020; 14:2. [PMID: 32116555 PMCID: PMC7026498 DOI: 10.3389/fncel.2020.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1β2γ2L receptors, the mutation of the β2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the β2E155C mutation on binding and gating of the α1β2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the β2E155C mutation caused a vast right shift of the dose–response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the β2E155 residue is involved in both binding and gating (primarily preactivation).
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
18
|
Oliveira ASF, Edsall CJ, Woods CJ, Bates P, Nunez GV, Wonnacott S, Bermudez I, Ciccotti G, Gallagher T, Sessions RB, Mulholland AJ. A General Mechanism for Signal Propagation in the Nicotinic Acetylcholine Receptor Family. J Am Chem Soc 2019; 141:19953-19958. [PMID: 31805762 DOI: 10.1021/jacs.9b09055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic activity in the central nervous system. The α7 subtype, in particular, has attracted considerable interest in drug discovery as a target for several conditions, including Alzheimer's disease and schizophrenia. Identifying agonist-induced structural changes underlying nAChR activation is fundamentally important for understanding biological function and rational drug design. Here, extensive equilibrium and nonequilibrium molecular dynamics simulations, enabled by cloud-based high-performance computing, reveal the molecular mechanism by which structural changes induced by agonist unbinding are transmitted within the human α7 nAChR. The simulations reveal the sequence of coupled structural changes involved in driving conformational change responsible for biological function. Comparison with simulations of the α4β2 nAChR subtype identifies features of the dynamical architecture common to both receptors, suggesting a general structural mechanism for signal propagation in this important family of receptors.
Collapse
Affiliation(s)
- Ana Sofia F Oliveira
- School of Biochemistry , University of Bristol , Bristol BS8 1DT , United Kingdom
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Christopher J Edsall
- Research Software Engineering, Advanced Computing Research Centre , University of Bristol , Bristol BS1 5QD , United Kingdom
| | - Christopher J Woods
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
- Research Software Engineering, Advanced Computing Research Centre , University of Bristol , Bristol BS1 5QD , United Kingdom
| | - Phil Bates
- Department of Computer Science, Faculty of Engineering , University of Bristol , Bristol BS8 1TR , United Kingdom
- Oracle Corporation, Oracle Cloud Development Centre , Bristol BS2 2JJ , United Kingdom
| | - Gerardo Viedma Nunez
- Oracle Corporation, Oracle Cloud Development Centre , Bristol BS2 2JJ , United Kingdom
| | - Susan Wonnacott
- Department of Biology and Biochemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Isabel Bermudez
- Department of Biological and Medical Sciences , Oxford Brookes University , Oxford OX30BP , United Kingdom
| | - Giovanni Ciccotti
- Institute for Applied Computing "Mauro Picone" (IAC), CNR , Via dei Taurini 19 , 00185 Rome , Italy
- School of Physics , University College of Dublin UCD-Belfield , Dublin 4, Ireland
- Università di Roma La Sapienza , Ple. A. Moro 5 , 00185 Roma , Italy
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Richard B Sessions
- School of Biochemistry , University of Bristol , Bristol BS8 1DT , United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| |
Collapse
|
19
|
Zhou Y, Zou R, Kuang G, Långström B, Halldin C, Ågren H, Tu Y. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes. J Chem Inf Model 2019; 59:3910-3918. [DOI: 10.1021/acs.jcim.9b00523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zhou
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Rongfeng Zou
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Guanglin Kuang
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, Uppsala 75123, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 10691, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 10691, Sweden
| |
Collapse
|
20
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
21
|
Tripathy S, Zheng W, Auerbach A. A single molecular distance predicts agonist binding energy in nicotinic receptors. J Gen Physiol 2019; 151:452-464. [PMID: 30635370 PMCID: PMC6445573 DOI: 10.1085/jgp.201812212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Agonists turn on receptors because they bind more strongly to active (R*) versus resting (R) conformations of their target sites. Here, to explore how agonists activate neuromuscular acetylcholine receptors, we built homology models of R and R* neurotransmitter binding sites, docked ligands to those sites, ran molecular dynamics simulations to relax ("equilibrate") the structures, measured binding site structural parameters, and correlated them with experimental agonist binding energies. Each binding pocket is a pyramid formed by five aromatic amino acids and covered partially by loop C. We found that in R* versus R, loop C is displaced outward, the pocket is smaller and skewed, the agonist orientation is reversed, and a key nitrogen atom in the agonist is closer to the pocket center (distance dx) and a tryptophan pair but farther from αY190. Of these differences, the change in dx shows the largest correlation with experimental binding energy and provides a good estimate of agonist affinity, efficacy, and efficiency. Indeed, concentration-response curves can be calculated from just dx values. The contraction and twist of the binding pocket upon activation resemble gating rearrangements of the extracellular domain of related receptors at a smaller scale.
