1
|
Geisler SM, Ottaviani MM, Jacobo-Piqueras N, Theiner T, Mastrolia V, Guarina L, Ebner K, Obermair GJ, Carbone E, Tuluc P. Deletion of the α 2δ-1 calcium channel subunit increases excitability of mouse chromaffin cells. J Physiol 2024; 602:3793-3814. [PMID: 39004870 DOI: 10.1113/jp285681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
High voltage-gated Ca2+ channels (HVCCs) shape the electrical activity and control hormone release in most endocrine cells. HVCCs are multi-subunit protein complexes formed by the pore-forming α1 and the auxiliary β, α2δ and γ subunits. Four genes code for the α2δ isoforms. At the mRNA level, mouse chromaffin cells (MCCs) express predominantly the CACNA2D1 gene coding for the α2δ-1 isoform. Here we show that α2δ-1 deletion led to ∼60% reduced HVCC Ca2+ influx with slower inactivation kinetics. Pharmacological dissection showed that HVCC composition remained similar in α2δ-1-/- MCCs compared to wild-type (WT), demonstrating that α2δ-1 exerts similar functional effects on all HVCC isoforms. Consistent with reduced HVCC Ca2+ influx, α2δ-1-/- MCCs showed reduced spontaneous electrical activity with action potentials (APs) having a shorter half-maximal duration caused by faster rising and decay slopes. However, the induced electrical activity showed opposite effects with α2δ-1-/- MCCs displaying significantly higher AP frequency in the tonic firing mode as well as an increase in the number of cells firing AP bursts compared to WT. This gain-of-function phenotype was caused by reduced functional activation of Ca2+-dependent K+ currents. Additionally, despite the reduced HVCC Ca2+ influx, the intracellular Ca2+ transients and vesicle exocytosis or endocytosis were unaltered in α2δ-1-/- MCCs compared to WT during sustained stimulation. In conclusion, our study shows that α2δ-1 genetic deletion reduces Ca2+ influx in cultured MCCs but leads to a paradoxical increase in catecholamine secretion due to increased excitability. KEY POINTS: Deletion of the α2δ-1 high voltage-gated Ca2+ channel (HVCC) subunit reduces mouse chromaffin cell (MCC) Ca2+ influx by ∼60% but causes a paradoxical increase in induced excitability. MCC intracellular Ca2+ transients are unaffected by the reduced HVCC Ca2+ influx. Deletion of α2δ-1 reduces the immediately releasable pool vesicle exocytosis but has no effect on catecholamine (CA) release in response to sustained stimuli. The increased electrical activity and CA release from MCCs might contribute to the previously reported cardiovascular phenotype of patients carrying α2δ-1 loss-of-function mutations.
Collapse
Affiliation(s)
- Stefanie M Geisler
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Matteo M Ottaviani
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Noelia Jacobo-Piqueras
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Vincenzo Mastrolia
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Meredith AL. BK Channelopathies and KCNMA1-Linked Disease Models. Annu Rev Physiol 2024; 86:277-300. [PMID: 37906945 DOI: 10.1146/annurev-physiol-030323-042845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
3
|
Lu J, Zhao RX, Xiong FR, Zhu JJ, Shi TT, Zhang YC, Peng GX, Yang JK. All-potassium channel CRISPR screening reveals a lysine-specific pathway of insulin secretion. Mol Metab 2024; 80:101885. [PMID: 38246588 PMCID: PMC10847698 DOI: 10.1016/j.molmet.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic β-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic β cell line to identify genes associated with insulin secretion. RESULTS The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with β-cell-specific deletion of Kcnh6. CONCLUSIONS Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Gong-Xin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100740, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China.
| |
Collapse
|
4
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
5
|
Lingle C. New insights about non-neurogenic excitability revealed by MEA recordings from rat adrenal chromaffin cells. Pflugers Arch 2023; 475:151-152. [PMID: 36547699 PMCID: PMC9983419 DOI: 10.1007/s00424-022-02783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Christopher Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Marcantoni A, Chiantia G, Tomagra G, Hidisoglu E, Franchino C, Carabelli V, Carbone E. Two firing modes and well-resolved Na +, K +, and Ca 2+ currents at the cell-microelectrode junction of spontaneously active rat chromaffin cell on MEAs. Pflugers Arch 2023; 475:181-202. [PMID: 36260174 PMCID: PMC9849155 DOI: 10.1007/s00424-022-02761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 μM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.
