1
|
Bouquiaux C, Beaujean P, Ramos TN, Castet F, Rodriguez V, Champagne B. First hyperpolarizability of the di-8-ANEPPS and DR1 nonlinear optical chromophores in solution. An experimental and multi-scale theoretical chemistry study. J Chem Phys 2023; 159:174307. [PMID: 37933782 DOI: 10.1063/5.0174979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The solvent effects on the linear and second-order nonlinear optical properties of an aminonaphtylethenylpyridinium (ANEP) dye are investigated by combining experimental and theoretical chemistry methods. On the one hand, deep near infrared (NIR) hyper-Rayleigh scattering (HRS) measurements (1840-1950 nm) are performed on solutions of di-8-ANEPPS in deuterated chloroform, dimethylformamide, and dimethylsulfoxide to determine their first hyperpolarizablity (βHRS). For the first time, these HRS experiments are carried out in the picosecond regime in the deep NIR with very moderate (≤3 mW) average input power, providing a good signal-to-noise ratio and avoiding solvent thermal effects. Moreover, the frequency dispersion of βHRS is investigated for Disperse Red 1 (DR1), a dye commonly used as HRS external reference. On the other hand, these are compared with computational chemistry results obtained by using a sequential molecular dynamics (MD) then quantum mechanics (QM) approach. The MD method allows accounting for the dynamical nature of the molecular structures. Then, the QM part is based on TDDFT/M06-2X/6-311+G* calculations using solvation models ranging from continuum to discrete ones. Measurements report a decrease of the βHRS of di-8-ANEPPS in more polar solvents and these effects are reproduced by the different solvation models. For di-8-ANEPPS and DR1, comparisons show that the use of a hybrid solvation model, combining the description of the solvent molecules around the probe by point charges with a continuum model, already achieves quasi quantitative agreement with experiment. These results are further improved by using a polarizable embedding that includes the atomic polarizabilities in the solvent description.
Collapse
Affiliation(s)
- Charlotte Bouquiaux
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Pierre Beaujean
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Tárcius N Ramos
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Frédéric Castet
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, cours de la Libération 351, F-33405 Talence Cedex, France
| | - Vincent Rodriguez
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, cours de la Libération 351, F-33405 Talence Cedex, France
| | - Benoît Champagne
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
2
|
Bibollet H, Nguyen EL, Miranda DR, Ward CW, Voss AA, Schneider MF, Hernández‐Ochoa EO. Voltage sensor current, SR Ca 2+ release, and Ca 2+ channel current during trains of action potential-like depolarizations of skeletal muscle fibers. Physiol Rep 2023; 11:e15675. [PMID: 37147904 PMCID: PMC10163276 DOI: 10.14814/phy2.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/07/2023] Open
Abstract
In skeletal muscle, CaV 1.1 serves as the voltage sensor for both excitation-contraction coupling (ECC) and L-type Ca2+ channel activation. We have recently adapted the technique of action potential (AP) voltage clamp (APVC) to monitor the current generated by the movement of intramembrane voltage sensors (IQ ) during single imposed transverse tubular AP-like depolarization waveforms (IQAP ). We now extend this procedure to monitoring IQAP , and Ca2+ currents during trains of tubular AP-like waveforms in adult murine skeletal muscle fibers, and compare them with the trajectories of APs and AP-induced Ca2+ release measured in other fibers using field stimulation and optical probes. The AP waveform remains relatively constant during brief trains (<1 sec) for propagating APs in non-V clamped fibers. Trains of 10 AP-like depolarizations at 10 Hz (900 ms), 50 Hz (180 ms), or 100 Hz (90 ms) did not alter IQAP amplitude or kinetics, consistent with previous findings in isolated muscle fibers where negligible charge immobilization occurred during 100 ms step depolarizations. Using field stimulation, Ca2+ release did exhibit a considerable decline from pulse to pulse during the train, also consistent with previous findings, indicating that the decline of Ca2+ release during a short train of APs is not correlated to modification of charge movement. Ca2+ currents during single or 10 Hz trains of AP-like depolarizations were hardly detectable, were minimal during 50 Hz trains, and became more evident during 100 Hz trains in some fibers. Our results verify predictions on the behavior of the ECC machinery in response to AP-like depolarizations and provide a direct demonstration that Ca2+ currents elicited by single AP-like waveforms are negligible, but can become more prominent in some fibers during short high-frequency train stimulation that elicits maximal isometric force.
