1
|
Shen Y, Wen Y, Sposini S, Vishwanath AA, Abdelfattah AS, Schreiter ER, Lemieux MJ, de Juan-Sanz J, Perrais D, Campbell RE. Rational Engineering of an Improved Genetically Encoded pH Sensor Based on Superecliptic pHluorin. ACS Sens 2023; 8:3014-3022. [PMID: 37481776 DOI: 10.1021/acssensors.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Genetically encoded pH sensors based on fluorescent proteins are valuable tools for the imaging of cellular events that are associated with pH changes, such as exocytosis and endocytosis. Superecliptic pHluorin (SEP) is a pH-sensitive green fluorescent protein (GFP) variant widely used for such applications. Here, we report the rational design, development, structure, and applications of Lime, an improved SEP variant with higher fluorescence brightness and greater pH sensitivity. The X-ray crystal structure of Lime supports the mechanistic rationale that guided the introduction of beneficial mutations. Lime provides substantial improvements relative to SEP for imaging of endocytosis and exocytosis. Furthermore, Lime and its variants are advantageous for a broader range of applications including the detection of synaptic release and neuronal voltage changes.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yurong Wen
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silvia Sposini
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux 33076, France
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London SW7 2BX, United Kingdom
| | - Anjali Amrapali Vishwanath
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Häpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Ahmed S Abdelfattah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virgina 20147, United States
- Department of Neuroscience, Brown University, Providence, Rhode Island 02906, United States
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virgina 20147, United States
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jaime de Juan-Sanz
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Häpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - David Perrais
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux 33076, France
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Ducza L, Gajtkó A, Hegedűs K, Bakk E, Kis G, Gaál B, Takács R, Szücs P, Matesz K, Holló K. Neuronal P2X4 receptor may contribute to peripheral inflammatory pain in rat spinal dorsal horn. Front Mol Neurosci 2023; 16:1115685. [PMID: 36969557 PMCID: PMC10033954 DOI: 10.3389/fnmol.2023.1115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectiveIntense inflammation may result in pain, which manifests as spinal central sensitization. There is growing evidence that purinergic signaling plays a pivotal role in the orchestration of pain processing. Over the last decade the ionotropic P2X purino receptor 4 (P2X4) got into spotlight in neuropathic disorders, however its precise spinal expression was scantily characterized during inflammatory pain. Thus, we intended to analyze the receptor distribution within spinal dorsal horn and lumbar dorsal root ganglia (DRG) of rats suffering in inflammatory pain induced by complete Freund adjuvant (CFA).MethodsCFA-induced peripheral inflammation was validated by mechanical and thermal behavioral tests. In order to ensure about the putative alteration of spinal P2X4 receptor gene expression qPCR reactions were designed, followed by immunoperoxidase and Western blot experiments to assess changes at a protein level. Colocalization of P2X4 with neuronal and glial markers was investigated by double immunofluorescent labelings, which were subsequently analyzed with IMARIS software. Transmission electronmicroscopy was applied to study the ultrastructural localization of the receptor. Concurrently, in lumbar DRG cells similar methodology has been carried out to complete our observations.ResultsThe figures of mechanical and thermal behavioral tests proved the establishment of CFA-induced inflammatory pain. We observed significant enhancement of P2X4 transcript level within the spinal dorsal horn 3 days upon CFA administration. Elevation of P2X4 immunoreactivity within Rexed lamina I-II of the spinal gray matter was synchronous with mRNA expression, and confirmed by protein blotting. According to IMARIS analysis the robust protein increase was mainly detected on primary afferent axonterminals and GFAP-labelled astrocyte membrane compartments, but not on postsynaptic dendrites was also validated ultrastructurally within the spinal dorsal horn. Furthermore, lumbar DRG analysis demonstrated that peptidergic and non-peptidergic nociceptive subsets of ganglia cells were also abundantly positive for P2X4 receptor in CFA model.ConclusionHere we provide novel evidence about involvement of neuronal and glial P2X4 receptor in the establishment of inflammatory pain.
Collapse
|
3
|
Sophocleous RA, Ooi L, Sluyter R. The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target. Int J Mol Sci 2022; 23:ijms23105739. [PMID: 35628550 PMCID: PMC9147237 DOI: 10.3390/ijms23105739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|
4
|
Single-Dose P2 X4R Single-Chain Fragment Variable Antibody Permanently Reverses Chronic Pain in Male Mice. Int J Mol Sci 2021; 22:ijms222413612. [PMID: 34948407 PMCID: PMC8706307 DOI: 10.3390/ijms222413612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.