Collapse
Affiliation(s)
- Andrea Marcantoni
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Giuseppe Chiantia
- grid.7605.40000 0001 2336 6580Department of Neuroscience, University of Torino, 10125 Turin, Italy
| | - Giulia Tomagra
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Enis Hidisoglu
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Claudio Franchino
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Valentina Carabelli
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilio Carbone
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
7
|
Feher A, Pethő Z, Szanto TG, Klekner Á, Tajti G, Batta G, Hortobágyi T, Varga Z, Schwab A, Panyi G. Mapping the functional expression of auxiliary subunits of K Ca1.1 in glioblastoma. Sci Rep 2022; 12:22023. [PMID: 36539587 PMCID: PMC9768140 DOI: 10.1038/s41598-022-26196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive glial tumor, where ion channels, including KCa1.1, are candidates for new therapeutic options. Since the auxiliary subunits linked to KCa1.1 in GBM are largely unknown we used electrophysiology combined with pharmacology and gene silencing to address the functional expression of KCa1.1/β subunits complexes in both primary tumor cells and in the glioblastoma cell line U-87 MG. The pattern of the sensitivity (activation/inhibition) of the whole-cell currents to paxilline, lithocholic acid, arachidonic acid, and iberiotoxin; the presence of inactivation of the whole-cell current along with the loss of the outward rectification upon exposure to the reducing agent DTT collectively argue that KCa1.1/β3 complex is expressed in U-87 MG. Similar results were found using human primary glioblastoma cells isolated from patient samples. Silencing the β3 subunit expression inhibited carbachol-induced Ca2+ transients in U-87 MG thereby indicating the role of the KCa1.1/β3 in the Ca2+ signaling of glioblastoma cells. Functional expression of the KCa1.1/β3 complex, on the other hand, lacks cell cycle dependence. We suggest that the KCa1.1/β3 complex may have diagnostic and therapeutic potential in glioblastoma in the future.
Collapse
Affiliation(s)
- Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University Debrecen, Debrecen, Hungary
| | - Zoltán Pethő
- Department of Biophysics and Cell Biology, Faculty of Medicine, University Debrecen, Debrecen, Hungary
- Institute of Physiology II, University Münster, Münster, Germany
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University Debrecen, Debrecen, Hungary
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University Debrecen, Debrecen, Hungary
| | - Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, University Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Faculty of Medicine, Institute of Pathology, University of Szeged, Szeged, Hungary
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, Faculty of Medicine, University Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, Münster, Germany
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Lyu S, Xing H, Liu Y, Girdhar P, Yokoi F, Li Y. Further Studies on the Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome. Neuroscience 2022; 505:78-90. [PMID: 36244636 PMCID: PMC10367443 DOI: 10.1016/j.neuroscience.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/26/2022]
Abstract
Genetic analyses have linked BTBD9 to restless legs syndrome (RLS) and sleep regulation. Btbd9 knockout mice show RLS-like motor restlessness. Previously, we found hyperactivity of cerebellar Purkinje cells (PCs) in Btbd9 knockout mice, which may contribute to the motor restlessness observed. However, underlying mechanisms for PC hyperactivity in Btbd9 knockout mice are unknown. Here, we used dissociated PC recording, brain slice recording and western blot to address this question. Our dissociated recording shows that knockout PCs had increased TEA-sensitive, Ca2+-dependent K+ currents. Applying antagonist to large conductance Ca2+-activated K+ (BK) channels further isolated the increased current as BK current. Consistently, we found increased amplitude of afterhyperpolarization and elevated BK protein levels in the knockout mice. Dissociated recording also shows a decrease in TEA-insensitive, Ca2+-dependent K+ currents. The result is consistent with reduced