Collapse
Affiliation(s)
- Hugo Bibollet
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Elton L. Nguyen
- Department of Biological SciencesWright State UniversityDaytonOhioUSA
| | - Daniel R. Miranda
- Department of Biological SciencesWright State UniversityDaytonOhioUSA
| | - Christopher W. Ward
- Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrew A. Voss
- Department of Biological SciencesWright State UniversityDaytonOhioUSA
| | - Martin F. Schneider
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Erick O. Hernández‐Ochoa
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Adler D, Shapira Z, Weiss S, Shainberg A, Katz A. Weak Electromagnetic Fields Accelerate Fusion of Myoblasts. Int J Mol Sci 2021; 22:ijms22094407. [PMID: 33922487 PMCID: PMC8122904 DOI: 10.3390/ijms22094407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Weak electromagnetic fields (WEF) alter Ca2+ handling in skeletal muscle myotubes. Owing to the involvement of Ca2+ in muscle development, we investigated whether WEF affects fusion of myoblasts in culture. Rat primary myoblast cultures were exposed to WEF (1.75 µT, 16 Hz) for up to six days. Under control conditions, cell fusion and creatine kinase (CK) activity increased in parallel and peaked at 4–6 days. WEF enhanced the extent of fusion after one and two days (by ~40%) vs. control, but not thereafter. Exposure to WEF also enhanced CK activity after two days (almost four-fold), but not afterwards. Incorporation of 3H-thymidine into DNA was enhanced by one-day exposure to WEF (~40%), indicating increased cell replication. Using the potentiometric fluorescent dye di-8-ANEPPS, we found that exposure of cells to 150 mM KCl resulted in depolarization of the cell membrane. However, prior exposure of cells to WEF for one day followed by addition of KCl resulted in hyperpolarization of the cell membrane. Acute exposure of cells to WEF also resulted in hyperpolarization of the cell membrane. Twenty-four hour incubation of myoblasts with gambogic acid, an inhibitor of the inward rectifying K+ channel 2.1 (Kir2.1), did not affect cell fusion, WEF-mediated acceleration of fusion or hyperpolarization. These data demonstrate that WEF accelerates fusion of myoblasts, resulting in myotube formation. The WEF effect is associated with hyperpolarization but WEF does not appear to mediate its effects on fusion by activating Kir2.1 channels.
Collapse
Affiliation(s)
- Dana Adler
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel; (D.A.); (A.S.)
| | - Zehavit Shapira
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel; (Z.S.); (S.W.)
| | - Shimon Weiss
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel; (Z.S.); (S.W.)
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Asher Shainberg
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel; (D.A.); (A.S.)
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Box 5626, SE-114 86 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
5
|
Acker CD, Yan P, Loew LM. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:3-10. [PMID: 31474387 PMCID: PMC7048644 DOI: 10.1016/j.pbiomolbio.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The first workshop on Novel Optics-based approaches for Cardiac Electrophysiology (NOtiCE) was held in Florence Italy in 2018. Here, we learned how optical approaches have shaped our basic understanding of cardiac electrophysiology and how new technologies and approaches are being developed and validated to advance the field. Several technologies are being developed that may one day allow for new clinical approaches for diagnosing cardiac disorders and possibly intervening to treat human patients. In this review, we discuss several technologies and approaches to optical voltage imaging with voltage-sensitive dyes. We highlight the development and application of fluorinated and long wavelength voltage-sensitive dyes. These optical voltage sensors have now been applied and well validated in several different assays from cultured human stem cell-derived cardiomyocytes to whole hearts in-vivo. Imaging concepts such as dual wavelength ratiometric techniques, which are crucial to maximizing the information from optical sensors by increasing the useful signal and eliminating noise and artifacts, are presented. Finally, novel voltage sensors including photoacoustic voltage-sensitive dyes, their current capabilities and potential advantages, are introduced.
Collapse
Affiliation(s)
- Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
6
|
Yudovich S, Shani L, Grupi A, Bar-Elli O, Steinitz D, Oron D, Weiss S. Ratiometric widefield imaging with spectrally balanced detection. BIOMEDICAL OPTICS EXPRESS 2019; 10:5385-5394. [PMID: 31646053 PMCID: PMC6788590 DOI: 10.1364/boe.10.005385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Ratiometric imaging is an invaluable tool for quantitative microscopy, allowing for robust detection of FRET, anisotropy, and spectral shifts of nano-scale optical probes in response to local physical and chemical variations such as local pH, ion composition, and electric potential. In this paper, we propose and demonstrate a scheme for widefield ratiometric imaging that allows for continuous tuning of the cutoff wavelength between its two spectral channels. This scheme is based on angle-tuning the image splitting dichroic beamsplitter, similar to previous works on tunable interference filters. This configuration allows for ratiometric imaging of spectrally heterogeneous samples, which require spectral tunability of the detection path in order to achieve good spectrally balanced ratiometric detection.