Collapse
|
5
|
Ponsford AH, Ryan TA, Raimondi A, Cocucci E, Wycislo SA, Fröhlich F, Swan LE, Stagi M. Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy 2021; 17:1500-1518. [PMID: 32515674 PMCID: PMC8205096 DOI: 10.1080/15548627.2020.1771858] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Disorders of lysosomal physiology have increasingly been found to underlie the pathology of a rapidly growing cast of neurodevelopmental disorders and sporadic diseases of aging. One cardinal aspect of lysosomal (dys)function is lysosomal acidification in which defects trigger lysosomal stress signaling and defects in proteolytic capacity. We have developed a genetically encoded ratiometric probe to measure lysosomal pH coupled with a purification tag to efficiently purify lysosomes for both proteomic and in vitro evaluation of their function. Using our probe, we showed that lysosomal pH is remarkably stable over a period of days in a variety of cell types. Additionally, this probe can be used to determine that lysosomal stress signaling via TFEB is uncoupled from gross changes in lysosomal pH. Finally, we demonstrated that while overexpression of ARL8B GTPase causes striking alkalinization of peripheral lysosomes in HEK293 T cells, peripheral lysosomes per se are no less acidic than juxtanuclear lysosomes in our cell lines.Abbreviations: ARL8B: ADP ribosylation factor like GTPase 8B; ATP: adenosine triphosphate; ATP5F1B/ATPB: ATP synthase F1 subunit beta; ATP6V1A: ATPase H+ transporting V1 subunit A; Baf: bafilomycin A1; BLOC-1: biogenesis of lysosome-related organelles complex 1; BSA: bovine serum albumin; Cos7: African green monkey kidney fibroblast-like cell line; CQ: chloroquine; CTSB: cathepsin B; CYCS: cytochrome c, somatic; DAPI: 4',6-diamidino -2- phenylindole; DIC: differential interference contrast; DIV: days in vitro; DMEM: Dulbecco's modified Eagle's medium; E8: embryonic day 8; EEA1: early endosome antigen 1; EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GTP: guanosine triphosphate; HEK293T: human embryonic kidney 293 cells, that expresses a mutant version of the SV40 large T antigen; HeLa: Henrietta Lacks-derived cell; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HRP: horseradish peroxidase; IGF2R/ciM6PR: insulin like growth factor 2 receptor; LAMP1/2: lysosomal associated membrane protein 1/2; LMAN2/VIP36: lectin, mannose binding 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PCR: polymerase chain reaction; PDL: poly-d-lysine; PGK1p: promotor from human phosphoglycerate kinase 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPT1/CLN1: palmitoyl-protein thioesterase 1; RPS6KB1/p70: ribosomal protein S6 kinase B1; STAT3: signal transducer and activator of transcription 3; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGN: trans-Golgi network; TGOLN2/TGN46: trans-Golgi network protein 2; TIRF: total internal reflection fluorescence; TMEM106B: transmembrane protein 106B; TOR: target of rapamycin; TRPM2: transient receptor potential cation channel subfamily M member 2; V-ATPase: vacuolar-type proton-translocating ATPase; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Amy H. Ponsford
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thomas A. Ryan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susanne A. Wycislo
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
- Centre of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Osnabrück, Germany
| | - Laura E. Swan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol 2021; 12:645834. [PMID: 33897694 PMCID: PMC8059410 DOI: 10.3389/fimmu.2021.645834] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.
Collapse
Affiliation(s)
- Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
7
|
Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav 2021; 115:107701. [PMID: 33412369 DOI: 10.1016/j.yebeh.2020.107701] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Epilepsy is a devastating neurological disorder characterized by the repeated occurrence of epileptic seizures. Epilepsy stands as a global health concern affecting around 70 million people worldwide. The mainstream antiepileptic drugs (AEDs) only exert symptomatic relief and drug-resistant epilepsy occurs in up to 33 percent of patients. Hence, the investigation of novel therapeutic strategies against epileptic seizures that could exert disease modifying effects is of paramount importance. In this context, compounds of natural origin with potential antiepileptic properties have recently gained increasing attention. Quercetin is a plant-derived flavonoid with several pharmacological activities. Emerging evidence has demonstrated the antiepileptic potential of quercetin as well. Herein, based on the available evidence, we discuss the neuroprotective effects of quercetin against epileptic seizures and further analyze the plausible underlying molecular mechanisms. Our review suggests that quercetin might be a potential therapeutic candidate against epilepsy that deserves further investigation, and paves the way for the development of plant-derived antiepileptic treatment approaches.
Collapse
|
8
|
He J, Zhou Y, Arredondo Carrera HM, Sprules A, Neagu R, Zarkesh SA, Eaton C, Luo J, Gartland A, Wang N. Inhibiting the P2X4 Receptor Suppresses Prostate Cancer Growth In Vitro and In Vivo, Suggesting a Potential Clinical Target. Cells 2020; 9:cells9112511. [PMID: 33233569 PMCID: PMC7699771 DOI: 10.3390/cells9112511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men, causing considerable morbidity and mortality. The P2X4 receptor (P2X4R) is the most ubiquitously expressed P2X receptor in mammals and is positively associated with tumorigenesis in many cancer types. However, its involvement in PCa progression is less understood. We hypothesized that P2X4R activity enhanced tumour formation by PCa cells. We showed that P2X4R was the most highly expressed, functional P2 receptor in these cells using quantitative reverse transcription PCR (RT-PCR) and a calcium influx assay. The effect of inhibiting P2X4R on PCa (PC3 and C4-2B4 cells) viability, proliferation, migration, invasion, and apoptosis were examined using the selective P2XR4 antagonists 5-BDBD and PSB-12062. The results demonstrated that inhibiting P2X4R impaired the growth and mobility of PCa cells but not apoptosis. In BALB/c immunocompromised nude mice inoculated with human PC3 cells subcutaneously, 5-BDBD showed anti-tumourigenic effects. Finally, a retrospective analysis of P2RX4 expression in clinical datasets (GDS1439, GDS1746, and GDS3289) suggested that P2X4R was positively associated with PCa malignancy. These studies suggest that P2X4R has a role in enhancing PCa tumour formation and is a clinically targetable candidate for which inhibitors are already available and have the potential to suppress disease progression.