Collapse
Affiliation(s)
- Sushree Tripathy
- Department of Physics, State University of New York, Buffalo, Buffalo, NY
| | - Wenjun Zheng
- Department of Physics, State University of New York, Buffalo, Buffalo, NY
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York, Buffalo, Buffalo, NY
| |
Collapse
|
22
|
Weltzin MM, George AA, Lukas RJ, Whiteaker P. Distinctive single-channel properties of α4β2-nicotinic acetylcholine receptor isoforms. PLoS One 2019; 14:e0213143. [PMID: 30845161 PMCID: PMC6405073 DOI: 10.1371/journal.pone.0213143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
Central nervous system nicotinic acetylcholine receptors (nAChR) are predominantly of the α4β2 subtype. Two isoforms exist, with high or low agonist sensitivity (HS-(α4β2)2β2- and LS-(α4β2)2α4-nAChR). Both isoforms exhibit similar macroscopic potency and efficacy values at low acetylcholine (ACh) concentrations, mediated by a common pair of high-affinity α4(+)/(-)β2 subunit binding interfaces. However LS-(α4β2)2α4-nAChR also respond to higher concentrations of ACh, acting at a third α4(+)/(-)α4 subunit interface. To probe isoform functional differences further, HS- and LS-α4β2-nAChR were expressed in Xenopus laevis oocytes and single-channel responses were assessed using cell-attached patch-clamp. In the presence of a low ACh concentration, both isoforms produce low-bursting function. HS-(α4β2)2β2-nAChR exhibit a single conductance state, whereas LS-(α4β2)2α4-nAChR display two distinctive conductance states. A higher ACh concentration did not preferentially recruit either conductance state, but did result in increased LS-(α4β2)2α4-nAChR bursting and reduced closed times. Introduction of an α4(+)/(-)α4-interface loss-of-function α4W182A mutation abolished these changes, confirming this site's role in mediating LS-(α4β2)2α4-nAChR responses. Small or large amplitude openings are highly-correlated within individual LS-(α4β2)2α4-nAChR bursts, suggesting that they arise from distinct intermediate states, each of which is stabilized by α4(+)/(-)α4 site ACh binding. These findings are consistent with α4(+)/(-)α4 subunit interface occupation resulting in allosteric potentiation of agonist actions at α4(+)/(-)β2 subunit interfaces, rather than independent induction of high conductance channel openings.
Collapse
Affiliation(s)
- Maegan M. Weltzin
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
- * E-mail:
| | - Andrew A. George
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
23
|
Nayak TK, Vij R, Bruhova I, Shandilya J, Auerbach A. Efficiency measures the conversion of agonist binding energy into receptor conformational change. J Gen Physiol 2019; 151:465-477. [PMID: 30635369 PMCID: PMC6445574 DOI: 10.1085/jgp.201812215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Receptors alternate between resting↔active conformations that bind agonists with low↔high affinity. Here, we define a new agonist attribute, energy efficiency (η), as the fraction of ligand-binding energy converted into the mechanical work of the activation conformational change. η depends only on the resting/active agonist-binding energy ratio. In a plot of activation energy versus binding energy (an "efficiency" plot), the slope gives η and the y intercept gives the receptor's intrinsic activation energy (without agonists; ΔG0). We used single-channel electrophysiology to estimate η for eight different agonists and ΔG0 in human endplate acetylcholine receptors (AChRs). From published equilibrium constants, we also estimated η for agonists of KCa1.1 (BK channels) and muscarinic, γ-aminobutyric acid, glutamate, glycine, and aryl-hydrocarbon receptors, and ΔG0 for all of these except KCa1.1. Regarding AChRs, η is 48-56% for agonists related structurally to acetylcholine but is only ∼39% for agonists related to epibatidine; ΔG0 is 8.4 kcal/mol in adult and 9.6 kcal/mol in fetal receptors. Efficiency plots for all of the above receptors are approximately linear, with η values between 12% and 57% and ΔG0 values between 2 and 12 kcal/mol. Efficiency appears to be a general attribute of agonist action at receptor binding sites that is useful for understanding binding mechanisms, categorizing agonists, and estimating concentration-response relationships.
Collapse
Affiliation(s)
- Tapan K Nayak
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Ridhima Vij
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Iva Bruhova
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Jayasha Shandilya
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
24
|
Kisiel M, Jatczak-Śliwa M, Mozrzymas JW. Protons modulate gating of recombinant α 1β 2γ 2 GABA A receptor by affecting desensitization and opening transitions. Neuropharmacology 2018; 146:300-315. [PMID: 30326242 DOI: 10.1016/j.neuropharm.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023]
Abstract
Protons are potent modulators of GABAA receptors (GABAARs) and α1Phe64 residue was implicated in their pH sensitivity. Recently, we have demonstrated that this residue is involved in flipping transitions which precede channel opening. We thus re-addressed the mechanism of GABAAR modulation by protons by considering the gating scheme extended by flipping. The impact of pH changes was examined on currents mediated by wild-type α1β2γ2 receptors or by their α1Phe64Leu or α1Phe64Cys mutants and elicited by saturating concentrations of full (GABA) or partial (piperidine-4-sulfonic acid) agonists. To describe the impact of extracellular pH on receptor gating, we combined macroscopic analysis of currents elicited by rapid agonist applications with single-channel studies. Acidification (pH 6.0) increased current amplitudes (in the case of leucine mutants effect was stronger when P4S was used) and decreased the rate and the extent of desensitization whereas alkalization (pH 8.0) had the opposite but weaker effect. Deactivation kinetics for wild-type receptors was slowed down by acidification while in the case of mutants this effect was observed upon alkalization. Moreover, α1Phe64 mutations enhanced GABAAR sensitivity to alkaline pH. Single-channel analysis revealed that acidification prolonged burst durations and affected shut but not open time distributions. Model simulations for macroscopic and single-channel activity indicated a novel mechanism in which protons primarily affected opening and desensitization rates but not flipping/unflipping. This evidence for the impact of protons on the receptor gating together with previously demonstrated effect on the agonist binding, point to a complex effect of extracellular pH on GABAAR macromolecule.