Collapse
Affiliation(s)
- Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Lior Shani
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Omri Bar-Elli
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Steinitz
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Oron
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Park J, Kuo Y, Li J, Huang YL, Miller EW, Weiss S. Improved Surface Functionalization and Characterization of Membrane-Targeted Semiconductor Voltage Nanosensors. J Phys Chem Lett 2019; 10:3906-3913. [PMID: 31241960 DOI: 10.1021/acs.jpclett.9b01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Type-II ZnSe/CdS voltage-sensing seeded nanorods (vsNRs) were functionalized with α-helical peptides and zwitterionic-decorated lipoic acids (zw-LAs). Specific membrane targeting with high loading efficiency and minimal nonspecific binding was achieved. These vsNRs display quantum yield (QY) modulation as a function of membrane potential (MP) changes, as demonstrated at the ensemble level for (i) vesicles treated with valinomycin and (ii) wild-type HEK cells under alternating buffers with different [K+]. ΔF/F of ∼ 1% was achieved.
Collapse
Affiliation(s)
- Joonhyuck Park
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Yung Kuo
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Jack Li
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Yi-Lin Huang
- Department of Chemistry , Department Molecular & Cell Biology , and Helen Wills Neuroscience Institute , University of California Berkeley , Berkeley , California 94720 , United States
| | - Evan W Miller
- Department of Chemistry , Department Molecular & Cell Biology , and Helen Wills Neuroscience Institute , University of California Berkeley , Berkeley , California 94720 , United States
| | - Shimon Weiss
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California Los Angeles , Los Angeles , California 90095 , United States
- Department of Physiology , University of California Los Angeles , Los Angeles , California 90095 , United States
- Department of Physics, Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
8
|
Banks Q, Pratt SJP, Iyer SR, Lovering RM, Hernández-Ochoa EO, Schneider MF. Optical Recording of Action Potential Initiation and Propagation in Mouse Skeletal Muscle Fibers. Biophys J 2018; 115:2127-2140. [PMID: 30448039 PMCID: PMC6289662 DOI: 10.1016/j.bpj.2018.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/29/2023] Open
Abstract
Skeletal muscle fibers have been used to examine a variety of cellular functions and pathologies. Among other parameters, skeletal muscle action potential (AP) propagation has been measured to assess the integrity and function of skeletal muscle. In this work, we utilize 1-(3-sulfonatopropyl)-4[β[2-(Di-n-octylamino)-6-naphtyl]vinyl]pyridinium betaine, a potentiometric dye, and mag-fluo-4, a low-affinity intracellular Ca2+indicator, to noninvasively and reliably measure AP conduction velocity in skeletal muscle. We used remote extracellular bipolar electrodes to generate an alternating polarity electric field that initiates an AP at either end of the fiber. Using enzymatically dissociated flexor digitorum brevis (FDB) fibers and high-speed line scans, we determine the conduction velocity to be ∼0.4 m/s. We applied these methodologies to FDB fibers under elevated extracellular potassium conditions and confirmed that the conduction velocity is significantly reduced in elevated [K+]o. Because our recorded velocities for FDB fibers were much slower than previously reported for other muscle groups, we compared the conduction velocity in FDB fibers to that of extensor digitorum longus (EDL) fibers and measured a significantly faster velocity in EDL fibers than FDB fibers. As a basis for this difference in conduction velocity, we found a similarly higher level of expression of Na+ channels in EDL than in FDB fibers. In addition to measuring the conduction velocity, we can also measure the passive electrotonic potentials elicited by pulses by applying tetrodotoxin and have constructed a circuit model of a skeletal muscle fiber to predict passive polarization of the fiber by the field stimuli. Our predictions from the model fiber closely resemble the recordings acquired from in vitro assays. With these techniques, we can examine how various pathologies and mutations affect skeletal muscle AP propagation. Our work demonstrates the utility of using 1-(3-sulfonatopropyl)-4[β[2-(Di-n-octylamino)-6-naphtyl]vinyl]pyridinium betaine or mag-fluo-4 to noninvasively measure AP initiation and conduction.