Collapse
Affiliation(s)
- Jiepei He
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Yuhan Zhou
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Hector M. Arredondo Carrera
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Alexandria Sprules
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Ramona Neagu
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Sayyed Amin Zarkesh
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Colby Eaton
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Alison Gartland
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Ning Wang
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
- Correspondence: ; Tel.: +44-(0)-114-2159216
| |
Collapse
|
9
|
Bergler F, Fuentes C, Kadir MF, Navarrete C, Supple J, Barrera NP, Edwardson JM. Activation of P2X4 receptors induces an increase in the area of the extracellular region and a decrease in receptor mobility. FEBS Lett 2020; 594:4381-4389. [PMID: 32979222 DOI: 10.1002/1873-3468.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
The P2X4 receptor (P2X4R) is an ATP-gated cation channel. Here, we used fast-scan atomic force microscopy (AFM) to visualize changes in the structure and mobility of individual P2X4Rs in response to activation. P2X4Rs were purified from detergent extracts of transfected cells and integrated into lipid bilayers. Activation resulted in a rapid (2 s) and substantial (10-20 nm2 ) increase in the cross-sectional area of the extracellular region of the receptor and a corresponding decrease in receptor mobility. Both effects were blocked by the P2X4R antagonist 5-BDBD. Addition of cholesterol to the bilayer reduced receptor mobility, although the ATP-induced reduction in mobility was still observed. We suggest that the observed responses to activation may have functional consequences for purinergic signalling.
Collapse
Affiliation(s)
- Frederik Bergler
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Christian Fuentes
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Md Fahim Kadir
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Camilo Navarrete
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jack Supple
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
10
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
11
|
Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci 2020; 21:E5562. [PMID: 32756482 PMCID: PMC7432758 DOI: 10.3390/ijms21155562] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The release and extracellular action of ATP are a widespread mechanism for cell-to-cell communication in living organisms through activation of P2X and P2Y receptors expressed at the cell surface of most tissues, including the nervous system. Among ionototropic receptors, P2X4 receptors have emerged in the last decade as a potential target for CNS disorders such as epilepsy, ischemia, chronic pain, anxiety, multiple sclerosis and neurodegenerative diseases. However, the role of P2X4 receptor in each pathology ranges from beneficial to detrimental, although the mechanisms are still mostly unknown. P2X4 is expressed at low levels in CNS cells including neurons and glial cells. In normal conditions, P2X4 activation contributes to synaptic transmission and synaptic plasticity. Importantly, one of the genes present in the transcriptional program of myeloid cell activation is P2X4. Microglial P2X4 upregulation, the P2X4+ state of microglia, seems to be common in most acute and chronic neurodegenerative diseases associated with inflammation. In this review, we summarize knowledge about the role of P2X4 receptors in the CNS physiology and discuss potential pitfalls and open questions about the therapeutic potential of blocking or potentiation of P2X4 for different pathologies.
Collapse
Affiliation(s)
- Alejandro Montilla
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Gilda Paloma Mata
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Carlos Matute
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Maria Domercq
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| |
Collapse
|
12
|
Resolving the Ionotropic P2X4 Receptor Mystery Points Towards a New Therapeutic Target for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21145005. [PMID: 32679900 PMCID: PMC7404342 DOI: 10.3390/ijms21145005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a primordial versatile autacoid that changes its role from an intracellular energy saver to a signaling molecule once released to the extracellular milieu. Extracellular ATP and its adenosine metabolite are the main activators of the P2 and P1 purinoceptor families, respectively. Mounting evidence suggests that the ionotropic P2X4 receptor (P2X4R) plays pivotal roles in the regulation of the cardiovascular system, yet further therapeutic advances have been hampered by the lack of selective P2X4R agonists. In this review, we provide the state of the art of the P2X4R activity in the cardiovascular system. We also discuss the role of P2X4R activation in kidney and lungs vis a vis their interplay to control cardiovascular functions and dysfunctions, including putative adverse effects emerging from P2X4R activation. Gathering this information may prompt further development of selective P2X4R agonists and its translation to the clinical practice.