Collapse
Affiliation(s)
- Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| | - Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Molecular Physiology and Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| |
Collapse
|
25
|
Luo H, Wood K, Shi FD, Gao F, Chang Y. Suramin is a novel competitive antagonist selective to α1β2γ2 GABA A over ρ1 GABA C receptors. Neuropharmacology 2018; 141:148-157. [PMID: 30172846 DOI: 10.1016/j.neuropharm.2018.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/26/2018] [Indexed: 02/05/2023]
Abstract
GABAA and GABAC receptors are both GABA-gated chloride channels with distinct pharmacological properties, mainly in their sensitivity to bicuculline and gabazine. In this study, we found that suramin, a purinergic receptor antagonist, is a novel competitive antagonist selective to GABAA over GABAC receptors. Specifically, suramin antagonized the GABA-induced current and the spontaneous opening current of the wild type α1β2γ2 GABAA receptor with high-level expression in Xenopus oocytes. The antagonism was concentration dependent with an IC50 that varied depending on the concentration of GABA, and with the lowest IC50 of 0.43 μM when antagonizing the spontaneous current. Thus, its potency is slightly higher than bicuculline on the same GABAA receptor. Suramin also antagonized the mouse native brain GABA receptors micro-transplanted into the Xenopus oocytes with its potency depending on the GABA concentration. In addition, in the presence of two fixed concentrations of suramin, the GABA concentration response of the receptor was shifted to the right without reduction of the maximum current. Thus, our results are consistent with that suramin is a competitive antagonist for the α1β2γ2 GABAA receptor. Interestingly, the rank order of maximum allosteric inhibition (efficacy) of spontaneous current of the GABAA receptor by three competitive antagonists was suramin > bicuculline > gabazine, similar to the rank order of their molecular weight. In contrast, similar to bicuculline, suramin has much lower potency in antagonizing the GABA-induced current of the ρ1 GABAC receptor. In conclusion, we have identified a novel GABAA receptor competitive antagonist, which is selective to the α1β2γ2 over ρ1 GABA receptors.
Collapse
Affiliation(s)
- Hui Luo
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristofer Wood
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Fu-Dong Shi
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
26
|
Kisiel M, Jatczak M, Brodzki M, Mozrzymas JW. Spontaneous activity, singly bound states and the impact of alpha 1Phe64 mutation on GABA AR gating in the novel kinetic model based on the single-channel recordings. Neuropharmacology 2017; 131:453-474. [PMID: 29162430 DOI: 10.1016/j.neuropharm.2017.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022]
Abstract
GABAA receptor is the primary mediator of inhibition in the adult mammalian brain. Our recent studies revealed that a classic gating scheme for GABAAR needed to be updated with an intermediate step (flipping) and that the α1Phe64 mutation at the GABA binding site affects this transition. However, description of flipping at the single-channel level remains incomplete. In particular, its role in singly-bound and spontaneous activity remains unknown. We have performed thus single-channel recordings over wide range of agonist concentration for wild-type α1β2γ2L receptors and α1Phe64 mutants. For WT receptors we observed relatively frequent brief spontaneous openings which were also present at low [GABA]. However, closed times distributions for spontaneous activity and at low [GABA] were clearly different indicating that a proportion of short-lived openings were due to liganded, most likely singly bound receptors. Increasing [GABA] resulted in prolongation of bursts and increased occurrence of bursts with long openings and short closures. Mutations of α1Phe64 residue dramatically affected the open and closed time distributions at high and saturating [GABA], especially in the case of cysteine mutants. However, this mutation weakly affected spontaneous or singly bound activity. Model fitting of our single-channel data led us to propose a novel and, to our knowledge, most complete GABAAR kinetic model in which flipping occurs in singly and doubly bound states. However, spontaneous activity did not reveal involvement of flipping. Moreover, we report that α1Phe64 mutation affects not only the flipping but also the opening/closing transitions indicating its generalized impact on the receptor gating.
Collapse
Affiliation(s)
- Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| | - Magdalena Jatczak
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Physiology and Molecular Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Physiology and Molecular Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| |
Collapse
|
27
|
Abstract
Agonists turn on receptors because they have a higher affinity for active versus resting conformations of the protein. Activation can occur by either of two pathways that connect to form a cycle: Agonists bind to resting receptors that then become active, or resting receptors activate and then bind agonists. We used mutations to construct endplate acetylcholine receptors (AChRs) having only one functional neurotransmitter-binding site and single-channel electrophysiology to measure independently binding constants for four different agonists, to both resting and active conformations of each site. For all agonists and sites, the total free energy change in each pathway was the same, confirming the activation cycle without external energy. Other results show that (i) there is no cooperativity between sites; (ii) agonist association is slower than diffusion in resting receptors but nearly diffusional in active receptors; (iii) whereas resting affinity is determined mainly by agonist association, active affinity is determined mainly by agonist dissociation; and (iv) at each site and for all agonists, receptor activation approximately doubles the agonist-binding free energy. We discuss a two-step mechanism for binding that involves diffusion and a local conformational change ("catch") that is modulated by receptor activation. The results suggest that binding to a resting site and the switch to high affinity are both integral parts of a single allosteric transition. We hypothesize that catch ensures proper signal recognition in complex chemical environments and that binding site compaction is a determinant of both resting and active affinity.