Collapse
Affiliation(s)
- Quinton Banks
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen Joseph Paul Pratt
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shama Rajan Iyer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Erick Omar Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin Frederick Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
9
|
Melzer W. No voltage change at skeletal muscle SR membrane during Ca 2+ release-just Mermaids on acid. J Gen Physiol 2018; 150:1055-1058. [PMID: 29970411 PMCID: PMC6080887 DOI: 10.1085/jgp.201812084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Melzer highlights new work confirming that the sarcoplasmic reticulum transmembrane voltage changes little during Ca2+ release Calcium ions control multiple physiological functions by binding to extracellular and intracellular targets. One of the best-studied Ca2+-dependent functions is contraction of smooth and striated muscle tissue, which results from Ca2+ ligation to calmodulin and troponin C, respectively. Ca2+ signaling typically involves flux of the ion across membranes via specifically gated channel proteins. Because calcium ions are charged, they possess the ability to generate changes in the respective transmembrane voltage. Ca2+-dependent voltage alterations of the surface membrane are easily measured using microelectrodes. A well-known example is the characteristic plateau phase of the action potential in cardiac ventricular cells that results from the opening of voltage-gated L-type Ca2+ channels. Ca2+ ions are also released from intracellular storage compartments in many cells, but these membranes are not accessible to direct voltage recording with microelectrodes. In muscle, for example, release of Ca2+ from the sarcoplasmic reticulum (SR) to the myoplasm constitutes a flux that is considerably larger than the entry flux from the extracellular space. Whether this flux is accompanied by a voltage change across the SR membrane is an obvious question of mechanistic importance and has been the subject of many investigations. Because the tiny spaces enclosed by the SR membrane are inaccessible to microelectrodes, alternative methods have to be applied. In a study by Sanchez et al. (2018. J. Gen. Physiol.https://doi.org/10.1085/jgp.201812035) in this issue, modern confocal light microscopy and genetically encoded voltage probes targeted to the SR were applied in a new approach to search for changes in the membrane potential of the SR during Ca2+ release.
Collapse
Affiliation(s)
- Werner Melzer
- Institut für Angewandte Physiologie, Universität Ulm, Ulm, Germany
| |
Collapse
|
10
|
Broyles CN, Robinson P, Daniels MJ. Fluorescent, Bioluminescent, and Optogenetic Approaches to Study Excitable Physiology in the Single Cardiomyocyte. Cells 2018; 7:cells7060051. [PMID: 29857560 PMCID: PMC6028913 DOI: 10.3390/cells7060051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
This review briefly summarizes the single cell application of classical chemical dyes used to visualize cardiomyocyte physiology and their undesirable toxicities which have the potential to confound experimental observations. We will discuss, in detail, the more recent iterative development of fluorescent and bioluminescent protein-based indicators and their emerging application to cardiomyocytes. We will discuss the integration of optical control strategies (optogenetics) to augment the standard imaging approach. This will be done in the context of potential applications, and barriers, of these technologies to disease modelling, drug toxicity, and drug discovery efforts at the single-cell scale.
Collapse
Affiliation(s)
- Connor N Broyles
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- BHF Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK.
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- BHF Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK.
| | - Matthew J Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- BHF Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK.
- Department of Cardiology, Oxford University NHS Hospitals Trust, Oxford OX3 9DU, UK.
- BHF Centre of Regenerative Medicine, University of Oxford, Oxford OX3 9DU, UK.
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Mihogaoka 8-1, Ibaraki, 567-0047 Osaka, Japan.