amplitude of tail currents, mainly composed of small conductance Ca2+-activated K+ (SK) currents, in slice recording. Our results suggest that BK and SK channels may be responsible for the hyperactivity of knockout PCs. Recently, BTBD9 protein was shown to associate with SYNGAP1 protein. We found a decreased cerebellar level of SYNGAP1 in Btbd9 knockout mice. However, Syngap1 heterozygous knockout mice showed nocturnal, instead of diurnal, motor restlessness. Our results suggest that SYNGAP1 deficiency may not contribute directly to the RLS-like motor restlessness observed in Btbd9 knockout mice. Finally, we found that PC-specific Btbd9 knockout mice exhibited deficits in motor coordination and balance similar to Btbd9 knockout mice, suggesting that the motor effect of BTBD9 in PCs is cell-autonomous.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pallavi Girdhar
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Kulawiak B, Szewczyk A. Current Challenges of Mitochondrial Potassium Channel Research. Front Physiol 2022; 13:907015. [PMID: 35711307 PMCID: PMC9193220 DOI: 10.3389/fphys.2022.907015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, the current challenges of mitochondrial potassium channels research were critically reviewed. Even though recent progress in understanding K+ traffic in mitochondria has been substantial, some basic issues of this process remain unresolved. Here, we focused on the critical discussion of the molecular identity of various mitochondrial potassium channels. This point helps to clarify why there are different potassium channels in specific mitochondria. We also described interactions of mitochondrial potassium channel subunits with other mitochondrial proteins. Posttranslational modifications of mitochondrial potassium channels and their import are essential but unexplored research areas. Additionally, problems with the pharmacological targeting of mitochondrial potassium channel were illustrated. Finally, the limitation of the techniques used to measure mitochondrial potassium channels was explained. We believe that recognizing these problems may be interesting for readers but will also help to progress the field of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Beeson KA, Westbrook GL, Schnell E. α2δ-2 is required for depolarization-induced suppression of excitation in Purkinje cells. J Physiol 2022; 600:111-122. [PMID: 34783012 PMCID: PMC8724408 DOI: 10.1113/jp282438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
α2δ proteins (CACNA2D1-4) are required for normal neurological function and contribute to membrane trafficking of voltage-gated calcium channels, through which calcium entry initiates numerous physiological processes. However, it remains unclear how α2δ proteins influence calcium-mediated signalling to control neuronal output. Using whole-cell recordings of mouse Purkinje cells, we show that α2δ-2 is required for functional coupling of postsynaptic voltage-dependent calcium entry with calcium-dependent effector mechanisms controlling two different outputs, depolarization-induced suppression of excitation and spike afterhyperpolarization. Our findings indicate an important role for α2δ-2 proteins in regulating functional postsynaptic calcium channel coupling in neurons, providing new context for understanding the effects of α2δ mutations on neuronal circuit function and presenting additional potential avenues to manipulate α2δ-mediated signalling for therapeutic gain. KEY POINTS: Calcium influx, via voltage-dependent calcium channels, drives numerous neuronal signalling processes with precision achieved in part by tight coupling between calcium entry and calcium-dependent effectors. α2δ proteins are important for neurological function and contribute to calcium channel membrane trafficking, although how α2δ proteins influence postsynaptic calcium-dependent signalling is largely unexplored. Here it is shown that loss of α2δ-2 proteins disrupts functional calcium coupling to two different postsynaptic calcium-dependent signals in mouse Purkinje cell neurons, retrograde endocannabinoid signalling and the action potential afterhyperpolarization. The findings provide new insights into the control of calcium coupling as well as new roles for α2δ-2 proteins in neurons.