Collapse
|
28
|
Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog 2017; 13:e1006663. [PMID: 28968469 PMCID: PMC5638611 DOI: 10.1371/journal.ppat.1006663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36’A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36’A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted. IVM is a gold standard anti-parasitic drug that is used extensively to control invertebrate parasites pest species. The drug targets the glutamate-gated chloride channel receptor (GluClR) found on neurons and muscle cells of these organisms, causing paralysis and death. However, IVM resistance is becoming a serious problem in human and animal health, as well as human food production. We provide the first comprehensive investigation of the functional properties of the GluClR of H. contortus, which is a major parasite in grazing animals, such as sheep and goats. We compared glutamate and IVM induced activity of the wild-type and a mutant GluClR, G36’A, that markedly reduces IVM sensitivity in wild populations of pests. Our data demonstrate that the mutation reduces IVM sensitivity by altering the functional properties of the GluClR rather than specifically affecting the binding of IVM, even though the mutation occurs at the IVM binding site. This study provides a mechanistic framework upon which the actions of new candidate anthelmintic drugs can be interpreted.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Bindi Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| |
Collapse
|
29
|
Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. J Biol Chem 2017; 292:5031-5042. [PMID: 28174298 PMCID: PMC5377815 DOI: 10.1074/jbc.m116.767616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.
Collapse
Affiliation(s)
- Fatemah Safar
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elliot Hurdiss
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Marios Erotocritou
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Timo Greiner
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark W Irvine
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Guangyu Fang
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - David Jane
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Rilei Yu
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.,the Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Marc A Dämgen
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Philip C Biggin
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Lucia G Sivilotti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
30
|
Bruhova I, Auerbach A. Molecular recognition at cholinergic synapses: acetylcholine versus choline. J Physiol 2016; 595:1253-1261. [PMID: 27779761 DOI: 10.1113/jp273291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuromuscular acetylcholine (ACh) receptors have a high affinity for the neurotransmitter ACh and a low affinity for its metabolic product choline. At each transmitter binding site three aromatic groups determine affinity, and together provide ∼50% more binding energy for ACh than for choline. Deprotonation of αY190 by a nearby lysine strengthens the interaction between this aromatic ring and both ACh and choline. H-bonds position ACh and choline differently in the aromatic cage to generate the different affinities. ABSTRACT Acetylcholine (ACh) released at the vertebrate nerve-muscle synapse is hydrolysed rapidly to choline (Cho), so endplate receptors (AChRs) are exposed to high concentrations of both of these structurally related ligands. To understand how these receptors distinguish ACh and Cho, we used single-channel electrophysiology to measure resting affinities (binding free energies) of these and other agonists in adult-type mouse AChRs having a mutation(s) at the transmitter-binding sites. The aromatic rings of αY190, αW149 and αY198 each provide ∼50% less binding energy for Cho compared to ACh. At αY198 a phenylalanine substitution had no effect, but at αY190 this substitution caused a large, agonist-independent loss in binding energy that depended on the presence of αK145. The results suggest that (1) αY190 is deprotonated by αK145 to strengthen the interaction between this benzene ring and the agonist's quaternary ammonium (QA) and (2) AChRs respond strongly to ACh because an H-bond positions the QA to interact optimally with the rings, and weakly to Cho because a different H-bond tethers the ligand to misalign the QA and form weaker interactions with the aromatic groups. The results suggest that the difference in ACh versus Cho binding energies is determined by different ligand positions within a fixed protein structure.
Collapse
Affiliation(s)
- Iva Bruhova
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, NY, 14214, USA
| | - Anthony Auerbach
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
31
|
Vij R, Purohit P, Auerbach A. Modal affinities of endplate acetylcholine receptors caused by loop C mutations. ACTA ACUST UNITED AC 2016; 146:375-86. [PMID: 26503719 PMCID: PMC4621750 DOI: 10.1085/jgp.201511503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modal activity at the nicotinic acetylcholine receptor, in which open channel probability switches reversibly between discrete values, arises from changes in the resting affinity at the agonist site. The time course of the endplate current is determined by the rate and equilibrium constants for acetylcholine receptor (AChR) activation. We measured these constants in single-channel currents from AChRs with mutations at the neurotransmitter-binding sites, in loop C. The main findings are: (a) Almost all perturbations of loop C generate heterogeneity in the channel open probability (“modes”). (b) Modes are generated by different affinities for ACh that can be either higher or lower than in the wild-type receptors. (c) The modes are stable, in so far as each receptor maintains its affinity for at least several minutes. (d) Different agonists show different degrees of modal activity. With the loop C mutation αP197A, there are four modes with ACh but only two with partial agonists. (e) The affinity variations arise exclusively from the αδ-binding site. (f) Substituting four γ-subunit residues into the δ subunit (three in loop E and one in the β5–β5′ linker) reduces modal activity. (g) At each neurotransmitter-binding site, affinity is determined by a core of five aromatic residues. Modes are eliminated by an alanine mutation at δW57 but not at the other aromatics. (h) Modes are eliminated by a phenylalanine substitution at all core aromatics except αY93. The results suggest that, at the αδ agonist site, loop C and the complementary subunit surface can each adopt alternative conformations and interact with each other to influence the position of δW57 with respect to the aromatic core and, hence, affinity.