Collapse
|
13
|
Nguyen HM, di Lucente J, Chen YJ, Cui Y, Ibrahim RH, Pennington MW, Jin LW, Maezawa I, Wulff H. Biophysical basis for Kv1.3 regulation of membrane potential changes induced by P2X4-mediated calcium entry in microglia. Glia 2020; 68:2377-2394. [PMID: 32525239 PMCID: PMC7540709 DOI: 10.1002/glia.23847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022]
Abstract
Microglia‐mediated inflammation exerts adverse effects in ischemic stroke and in neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the voltage‐gated potassium channel Kv1.3 is required for microglia activation. Both genetic deletion and pharmacological inhibition of Kv1.3 are effective in reducing microglia activation and the associated inflammatory responses, as well as in improving neurological outcomes in animal models of AD and ischemic stroke. Here we sought to elucidate the molecular mechanisms underlying the therapeutic effects of Kv1.3 inhibition, which remain incompletely understood. Using a combination of whole‐cell voltage‐clamp electrophysiology and quantitative PCR (qPCR), we first characterized a stimulus‐dependent differential expression pattern for Kv1.3 and P2X4, a major ATP‐gated cationic channel, both in vitro and in vivo. We then demonstrated by whole‐cell current‐clamp experiments that Kv1.3 channels contribute not only to setting the resting membrane potential but also play an important role in counteracting excessive membrane potential changes evoked by depolarizing current injections. Similarly, the presence of Kv1.3 channels renders microglia more resistant to depolarization produced by ATP‐mediated P2X4 receptor activation. Inhibiting Kv1.3 channels with ShK‐223 completely nullified the ability of Kv1.3 to normalize membrane potential changes, resulting in excessive depolarization and reduced calcium transients through P2X4 receptors. Our report thus links Kv1.3 function to P2X4 receptor‐mediated signaling as one of the underlying mechanisms by which Kv1.3 blockade reduces microglia‐mediated inflammation. While we could confirm previously reported differences between males and females in microglial P2X4 expression, microglial Kv1.3 expression exhibited no gender differences in vitro or in vivo. Main Points The voltage‐gated K+ channel Kv1.3 regulates microglial membrane potential. Inhibition of Kv1.3 depolarizes microglia and reduces calcium entry mediated by P2X4 receptors by dissipating the electrochemical driving force for calcium.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California, USA
| | - Jacopo di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Yi-Je Chen
- Department of Pharmacology, University of California, Davis, California, USA
| | - Yanjun Cui
- Department of Pharmacology, University of California, Davis, California, USA
| | - Rania H Ibrahim
- Department of Pharmacology, University of California, Davis, California, USA
| | | | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California, USA
| |
Collapse
|
14
|
Du ER, Fan RP, Rong LL, Xie Z, Xu CS. Regulatory mechanisms and therapeutic potential of microglial inhibitors in neuropathic pain and morphine tolerance. J Zhejiang Univ Sci B 2020; 21:204-217. [PMID: 32133798 PMCID: PMC7086010 DOI: 10.1631/jzus.b1900425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
Abstract
Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.
Collapse
Affiliation(s)
- Er-rong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | - Rong-ping Fan
- Department of Fourth Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Li-lou Rong
- Department of Fourth Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zhen Xie
- Department of First Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Chang-shui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
- Key Laboratory of Autonomic Nervous Function and Disease of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
15
|
Anand A, Liu B, Dicroce Giacobini J, Maeda K, Rohde M, Jäättelä M. Cell Death Induced by Cationic Amphiphilic Drugs Depends on Lysosomal Ca 2+ Release and Cyclic AMP. Mol Cancer Ther 2019; 18:1602-1614. [PMID: 31285280 PMCID: PMC7611280 DOI: 10.1158/1535-7163.mct-18-1406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Repurposing cationic amphiphilic drugs (CAD) for cancer treatment is emerging as an attractive means to enhance the efficacy of chemotherapy. Many commonly used CADs, including several cation amphiphilic antihistamines and antidepressants, induce cancer-specific, lysosome-dependent cell death and sensitize cancer cells to chemotherapy. CAD-induced inhibition of lysosomal acid sphingomyelinase is necessary, but not sufficient, for the subsequent lysosomal membrane permeabilization and cell death, while other pathways regulating this cell death pathway are largely unknown. Prompted by significant changes in the expression of genes involved in Ca2+ and cyclic AMP (cAMP) signaling pathways in CAD-resistant MCF7 breast cancer cells, we identified here an early lysosomal Ca2+ release through P2X purinergic receptor 4 (P2RX4) and subsequent Ca2+- and adenylyl cyclase 1 (ADCY1)-dependent synthesis of cAMP as a signaling route mediating CAD-induced lysosomal membrane permeabilization and cell death. Importantly, pharmacologic and genetic means to increase cellular cAMP levels either by activating cAMP-inducing G-protein-coupled receptors (GPR3 or β2 adrenergic receptor) or ADCY1, or by inhibiting cAMP-reducing guanine nucleotide-binding protein G(i) subunit α2, C-X-C motif chemokine receptor type 4, or cAMP phosphodiesterases, sensitized cancer cells to CADs. These data reveal a previously unrecognized lysosomal P2RX4- and ADCY1-dependent signaling cascade as a pathway essential for CAD-induced lysosome-dependent cell death and encourage further investigations to find the most potent combinations of CADs and cAMP-inducing drugs for cancer therapy.