Collapse
Affiliation(s)
- Kathleen A. Beeson
- Neuroscience Graduate Program, OHSU, Portland, OR, 97239,Department of Anesthesiology and Perioperative Medicine, OHSU, Portland, OR, 97239
| | | | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, OHSU, Portland, OR, 97239,Operative Care Division, Portland VA Health Care System, Portland, OR, 97239,Eric Schnell, MD, PhD,
| |
Collapse
|
11
|
Plante AE, Whitt JP, Meredith AL. BK channel activation by L-type Ca 2+ channels Ca V1.2 and Ca V1.3 during the subthreshold phase of an action potential. J Neurophysiol 2021; 126:427-439. [PMID: 34191630 DOI: 10.1152/jn.00089.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian circadian (24 h) rhythms are timed by the pattern of spontaneous action potential firing in the suprachiasmatic nucleus (SCN). This oscillation in firing is produced through circadian regulation of several membrane currents, including large-conductance Ca2+- and voltage-activated K+ (BK) and L-type Ca2+ channel (LTCC) currents. During the day steady-state BK currents depend mostly on LTCCs for activation, whereas at night they depend predominantly on ryanodine receptors (RyRs). However, the contribution of these Ca2+ channels to BK channel activation during action potential firing has not been thoroughly investigated. In this study, we used a pharmacological approach to determine that both LTCCs and RyRs contribute to the baseline membrane potential of SCN action potential waveforms, as well as action potential-evoked BK current, during the day and night, respectively. Since the baseline membrane potential is a major determinant of circadian firing rate, we focused on the LTCCs contributing to low voltage activation of BK channels during the subthreshold phase. For these experiments, two LTCC subtypes found in SCN (CaV1.2 and CaV1.3) were coexpressed with BK channels in heterologous cells, where their differential contributions could be separately measured. CaV1.3 channels produced currents that were shifted to more hyperpolarized potentials compared with CaV1.2, resulting in increased subthreshold Ca2+ and BK currents during an action potential command. These results show that although multiple Ca2+ sources in SCN can contribute to the activation of BK current during an action potential, specific BK-CaV1.3 partnerships may optimize the subthreshold BK current activation that is critical for firing rate regulation.NEW & NOTEWORTHY BK K+ channels are important regulators of firing. Although Ca2+ channels are required for their activation in excitable cells, it is not well understood how BK channels activate using these Ca2+ sources during an action potential. This study demonstrates the differences in BK current activated by CaV1.2 and CaV1.3 channels in clock neurons and heterologous cells. The results define how specific ion channel partnerships can be engaged during distinct phases of the action potential.
Collapse
Affiliation(s)
- Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Wang X, Xiao Q, Zhu Y, Qi H, Qu D, Yao Y, Jia Y, Guo J, Cheng J, Ji Y, Li G, Tao J. Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200182. [PMID: 34149831 PMCID: PMC8183112 DOI: 10.1590/1678-9199-jvatitd-2020-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: The accessory β1 subunits, regulating the pharmacological and biophysical properties of BK channels, always undergo post-translational modifications, especially glycosylation. To date, it remains elusive whether the glycosylation contributes to the regulation of BK channels by β1 subunits. Methods: Herein, we combined the electrophysiological approach with molecular mutations and biochemical manipulation to investigate the function roles of N-glycosylation in β1 subunits. Results: The results show that deglycosylation of β1 subunits through double-site mutations (β1 N80A/N142A or β1 N80Q/N142Q) could significantly increase the inhibitory potency of iberiotoxin, a specific BK channel blocker. The deglycosylated channels also have a different sensitivity to martentoxin, another BK channel modulator with some remarkable effects as reported before. On the contrary to enhancing effects of martentoxin on glycosylated BK channels under the presence of cytoplasmic Ca2+, deglycosylated channels were not affected by the toxin. However, the deglycosylated channels were surprisingly inhibited by martentoxin under the absence of cytoplasmic Ca2+, while the glycosylated channels were not inhibited under this same condition. In addition, wild type BK (α+β1) channels treated with PNGase F also showed the same trend of pharmacological results to the mutants. Similar to this modulation of glycosylation on BK channel pharmacology, the deglycosylated forms of the channels were activated at a faster speed than the glycosylated ones. However, the V1/2 and slope were not changed by the glycosylation. Conclusion: The present study reveals that glycosylation is an indispensable determinant of the modulation of β1-subunit on BK channel pharmacology and its activation. The loss of glycosylation of β1 subunits could lead to the dysfunction of BK channel, resulting in a pathological state.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Qian Xiao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Qi
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Yao
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Yuxiang Jia
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Jingkan Guo
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China.,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China.,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| |
Collapse
|
13
|
Carbone E. Fast inactivation of Nav1.3 channels by FGF14 proteins: An unconventional way to regulate the slow firing of adrenal chromaffin cells. J Gen Physiol 2021; 153:211934. [PMID: 33792614 PMCID: PMC8020463 DOI: 10.1085/jgp.202112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using Nav1.3 and FGF14 KO mice, Martinez-Espinosa et al. provide new findings on how intracellular FGF14 proteins interfere with the endogenous fast inactivation gating and regulate the “long-term inactivation” of Nav1.3 channels that sets Nav channel availability and spike adaptation during sustained stimulation in adrenal chromaffin cells.