Collapse
Affiliation(s)
- Ridhima Vij
- Neuroscience Program and Department of Physiology, State University of New York at Buffalo, Buffalo, NY 14214
| | - Prasad Purohit
- Neuroscience Program and Department of Physiology, State University of New York at Buffalo, Buffalo, NY 14214
| | - Anthony Auerbach
- Neuroscience Program and Department of Physiology, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
32
|
Sivilotti L, Colquhoun D. In praise of single channel kinetics. J Gen Physiol 2016; 148:79-88. [PMID: 27432998 PMCID: PMC4969800 DOI: 10.1085/jgp.201611649] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lucia Sivilotti
- Department of Neuroscience, Physiology, and Pharmacology, University College London, WC1E 6BT, London, England, UK
| | - David Colquhoun
- Department of Neuroscience, Physiology, and Pharmacology, University College London, WC1E 6BT, London, England, UK
| |
Collapse
|
33
|
MacLean DM, Jayaraman V. Acid-sensing ion channels are tuned to follow high-frequency stimuli. J Physiol 2016; 594:2629-45. [PMID: 26931316 DOI: 10.1113/jp271915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/27/2016] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Acid-sensing ion channels (ASICs) act as neurotransmitter receptors by responding to synaptic cleft acidification. We investigated how ASIC1a homomers and ASIC1a/2a heteromers respond to brief stimuli, jumping from pH 8.0 to 5.0, approximating the time course of neurotransmitter in the cleft. We find that ASICs deactivate surprisingly fast in response to such brief stimuli from pH 8.0 to 5.0, whereas they desensitize comparatively slowly to prolonged activation. The combination of unusually fast deactivation with slow desensitzation enables recombinant ASIC1a homomers and ASIC1a/2a heteromers, as well as native ASICs of sensory neurons, to follow trains of such brief pH 8.0 to 5.0 stimuli at high frequencies. This capacity for high-frequency signalling persists under a physiological pH of 7.4 with ASIC1a/2a heteromers, suggesting that they may sustain postsynaptic responses when other receptors desensitize. ABSTRACT The neurotransmitter-gated ion channels that underlie rapid synaptic transmission are often subjected to bursts of very brief neurotransmitter release at high frequencies. When challenged with such short duration high-frequency stimuli, neurotransmitter-gated ion channels generally exhibit the common response of desensitization. Recently, acid-sensing ion channels (ASICs) were shown to act as neurotransmitter-gated ion channels because postsynaptic ASICs can be activated by the transient acidification of the synaptic cleft accompanying neurotransmission. In the present study, we examined the responses of recombinant ASIC1a homomers, ASIC1a/2a heteromers and native ASICs from sensory neurons to 1 ms acidification stimuli, switching from pH 8.0 to 5.0, as either single pulses or trains of pulses at physiologically relevant frequencies. We found that ASIC deactivation is extremely fast and, in contrast to most other neurotransmitter-gated ion channels, ASICs show no desensitization during high-frequency stimulus trains under these conditions. We also found that accelerating ASIC desensitization by anion substitution can induce depression during high-frequency trains. When using a baseline physiological pH of 7.4, the ASIC1a responses were too small to reliably measure, presumably as a result of steady-state desensitization. However, ASIC1a/2 heteromers gave robust responses when using a baseline pH of 7.4 and were also able to sustain these responses during high-frequency stimulus trains. In conclusion, we report that the slow desensitization and fast deactivation of ASIC1a/2a heteromers enables them to sustain postsynaptic responses to bursts at high frequencies at a physiological pH that may desensitize other receptors.
Collapse
Affiliation(s)
- David M MacLean
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
34
|
Auerbach A. Dose-Response Analysis When There Is a Correlation between Affinity and Efficacy. Mol Pharmacol 2015; 89:297-302. [PMID: 26655305 DOI: 10.1124/mol.115.102509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
The shape of a concentration-response curve (CRC) is determined by underlying equilibrium constants for agonist binding and receptor conformational change. Typically, agonists are characterized by the empirical CRC parameters efficacy (the maximum response), EC(50) (the concentration that produces a half-maximum response), and the Hill coefficient (the maximum slope of the response). Ligands activate receptors because they bind with higher affinity to the active versus resting conformation, and in skeletal muscle nicotinic acetylcholine receptors there is an exponential relationship between these two equilibrium dissociation constants. Consequently, knowledge of two receptor-specific, agonist-independent constants--the activation equilibrium constant without agonists (E(0)) and the affinity-correlation exponent (M)--allows an entire CRC to be calculated from a measurement of either efficacy or affinity. I describe methods for estimating the CRCs of partial agonists in receptors that have a correlation between affinity and efficacy.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
35
|
Auerbach A. Agonist activation of a nicotinic acetylcholine receptor. Neuropharmacology 2015; 96:150-6. [PMID: 25446670 PMCID: PMC4398594 DOI: 10.1016/j.neuropharm.2014.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
How does an agonist activate a receptor? In this article I consider the activation process in muscle nicotinic acetylcholine receptors (AChRs), a prototype for understanding the energetics of binding and gating in other ligand-gated ion channels. Just as movements that generate gating currents activate voltage-gated ion channels, movements at binding sites that generate an increase in affinity for the agonist activate ligand-gated ion channels. The main topics are: i) the schemes and intermediate states of AChR activation, ii) the energy changes of each of the steps, iii) the sources of the energies, iv) the three kinds of AChR agonist binding site and v) the correlations between binding and gating energies. The binding process is summarized as sketches of different conformations of an agonist site. The results suggest that agonists lower the free energy of the active conformation of the protein in stages by establishing favorable, local interactions at each binding site, independently. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14219, USA.
| |
Collapse
|
36
|
Marabelli A, Lape R, Sivilotti L. Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study. ACTA ACUST UNITED AC 2015; 145:23-45. [PMID: 25548135 PMCID: PMC4278187 DOI: 10.1085/jgp.201411234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
37
|
Abstract
The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly to reach a peak that corresponds to PO ∼0.96.