Collapse
Affiliation(s)
- Atul Anand
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Bin Liu
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Jano Dicroce Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Mikkel Rohde
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
17
|
Antonioli L, Blandizzi C, Fornai M, Pacher P, Lee HT, Haskó G. P2X4 receptors, immunity, and sepsis. Curr Opin Pharmacol 2019; 47:65-74. [PMID: 30921560 DOI: 10.1016/j.coph.2019.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
Sepsis is life-threatening systemic organ dysfunction caused by a deregulated host response to an infectious insult. Currently, the treatment of sepsis is limited to the use of antibiotics, fluids, and cardiovascular/respiratory support. Despite these interventions, septic mortality remains high, with reduced life quality in survivors. For this reason, the identification of novel drug targets is a pressing task of modern pharmacology. According to a recent research, it appears that P2 purinergic receptors, which can regulate the host's response to infections, have been identified as potential targets for the treatment of sepsis. Among P2 receptors, the P2X4 receptor has recently captured the attention of the research community owing to its role in protecting against infections, inflammation, and organ injury. The present review provides an outline of the role played by P2X4 receptors in the modulation of the host's response to sepsis and the promise that targeting this receptor holds in the treatment of sepsis.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - H Thomas Lee
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Lobas MA, Tao R, Nagai J, Kronschläger MT, Borden PM, Marvin JS, Looger LL, Khakh BS. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun 2019; 10:711. [PMID: 30755613 PMCID: PMC6372613 DOI: 10.1038/s41467-019-08441-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Adenosine 5' triphosphate (ATP) is a universal intracellular energy source and an evolutionarily ancient, ubiquitous extracellular signal in diverse species. Here, we report the generation and characterization of single-wavelength genetically encoded fluorescent sensors (iATPSnFRs) for imaging extracellular and cytosolic ATP from insertion of circularly permuted superfolder GFP into the epsilon subunit of F0F1-ATPase from Bacillus PS3. On the cell surface and within the cytosol, iATPSnFR1.0 responds to relevant ATP concentrations (30 μM to 3 mM) with fast increases in fluorescence. iATPSnFRs can be genetically targeted to specific cell types and sub-cellular compartments, imaged with standard light microscopes, do not respond to other nucleotides and nucleosides, and when fused with a red fluorescent protein function as ratiometric indicators. After careful consideration of their modest pH sensitivity, iATPSnFRs represent promising reagents for imaging ATP in the extracellular space and within cells during a variety of settings, and for further application-specific refinements.
Collapse
Affiliation(s)
- Mark A Lobas
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Koniku Inc., 740 Heinz Avenue, Berkeley, CA, 94710, USA
| | - Rongkun Tao
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - Mira T Kronschläger
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Philip M Borden
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | | | - Loren L Looger
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA.
| |
Collapse
|
19
|
Fois G, Föhr KJ, Kling C, Fauler M, Wittekindt OH, Dietl P, Frick M. P2X 4 receptor re-sensitization depends on a protonation/deprotonation cycle mediated by receptor internalization and recycling. J Physiol 2018; 596:4893-4907. [PMID: 30144063 DOI: 10.1113/jp275448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.
Collapse
Affiliation(s)
| | - Karl J Föhr
- Department of Anesthesiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Fois G, Winkelmann VE, Bareis L, Staudenmaier L, Hecht E, Ziller C, Ehinger K, Schymeinsky J, Kranz C, Frick M. ATP is stored in lamellar bodies to activate vesicular P2X 4 in an autocrine fashion upon exocytosis. J Gen Physiol 2017; 150:277-291. [PMID: 29282210 PMCID: PMC5806682 DOI: 10.1085/jgp.201711870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
P2X4 receptor activation facilitates secretion of pulmonary surfactant from secretory vesicles called lamellar bodies in alveolar epithelial cells. Fois et al. reveal that P2X4 receptors on the lamellar body membranes are activated by ATP stored within the vesicles themselves upon vesicle exocytosis. Vesicular P2X4 receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X4 receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X4 receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation. Despite the importance of ATP in the alveoli, and hence lung function, the origin of ATP in the alveoli is still elusive. In this study, we demonstrate that ATP is stored within LBs themselves at a concentration of ∼1.9 mM. ATP is loaded into LBs by the vesicular nucleotide transporter but does not activate P2X4 receptors because of the low intraluminal pH (5.5). However, the rise in intravesicular pH after opening of the exocytic fusion pore results in immediate activation of vesicular P2X4 by vesicular ATP. Our data suggest a new model in which agonist (ATP) and receptor (P2X4) are located in the same intracellular compartment (LB), protected from premature degradation (ATP) and activation (P2X4), and ideally placed to ensure coordinated and timely receptor activation as soon as fusion occurs to facilitate surfactant secretion.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Lara Bareis
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Elena Hecht
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Charlotte Ziller
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Jürgen Schymeinsky
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
21
|