Collapse
Affiliation(s)
- Emilio Carbone
- Department of Drug Science, Lab of Cell Physiology and Molecular Neuroscience, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Martinez-Espinosa PL, Yang C, Xia XM, Lingle CJ. Nav1.3 and FGF14 are primary determinants of the TTX-sensitive sodium current in mouse adrenal chromaffin cells. J Gen Physiol 2021; 153:211839. [PMID: 33651884 PMCID: PMC8020717 DOI: 10.1085/jgp.202012785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.
Collapse
Affiliation(s)
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
15
|
Martinez-Espinosa PL, Neely A, Ding J, Lingle CJ. Fast inactivation of Nav current in rat adrenal chromaffin cells involves two independent inactivation pathways. J Gen Physiol 2021; 153:211834. [PMID: 33647101 PMCID: PMC7927663 DOI: 10.1085/jgp.202012784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Voltage-dependent sodium (Nav) current in adrenal chromaffin cells (CCs) is rapidly inactivating and tetrodotoxin (TTX)–sensitive. The fractional availability of CC Nav current has been implicated in regulation of action potential (AP) frequency and the occurrence of slow-wave burst firing. Here, through recordings of Nav current in rat CCs, primarily in adrenal medullary slices, we describe unique inactivation properties of CC Nav inactivation that help define AP firing rates in CCs. The key feature of CC Nav current is that recovery from inactivation, even following brief (5 ms) inactivation steps, exhibits two exponential components of similar amplitude. Various paired pulse protocols show that entry into the fast and slower recovery processes result from largely independent competing inactivation pathways, each of which occurs with similar onset times at depolarizing potentials. Over voltages from −120 to −80 mV, faster recovery varies from ∼3 to 30 ms, while slower recovery varies from ∼50 to 400 ms. With strong depolarization (above −10 mV), the relative entry into slow or fast recovery pathways is similar and independent of voltage. Trains of short depolarizations favor recovery from fast recovery pathways and result in cumulative increases in the slow recovery fraction. Dual-pathway fast inactivation, by promoting use-dependent accumulation in slow recovery pathways, dynamically regulates Nav availability. Consistent with this finding, repetitive AP clamp waveforms at 1–10 Hz frequencies reduce Nav availability 80–90%, depending on holding potential. These results indicate that there are two distinct pathways of fast inactivation, one leading to conventional fast recovery and the other to slower recovery, which together are well-suited to mediate use-dependent changes in Nav availability.
Collapse
Affiliation(s)
| | - Alan Neely
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiuping Ding
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Affiliation(s)
- Petronel Tuluc
- Department of Pharmacology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Milman A, Ventéo S, Bossu JL, Fontanaud P, Monteil A, Lory P, Guérineau NC. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ. J Physiol 2021; 599:1855-1883. [PMID: 33450050 PMCID: PMC7986707 DOI: 10.1113/jp281044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa > gK > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.