Collapse
Affiliation(s)
- Anthony Auerbach
- Dept. of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
38
|
Short CA, Cao AT, Wingfield MA, Doers ME, Jobe EM, Wang N, Levandoski MM. Subunit interfaces contribute differently to activation and allosteric modulation of neuronal nicotinic acetylcholine receptors. Neuropharmacology 2015; 91:157-68. [PMID: 25486620 PMCID: PMC4332533 DOI: 10.1016/j.neuropharm.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/21/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in the nervous system and are implicated in many normal and pathological processes. The structural determinants of allostery in nAChRs are not well understood. One class of nAChR allosteric modulators, including the small molecule morantel (Mor), acts from a site that is structurally homologous to the canonical agonist site but exists in the β(+)/α(-) subunit interface. We hypothesized that all nAChR subunits move with respect to each other during channel activation and allosteric modulation. We therefore studied five pairs of residues predicted to span the interfaces of α3β2 receptors, one at the agonist interface and four at the modulator interface. Substituting cysteines in these positions, we used disulfide trapping to perturb receptor function. The pair α3Y168-β2D190, involving the C loop region of the β2 subunit, mediates modulation and agonist activation, because evoked currents were reduced up to 50% following oxidation (H2O2) treatment. The pair α3S125-β2Q39, below the canonical site, is also involved in channel activation, in accord with previous studies of the muscle-type receptor; however, the pair is differentially sensitive to ACh activation and Mor modulation (currents decreased 60% and 80%, respectively). The pairs α3Q37-β2A127 and α3E173-β2R46, both in the non-canonical interface, showed increased currents following oxidation, suggesting that subunit movements are not symmetrical. Together, our results from disulfide trapping and further mutation analysis indicate that subunit interface movement is important for allosteric modulation of nAChRs, but that the two types of interfaces contribute unequally to receptor activation.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Angela T Cao
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Molly A Wingfield
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Matthew E Doers
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Emily M Jobe
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Nan Wang
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Mark M Levandoski
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA.
| |
Collapse
|
39
|
Functional anatomy of an allosteric protein. Nat Commun 2014; 4:2984. [PMID: 24352193 DOI: 10.1038/ncomms3984] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/21/2013] [Indexed: 01/16/2023] Open
Abstract
Synaptic receptors are allosteric proteins that switch on and off to regulate cell signalling. Here, we use single-channel electrophysiology to measure and map energy changes in the gating conformational change of a nicotinic acetylcholine receptor. Two separated regions in the α-subunits--the transmitter-binding sites and αM2-αM3 linkers in the membrane domain--have the highest ϕ-values (change conformation the earliest), followed by the extracellular domain, most of the membrane domain and the gate. Large gating-energy changes occur at the transmitter-binding sites, α-subunit interfaces, the αM1 helix and the gate. We hypothesize that rearrangements of the linkers trigger the global allosteric transition, and that the hydrophobic gate unlocks in three steps. The mostly local character of side-chain energy changes and the similarly high ϕ-values of separated domains, both with and without ligands, suggest that gating is not strictly a mechanical process initiated by the affinity change for the agonist.
Collapse
|
40
|
Purohit P, Bruhova I, Gupta S, Auerbach A. Catch-and-hold activation of muscle acetylcholine receptors having transmitter binding site mutations. Biophys J 2014; 107:88-99. [PMID: 24988344 PMCID: PMC4119287 DOI: 10.1016/j.bpj.2014.04.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
Agonists turn on receptors because their target sites have a higher affinity in the active versus resting conformation of the protein. We used single-channel electrophysiology to measure the lower-affinity (LA) and higher-affinity (HA) equilibrium dissociation constants for acetylcholine in adult-type muscle mouse nicotinic receptors (AChRs) having mutations of agonist binding site amino acids. For a series of agonists and for all mutations of αY93, αG147, αW149, αY190, αY198, εW55, and δW57, the change in LA binding energy was approximately half that in HA binding energy. The results were analyzed as a linear free energy relationship between LA and HA agonist binding, the slope of which (κ) gives the fraction of the overall binding chemical potential where the LA complex is established. The linear correlation between LA and HA binding energies suggests that the overall binding process is by an integrated mechanism (catch-and-hold). For the agonist and the above mutations, κ ∼ 0.5, but side-chain substitutions of two residues had a slope that was significantly higher (0.90; αG153) or lower (0.25; εP121). The results suggest that backbone rearrangements in loop B, loop C, and the non-α surface participate in both LA binding and the LA ↔ HA affinity switch. It appears that all of the intermediate steps in AChR activation comprise a single, energetically coupled process.
Collapse
Affiliation(s)
- Prasad Purohit
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Iva Bruhova
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Shaweta Gupta
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
41
|
α1F64 Residue at GABA(A) receptor binding site is involved in gating by influencing the receptor flipping transitions. J Neurosci 2014; 34:3193-209. [PMID: 24573278 DOI: 10.1523/jneurosci.2533-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA receptors (GABAARs) mediate inhibition in the adult brain. These channels are heteropentamers and their ligand binding sites are localized at the β+ / α- interfaces. As expected, mutations of binding-site residues affect binding kinetics but accumulating evidence indicates that gating is also altered, although the underlying mechanisms are unclear. We investigated the impact of the hydrophobic box residue localized at α1(-), F64 (α1F64), on the binding and gating of rat recombinant α1β1γ2 receptors. The analysis of current responses to rapid agonist applications confirmed a marked effect of α1F64 mutations on agonist binding and revealed surprisingly strong effects on gating, including the disappearance of rapid desensitization, the slowing of current onset, and accelerated deactivation. Moreover, nonstationary variance analysis revealed that the α1F64C mutation dramatically reduced the maximum open probability without altering channel conductance. Interestingly, for wild-type receptors, responses to saturating concentration of a partial agonist, P4S, showed no rapid desensitization, similar to GABA-evoked responses mediated by α1F64C mutants. For the α1F64L mutation, the application of the high-affinity agonist muscimol partially rescued rapid desensitization compared with responses evoked by GABA. These findings suggest that α1F64 mutations do not disrupt desensitization mechanisms but rather affect other gating features that obscure it. Model simulations indicated that all of our observations related to α1F64 mutations could be properly reproduced by altering the flipped state transitions that occurred after agonist binding but preceded opening. In conclusion, we propose that the α1F64 residue may participate in linking binding and gating by influencing flipping kinetics.