Schneider M, Prudic K, Pippel A, Klapperstück M, Braam U, Müller CE, Schmalzing G, Markwardt F. Interaction of Purinergic P2X4 and P2X7 Receptor Subunits. Front Pharmacol 2017; 8:860. [PMID: 29213241 PMCID: PMC5702805 DOI: 10.3389/fphar.2017.00860] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
P2X4 and P2X7 are members of the P2X receptor family, comprising seven isoforms (P2X1–P2X7) that form homo- and heterotrimeric non-specific cation channels gated by extracellular ATP. P2X4 and P2X7 are widely coexpressed, particularly in secretory epithelial cells and immune and inflammatory cells, and regulate inflammation and nociception. Although functional heteromerization has been established for P2X2 and P2X3 subunits expressed in sensory neurons, there are contradictory reports regarding a functional interaction between P2X4 and P2X7 subunits. To resolve this issue, we coexpressed P2X4 and P2X7 receptor subunits labeled with green (EGFP) and red (TagRFP) fluorescent proteins in Xenopus laevis oocytes and investigated a putative physical interaction between the fusion proteins by Förster resonance energy transfer (FRET). Coexpression of P2X4 and P2X7 subunits with EGFP and TagRFP located in the extracellular receptor domains led to significant FRET signals. Significant FRET signals were also measured between C-terminally fluorophore-labeled full-length P2X41-384 and C-terminally truncated fluorescent P2X71-408 subunits. We furthermore used the two-electrode voltage clamp technique to investigate whether human P2X4 and P2X7 receptors (hP2X4, hP2X7) functionally interact at the level of ATP-induced whole-cell currents. Concentration–response curves and effects of ivermectin (P2X4-potentiating drug) or BzATP (P2X7-specific agonist) were consistent with a model in which coexpressed hP2X4 and hP2X7 do not interact. Similarly, the effect of adding specific inhibitors of P2X4 (PSB-15417) or P2X7 (oATP, A438079) could be explained by a model in which only homomers exist, and that these are blocked by the respective antagonist. In conclusion, we show that P2X4 and P2X7 subunits can form heterotrimeric P2X4/P2X7 receptors. However, unlike observations for P2X2 and P2X3, coexpression of P2X4 and P2X7 subunits does not result in a novel electrophysiologically discriminable P2X receptor phenotype.
Collapse
Affiliation(s)
- Markus Schneider
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Kirsten Prudic
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Anja Pippel
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Ursula Braam
- Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | | | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| |
Collapse
|
22
|
Suurväli J, Boudinot P, Kanellopoulos J, Rüütel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J 2017; 40:245-256. [PMID: 29179879 PMCID: PMC6138603 DOI: 10.1016/j.bj.2017.06.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations), about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly characterized, more studies are needed as it is likely to be a potential therapeutic target in these multiple pathologies.
Collapse
Affiliation(s)
- Jaanus Suurväli
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
23
|
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. Front Pharmacol 2017; 8:291. [PMID: 28588493 PMCID: PMC5441391 DOI: 10.3389/fphar.2017.00291] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Adenosine 5′-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom.,School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Janice A Layhadi
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Kshitija Dhuna
- School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
24
|
Langron E, Simone MI, Delalande CMS, Reymond JL, Selwood DL, Vergani P. Improved fluorescence assays to measure the defects associated with F508del-CFTR allow identification of new active compounds. Br J Pharmacol 2017; 174:525-539. [PMID: 28094839 DOI: 10.1111/bph.13715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis (CF) is a debilitating disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for a Cl-/HCO3 - channel. F508del, the most common CF-associated mutation, causes both gating and biogenesis defects in the CFTR protein. This paper describes the optimization of two fluorescence assays, capable of measuring CFTR function and cellular localization, and their use in a pilot drug screen. EXPERIMENTAL APPROACH HEK293 cells expressing YFP-F508del-CFTR, in which halide sensitive YFP is tagged to the N-terminal of CFTR, were used to screen a small library of compounds based on the VX-770 scaffold. Cells expressing F508del-CFTR-pHTomato, in which a pH sensor is tagged to the fourth extracellular loop of CFTR, were used to measure CFTR plasma membrane exposure following chronic treatment with the novel potentiators. KEY RESULTS Active compounds with efficacy ~50% of VX-770, micromolar potency, and structurally distinct from VX-770 were identified in the screen. The F508del-CFTR-pHTomato assay suggests that the hit compound MS131A, unlike VX-770, does not decrease membrane exposure of F508del-CFTR. CONCLUSIONS AND IMPLICATIONS Most known potentiators have a negative influence on F508del-CFTR biogenesis/stability, which means membrane exposure needs to be monitored early during the development of drugs targeting CFTR. The combined use of the two fluorescence assays described here provides a useful tool for the identification of improved potentiators and correctors. The assays could also prove useful for basic scientific investigations on F508del-CFTR, and other CF-causing mutations.
Collapse
Affiliation(s)
- Emily Langron
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michela I Simone
- Discipline of Chemistry, School of Environmental and Life Sciences, Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
25
|
qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development. Methods Mol Biol 2017; 1570:117-138. [PMID: 28238133 DOI: 10.1007/978-1-4939-6840-4_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.