| |
Collapse
|
11
|
Karam C, Yi J, Xiao Y, Dhakal K, Zhang L, Li X, Manno C, Xu J, Li K, Cheng H, Ma J, Zhou J. Absence of physiological Ca 2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skelet Muscle 2017; 7:6. [PMID: 28395670 PMCID: PMC5387329 DOI: 10.1186/s13395-017-0123-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Motor neurons control muscle contraction by initiating action potentials in muscle. Denervation of muscle from motor neurons leads to muscle atrophy, which is linked to mitochondrial dysfunction. It is known that denervation promotes mitochondrial reactive oxygen species (ROS) production in muscle, whereas the initial cause of mitochondrial ROS production in denervated muscle remains elusive. Since denervation isolates muscle from motor neurons and deprives it from any electric stimulation, no action potentials are initiated, and therefore, no physiological Ca2+ transients are generated inside denervated muscle fibers. We tested whether loss of physiological Ca2+ transients is an initial cause leading to mitochondrial dysfunction in denervated skeletal muscle. METHODS A transgenic mouse model expressing a mitochondrial targeted biosensor (mt-cpYFP) allowed a real-time measurement of the ROS-related mitochondrial metabolic function following denervation, termed "mitoflash." Using live cell imaging, electrophysiological, pharmacological, and biochemical studies, we examined a potential molecular mechanism that initiates ROS-related mitochondrial dysfunction following denervation. RESULTS We found that muscle fibers showed a fourfold increase in mitoflash activity 24 h after denervation. The denervation-induced mitoflash activity was likely associated with an increased activity of mitochondrial permeability transition pore (mPTP), as the mitoflash activity was attenuated by application of cyclosporine A. Electrical stimulation rapidly reduced mitoflash activity in both sham and denervated muscle fibers. We further demonstrated that the Ca2+ level inside mitochondria follows the time course of the cytosolic Ca2+ transient and that inhibition of mitochondrial Ca2+ uptake by Ru360 blocks the effect of electric stimulation on mitoflash activity. CONCLUSIONS The loss of cytosolic Ca2+ transients due to denervation results in the downstream absence of mitochondrial Ca2+ uptake. Our studies suggest that this could be an initial trigger for enhanced mPTP-related mitochondrial ROS generation in skeletal muscle.
Collapse
Affiliation(s)
- Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yajuan Xiao
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lin Zhang
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Carlo Manno
- Rush University School of Medicine, Chicago, IL, USA
| | - Jiejia Xu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Kaitao Li
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH, USA.
| | - Jingsong Zhou
- Rush University School of Medicine, Chicago, IL, USA. .,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA.
| |
Collapse
|
12
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
13
|
Lu XL, Rubart M. Micron-scale voltage and [Ca(2+)]i imaging in the intact heart. Front Physiol 2014; 5:451. [PMID: 25520663 PMCID: PMC4251286 DOI: 10.3389/fphys.2014.00451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/03/2014] [Indexed: 12/03/2022] Open
Abstract
Studies in isolated cardiomyocytes have provided tremendous information at the cellular and molecular level concerning regulation of transmembrane voltage (Vm) and intracellular calcium ([Ca2+]i). The ability to use the information gleaned to gain insight into the function of ion channels and Ca2+ handling proteins in a more complex system, e.g., the intact heart, has remained a challenge. We have developed laser scanning fluorescence microscopy-based approaches to monitor, at the sub-cellular to multi-cellular level in the immobilized, Langendorff-perfused mouse heart, dynamic changes in [Ca2+]i and Vm. This article will review the use of single- or dual-photon laser scanning microscopy [Ca2+]i imaging in conjunction with transgenic reporter technology to (a) interrogate the extent to which transplanted, donor-derived myocytes or cardiac stem cell-derived de novo myocytes are capable of forming a functional syncytium with the pre-existing myocardium, using entrainment of [Ca2+]i transients by the electrical activity of the recipient heart as a surrogate for electrical coupling, and (b) characterize the Ca2+ handling phenotypes of cellular implants. Further, we will review the ability of laser scanning fluorescence microscopy in conjunction with a fast-response voltage-sensitive to resolve, on a subcellular level in Langendorff-perfused mouse hearts, Vm dynamics that typically occur during the course of a cardiac action potential. Specifically, the utility of this technique to measure microscopic-scale voltage gradients in the normal and diseased heart is discussed.
Collapse
Affiliation(s)
- Xiao-Long Lu
- Riley Heart Research Center, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Michael Rubart
- Riley Heart Research Center, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
14
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
15
|
Melzer W. Skeletal muscle fibers: Inactivated or depleted after long depolarizations? ACTA ACUST UNITED AC 2014; 141:517-20. [PMID: 23630336 PMCID: PMC3639573 DOI: 10.1085/jgp.201310997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Werner Melzer
- Institute of Applied Physiology, Ulm University, D-89081 Ulm, Germany.
| |
Collapse
|
16
|
Adler EM. Looking to the past and to the future. J Gen Physiol 2013; 141:401-2. [PMID: 23530134 PMCID: PMC3607829 DOI: 10.1085/jgp.201310983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|