Collapse
|
42
|
Dixon C, Sah P, Lynch JW, Keramidas A. GABAA receptor α and γ subunits shape synaptic currents via different mechanisms. J Biol Chem 2014; 289:5399-411. [PMID: 24425869 DOI: 10.1074/jbc.m113.514695] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic GABAA receptors (GABAARs) mediate most of the inhibitory neurotransmission in the brain. The majority of these receptors are comprised of α1, β2, and γ2 subunits. The amygdala, a structure involved in processing emotional stimuli, expresses α2 and γ1 subunits at high levels. The effect of these subunits on GABAAR-mediated synaptic transmission is not known. Understanding the influence of these subunits on GABAAR-mediated synaptic currents may help in identifying the roles and locations of amygdala synapses that contain these subunits. Here, we describe the biophysical and synaptic properties of pure populations of α1β2γ2, α2β2γ2, α1β2γ1 and α2β2γ1 GABAARs. Their synaptic properties were examined in engineered synapses, whereas their kinetic properties were studied using rapid agonist application, and single channel recordings. All macropatch currents activated rapidly (<1 ms) and deactivated as a function of the α-subunit, with α2-containing GABAARs consistently deactivating ∼10-fold more slowly. Single channel analysis revealed that the slower current decay of α2-containing GABAARs was due to longer burst durations at low GABA concentrations, corresponding to a ∼4-fold higher affinity for GABA. Synaptic currents revealed a different pattern of activation and deactivation to that of macropatch data. The inclusion of α2 and γ1 subunits slowed both the activation and deactivation rates, suggesting that receptors containing these subunits cluster more diffusely at synapses. Switching the intracellular domains of the γ2 and γ1 subunits substantiated this inference. Because this region determines post-synaptic localization, we hypothesize that GABAARs containing γ1 and γ2 use different mechanisms for synaptic clustering.
Collapse
Affiliation(s)
- Christine Dixon
- From the Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | | | | | | |
Collapse
|
43
|
Intra-subunit flexibility underlies activation and allosteric modulation of neuronal nicotinic acetylcholine receptors. Neuropharmacology 2013; 79:420-31. [PMID: 24373904 DOI: 10.1016/j.neuropharm.2013.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
Abstract
Allosteric modulation is a general feature of nicotinic acetylcholine receptors, yet the structural components and movements important for conversions among functional states are not well understood. In this study, we examine the communication between the binding sites for agonist and the modulator morantel (Mor) of neuronal α3β2 receptors, measuring evoked currents of receptors expressed in Xenopus oocytes with the two-electrode voltage-clamp method. We hypothesized that movement along an interface of β sheets connecting the agonist and modulator sites is necessary for allosteric modulation. To address this, we created pairs of substituted cysteines that span the cleft formed where the outer β sheet meets the β sheet constituting the (-)-face of the α3 subunit; the three pairs were L158C-A179C, L158C-G181C and L158C-K183C. Employing a disulfide trapping approach in which bonds are formed between neighboring cysteines under oxidation conditions, we found that oxidation treatments decreased the amplitude of currents evoked by either the agonist (ACh) or co-applied agonist and modulator (ACh + Mor), by as much as 51%, consistent with the introduced bond decreasing channel efficacy. Reduction treatment increased evoked currents up to 89%. The magnitude of the oxidation effects depended on whether agonists were present during oxidation and on the cysteine pair. Additionally, the cysteine mutations themselves decreased Mor potentiation, implicating these residues in modulation. Our findings suggest that these β sheets in the α3 subunit move with respect to each other during activation and modulation, and the residues studied highlight the contribution of this intramolecular allosteric pathway to receptor function.
Collapse
|
44
|
Nys M, Kesters D, Ulens C. Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol 2013; 86:1042-53. [DOI: 10.1016/j.bcp.2013.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
|
45
|
Colquhoun D, Lape R. Perspectives on: conformational coupling in ion channels: allosteric coupling in ligand-gated ion channels. ACTA ACUST UNITED AC 2013. [PMID: 23183696 PMCID: PMC3514732 DOI: 10.1085/jgp.201210844] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- David Colquhoun
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, England, UK.
| | | |
Collapse
|
46
|
Asymmetric transmitter binding sites of fetal muscle acetylcholine receptors shape their synaptic response. Proc Natl Acad Sci U S A 2013; 110:13654-9. [PMID: 23898191 DOI: 10.1073/pnas.1308247110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) have two transmitter binding sites: at α-δ and either α-γ (fetal) or α-ε (adult) subunit interfaces. The γ-subunit of fetal AChRs is indispensable for the proper development of neuromuscular synapses. We estimated parameters for acetylcholine (ACh) binding and gating from single channel currents of fetal mouse AChRs expressed in tissue-cultured cells. The unliganded gating equilibrium constant is smaller and less voltage-dependent than in adult AChRs. However, the α-γ binding site has a higher affinity for ACh and provides more binding energy for gating compared with α-ε; therefore, the diliganded gating equilibrium constant at -100 mV is comparable for both receptor subtypes. The -2.2 kcal/mol extra binding energy from α-γ compared with α-δ and α-ε is accompanied by a higher resting affinity for ACh, mainly because of slower transmitter dissociation. End plate current simulations suggest that the higher affinity and increased energy from α-γ are essential for generating synaptic responses at low pulse [ACh].