Collapse
|
26
|
Xu J, Bernstein AM, Wong A, Lu XH, Khoja S, Yang XW, Davies DL, Micevych P, Sofroniew MV, Khakh BS. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. J Neurosci 2016; 36:8902-20. [PMID: 27559172 PMCID: PMC4995303 DOI: 10.1523/jneurosci.1496-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.
Collapse
Affiliation(s)
- Ji Xu
- Departments of Physiology and
| | - Alexander M Bernstein
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Angela Wong
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California 90095
| | - Sheraz Khoja
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California 90095, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, and
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Paul Micevych
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Michael V Sofroniew
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Baljit S Khakh
- Departments of Physiology and Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
27
|
Nörenberg W, Plötz T, Sobottka H, Chubanov V, Mittermeier L, Kalwa H, Aigner A, Schaefer M. TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells. J Gen Physiol 2016; 147:467-83. [PMID: 27185858 PMCID: PMC4886280 DOI: 10.1085/jgp.201611595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP activates receptors such as P2X ligand-gated ion channels, but it also chelates divalent cations. Nörenberg et al. find that experimental conditions designed to measure P2X7 activity also activate TRPM7 channels, by relieving inhibition by extracellular divalent cations, in HEK293 and rat C6 glioma cells. Within the ion channel–coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1–10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca2+ influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na+-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg2+ homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation.
Collapse
Affiliation(s)
- Wolfgang Nörenberg
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Tanja Plötz
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Helga Sobottka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Lorenz Mittermeier
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Hermann Kalwa
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Michael Schaefer
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| |
Collapse
|
28
|
Carneiro MV, Americo TA, Guimarães MZ, Linden R. The prion protein selectively binds to and modulates the content of purinergic receptor P2X4R. Biochem Biophys Res Commun 2016; 472:293-8. [DOI: 10.1016/j.bbrc.2016.02.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 10/24/2022]
|
29
|
George J, Cunha RA, Mulle C, Amédée T. Microglia-derived purines modulate mossy fibre synaptic transmission and plasticity through P2X4 and A1 receptors. Eur J Neurosci 2016; 43:1366-78. [PMID: 27199162 PMCID: PMC5069607 DOI: 10.1111/ejn.13191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022]
Abstract
Recent data have provided evidence that microglia, the brain‐resident macrophage‐like cells, modulate neuronal activity in both physiological and pathophysiological conditions, and microglia are therefore now recognized as synaptic partners. Among different neuromodulators, purines, which are produced and released by microglia, have emerged as promising candidates to mediate interactions between microglia and synapses. The cellular effects of purines are mediated through a large family of receptors for adenosine and for ATP (P2 receptors). These receptors are present at brain synapses, but it is unknown whether they can respond to microglia‐derived purines to modulate synaptic transmission and plasticity. Here, we used a simple model of adding immune‐challenged microglia to mouse hippocampal slices to investigate their impact on synaptic transmission and plasticity at hippocampal mossy fibre (MF) synapses onto CA3 pyramidal neurons. MF–CA3 synapses show prominent forms of presynaptic plasticity that are involved in the encoding and retrieval of memory. We demonstrate that microglia‐derived ATP differentially modulates synaptic transmission and short‐term plasticity at MF–CA3 synapses by acting, respectively, on presynaptic P2X4 receptors and on adenosine A1 receptors after conversion of extracellular ATP to adenosine. We also report that P2X4 receptors are densely located in the mossy fibre tract in the dentate gyrus–CA3 circuitry. In conclusion, this study reveals an interplay between microglia‐derived purines and MF–CA3 synapses, and highlights microglia as potent modulators of presynaptic plasticity.
Collapse
Affiliation(s)
- Jimmy George
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France.,CNC Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France.,IINS, UMR 5297 CNRS - Université de Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
30
|
Sáez-Orellana F, Godoy PA, Silva-Grecchi T, Barra KM, Fuentealba J. Modulation of the neuronal network activity by P2X receptors and their involvement in neurological disorders. Pharmacol Res 2015; 101:109-15. [PMID: 26122853 DOI: 10.1016/j.phrs.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
ATP is a key energetic molecule, fundamental to cell function, which also has an important role in the extracellular milieu as a signaling molecule, acting as a chemoattractant for immune cells and as a neuro- and gliotransmitter. The ionotropic P2X receptors are members of an ATP-gated ion channels family. These ionotropic receptors are widely expressed through the body, with 7 subunits described in mammals, which are arranged in a trimeric configuration with a central pore permeable mainly to Ca(2+) and Na(+). All 7 subunits are expressed in different brain areas, being present in neurons and glia. ATP, through these ionotropic receptors, can act as a neuromodulator, facilitating the Ca(2+)-dependent release of neurotransmitters, inducing the cross-inhibition between P2XR and GABA receptors, and exercising by this way a modulation of synaptic plasticity. Growing evidence shows that P2XR play an important role in neuronal disorders and neurodegenerative diseases, like Parkinson's and Alzheimer's disease; this role involves changes on P2XR expression levels, activation of key pathways like GSK3β, APP processing, oxidative stress and inflammatory response. This review is focused on the neuromodulatory function of P2XR on pathophysiological conditions of the brain; the recent evidence could open a window to a new therapeutic target.