Collapse
|
47
|
Jadey S, Purohit P, Auerbach A. Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue αG153. ACTA ACUST UNITED AC 2013; 141:95-104. [PMID: 23277476 PMCID: PMC3536520 DOI: 10.1085/jgp.201210896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A primary target for nicotine is the acetylcholine receptor channel (AChR). Some of the ability of nicotine to activate differentially AChR subtypes has been traced to a transmitter-binding site amino acid that is glycine in lower affinity and lysine in higher affinity AChRs. We studied the effects of mutations of this residue (αG153) in neuromuscular AChRs activated by nicotine and eight other agonists including nornicotine and anabasine. All of the mutations increased the unliganded gating equilibrium constant. The affinity of the resting receptor (Kd) and the net binding energy from the agonist for gating (ΔGB) were estimated by cross-concentration fitting of single-channel currents. In all but one of the agonist/mutant combinations there was a moderate decrease in Kd and essentially no change in ΔGB. The exceptional case was nicotine plus lysine, which showed a large, >8,000-fold decrease in Kd but no change in ΔGB. The extraordinary specificity of this combination leads us to speculate that AChRs with a lysine at position αG153 may be exposed to a nicotine-like compound in vivo.
Collapse
Affiliation(s)
- Snehal Jadey
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
48
|
Yakel JL. Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch 2013; 465:441-50. [PMID: 23307081 PMCID: PMC3633680 DOI: 10.1007/s00424-012-1200-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability throughout the nervous system by acting on both the cys-loop ligand-gated nicotinic ACh receptor channels (nAChRs) and the G protein-coupled muscarinic ACh receptors (mAChRs). The hippocampus is an important area in the brain for learning and memory, where both nAChRs and mAChRs are expressed. The primary cholinergic input to the hippocampus arises from the medial septum and diagonal band of Broca, the activation of which can activate both nAChRs and mAChRs in the hippocampus and regulate synaptic communication and induce oscillations that are thought to be important for cognitive function. Dysfunction in the hippocampal cholinergic system has been linked with cognitive deficits and a variety of neurological disorders and diseases, including Alzheimer's disease and schizophrenia. My lab has focused on the role of the nAChRs in regulating hippocampal function, from understanding the expression and functional properties of the various subtypes of nAChRs, and what role these receptors may be playing in regulating synaptic plasticity. Here, I will briefly review this work, and where we are going in our attempts to further understand the role of these receptors in learning and memory, as well as in disease and neuroprotection.
Collapse
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
49
|
Gupta S, Purohit P, Auerbach A. Function of interfacial prolines at the transmitter-binding sites of the neuromuscular acetylcholine receptor. J Biol Chem 2013; 288:12667-79. [PMID: 23519471 DOI: 10.1074/jbc.m112.443911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuromuscular acetylcholine (ACh) receptor has two conserved prolines in loop D of the complementary subunit at each of its two transmitter-binding sites (α-ε and α-δ). We used single-channel electrophysiology to estimate the energy changes caused by mutations of these prolines with regard to unliganded gating (ΔG0) and the affinity change for ACh that increases the open channel probability (ΔGB). The effects of mutations of ProD2 (εPro-121/δPro-123) were greater than those of its neighbor (εPro-120/δPro-122) and were greater at α-ε versus α-δ. The main consequence of the congenital myasthenic syndrome mutation εProD2-L was to impair the establishment of a high affinity for ACh and thus make ΔGB less favorable. At both binding sites, most ProD2 mutations decreased constitutive activity (increased ΔG0). LRYHQG and RL substitutions reduced substantially the net binding energy (made ΔGB(ACh) less favorable) by ≥2 kcal/mol at α-ε and α-δ, respectively. Mutant cycle analyses were used to estimate energy coupling between the two ProD2 residues and between each ProD2 and glycine residues (αGly-147 and αGly-153) on the primary (α subunit) side of each binding pocket. The distant binding site prolines interact weakly. ProD2 interacts strongly with αGly-147 but only at α-ε and only when ACh is present. The results suggest that in the low to-high affinity change there is a concerted inter-subunit strain in the backbones at εProD2 and αGly-147. It is possible to engineer receptors having a single functional binding site by using a α-ε or α-δ ProD2-R knock-out mutation. In adult-type ACh receptors, the energy from the affinity change for ACh is approximately the same at the two binding sites (approximately -5 kcal/mol).
Collapse
Affiliation(s)
- Shaweta Gupta
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
50
|
Abstract
Agonist molecules at the two neuromuscular acetylcholine (ACh) receptor (AChR) transmitter-binding sites increase the probability of channel opening. In one hypothesis for AChR activation (“priming”), the capping of loop C at each binding site transfers energy independently to the distant gate over a discrete structural pathway. We used single-channel analyses to examine the experimental support for this proposal with regard to brief unliganded openings, the effects of loop-C modifications, the effects of mutations to residues either on or off the putative pathway, and state models for describing currents at low [ACh]. The results show that (a) diliganded and brief unliganded openings are generated by the same essential, global transition; (b) the radical manipulation of loop C does not prevent channel opening but impairs agonist binding; (c) both on- and off-pathway mutations alter gating by changing the relative stability of the open-channel conformation by local interactions rather than by perturbing a specific site–gate communication link; and (d) it is possible to estimate directly the rate constants for agonist dissociation from and association to both the low and high affinity forms of the AChR-binding site by using a cyclic kinetic model. We conclude that the mechanism of energy transfer between the binding sites and the gate remains an open question.
Collapse
Affiliation(s)
- Prasad Purohit
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|