Collapse
Affiliation(s)
- F Sáez-Orellana
- Screening of Neuroactive Compounds Unit, Department of Physiology, Faculty of Biological Sciences, Chile
| | - P A Godoy
- Screening of Neuroactive Compounds Unit, Department of Physiology, Faculty of Biological Sciences, Chile
| | - T Silva-Grecchi
- Screening of Neuroactive Compounds Unit, Department of Physiology, Faculty of Biological Sciences, Chile
| | - K M Barra
- Screening of Neuroactive Compounds Unit, Department of Physiology, Faculty of Biological Sciences, Chile
| | - J Fuentealba
- Screening of Neuroactive Compounds Unit, Department of Physiology, Faculty of Biological Sciences, Chile; Center for Advanced Research on Biomedicine (CIAB-UdeC), University of Concepción, Chile.
| |
Collapse
|
31
|
Gandasi NR, Vestö K, Helou M, Yin P, Saras J, Barg S. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis. PLoS One 2015; 10:e0127801. [PMID: 26091288 PMCID: PMC4474633 DOI: 10.1371/journal.pone.0127801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/18/2015] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins (FPs) have proven to be valuable tools for high-resolution imaging studies of vesicle transport processes, including exo- and endocytosis. Since the pH of the vesicle lumen changes between acidic and neutral during these events, pH-sensitive FPs with near neutral pKa, such as pHluorin, are particularly useful. FPs with pKa>6 are readily available in the green spectrum, while red-emitting pH-sensitive FPs are rare and often not well characterized as reporters of exo- or endocytosis. Here we tested a panel of ten orange/red and two green FPs in fusions with neuropeptide Y (NPY) for use as secreted vesicle marker and reporter of dense core granule exocytosis and release. We report relative brightness, bleaching rate, targeting accuracy, sensitivity to vesicle pH, and their performance in detecting exocytosis in live cells. Tandem dimer (td)-mOrange2 was identified as well-targeted, bright, slowly bleaching and pH-sensitive FP that performed similar to EGFP. Single exocytosis events were readily observed, which allowed measurements of fusion pore lifetime and the dynamics of the exocytosis protein syntaxin at the release site during membrane fusion and cargo release.
Collapse
Affiliation(s)
- Nikhil R. Gandasi
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Kim Vestö
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Maria Helou
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Peng Yin
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Jan Saras
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Sebastian Barg
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| |
Collapse
|
32
|
Intracellular expression of purinoceptors. Purinergic Signal 2015; 11:275-6. [PMID: 26009501 DOI: 10.1007/s11302-015-9455-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022] Open
|
33
|
Tvrdonova V, Rokic MB, Stojilkovic SS, Zemkova H. Identification of functionally important residues of the rat P2X4 receptor by alanine scanning mutagenesis of the dorsal fin and left flipper domains. PLoS One 2014; 9:e112902. [PMID: 25398027 PMCID: PMC4232510 DOI: 10.1371/journal.pone.0112902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022] Open
Abstract
Crystallization of the zebrafish P2X4 receptor in both open and closed states revealed conformational differences in the ectodomain structures, including the dorsal fin and left flipper domains. Here, we focused on the role of these domains in receptor activation, responsiveness to orthosteric ATP analogue agonists, and desensitization. Alanine scanning mutagenesis of the R203-L214 (dorsal fin) and the D280-N293 (left flipper) sequences of the rat P2X4 receptor showed that ATP potency/efficacy was reduced in 15 out of 26 alanine mutants. The R203A, N204A, and N293A mutants were essentially non-functional, but receptor function was restored by ivermectin, an allosteric modulator. The I205A, T210A, L214A, P290A, G291A, and Y292A mutants exhibited significant changes in the responsiveness to orthosteric analog agonists 2-(methylthio)adenosine 5′-triphosphate, adenosine 5′-(γ-thio)triphosphate, 2′(3′-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate, and α,β-methyleneadenosine 5′-triphosphate. In contrast, the responsiveness of L206A, N208A, D280A, T281A, R282A, and H286A mutants to analog agonists was comparable to that of the wild type receptor. Among these mutants, D280A, T281A, R282A, H286A, G291A, and Y292A also exhibited increased time-constant of the desensitizing current response. These experiments, together with homology modeling, indicate that residues located in the upper part of the dorsal fin and left flipper domains, relative to distance from the channel pore, contribute to the organization of the ATP binding pocket and to the initiation of signal transmission towards residues in the lower part of both domains. The R203 and N204 residues, deeply buried in the protein, may integrate the output signal from these two domains towards the gate. In addition, the left flipper residues predominantly account for the control of transition of channels from an open to a desensitized state.
Collapse
Affiliation(s)
- Vendula Tvrdonova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Physiology of Animals, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milos B. Rokic
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|