Collapse
Affiliation(s)
- Alexandre Milman
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | | | - Jean-Louis Bossu
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| |
Collapse
|
18
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
19
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada .,Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Contini D, Holstein GR, Art JJ. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. J Physiol 2019; 598:853-889. [PMID: 31623011 DOI: 10.1113/jp278680] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ABSTRACT In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| | - Gay R Holstein
- Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY, 10029, USA
| | - Jonathan J Art
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| |
Collapse
|
21
|
Soriani O, Kourrich S. The Sigma-1 Receptor: When Adaptive Regulation of Cell Electrical Activity Contributes to Stimulant Addiction and Cancer. Front Neurosci 2019; 13:1186. [PMID: 31780884 PMCID: PMC6861184 DOI: 10.3389/fnins.2019.01186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells’ electrical activity and calcium homeostasis—a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R’s role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.
Collapse
Affiliation(s)
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
22
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Varón-González C, Pallares LF, Debat V, Navarro N. Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci. Front Genet 2019; 10:64. [PMID: 30809244 PMCID: PMC6379267 DOI: 10.3389/fgene.2019.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of skull shape has been extensively studied in mice and the results suggest a highly polygenic and additive basis. In contrast few studies have explored the genetic basis of the skull variability. Canalization and developmental stability are the two components of phenotypic robustness. They have been proposed to be emergent properties of the genetic networks underlying the development of the trait itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice to investigate the genetic architecture of canalization of the skull shape by implementing a genome-wide marginal epistatic test on 3D geometric morphometric data. The same data set had been used previously to explore the genetic architecture of the skull mean shape and its developmental stability. Here, we address two questions: (1) Are changes in mean shape and changes in shape variance associated with the same genomic regions? and (2) Do canalization and developmental stability rely on the same loci and genetic architecture and do they involve the same patterns of shape variation? We found that unlike skull mean shape, among-individual shape variance and fluctuating asymmetry (FA) show a total lack of additive effects. They are both associated with complex networks of epistatic interactions involving many genes (protein-coding and regulatory elements). Remarkably, none of the genomic loci affecting mean shape contribute these networks despite their enrichment for genes involved in craniofacial variation and diseases. We also found that the patterns of shape FA and individual variation are largely similar and rely on similar multilocus epistatic genetic networks, suggesting that the processes channeling variation within and among individuals are largely common. However, the loci involved in these two networks are completely different. This in turn underlines the difference in the origin of the variation at these two levels, and points at buffering processes that may be specific to each level.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Dijon, France
| |
Collapse
|
24
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
25
|
Calorio C, Gavello D, Guarina L, Salio C, Sassoè-Pognetto M, Riganti C, Bianchi FT, Hofer NT, Tuluc P, Obermair GJ, Defilippi P, Balzac F, Turco E, Bett GC, Rasmusson RL, Carbone E. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers. J Physiol 2019; 597:1705-1733. [PMID: 30629744 DOI: 10.1113/jp277487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Tymothy syndrome (TS) is a multisystem disorder featuring cardiac arrhythmias, autism and adrenal gland dysfunction that originates from a de novo point mutation in the gene encoding the Cav1.2 (CACNA1C) L-type channel. To study the role of Cav1.2 channel signals in autism, the autistic TS2-neo mouse has been generated bearing the G406R point-mutation associated with TS type-2. Using heterozygous TS2-neo mice, we report that the G406R mutation reduces the rate of inactivation and shifts leftward the activation and inactivation of L-type channels, causing marked increase of resting Ca2+ influx ('window' Ca2+ current). The increased 'window current' causes marked reduction of NaV channel density, switches normal tonic firing to abnormal burst firing, reduces mitochondrial metabolism, induces cell swelling and decreases catecholamine release. Overnight incubations with nifedipine rescue NaV channel density, normal firing and the quantity of catecholamine released. We provide evidence that chromaffin cell malfunction derives from altered Cav1.2 channel gating. ABSTRACT L-type voltage-gated calcium (Cav1) channels have a key role in long-term synaptic plasticity, sensory transduction, muscle contraction and hormone release. A point mutation in the gene encoding Cav1.2 (CACNA1C) causes Tymothy syndrome (TS), a multisystem disorder featuring cardiac arrhythmias, autism spectrum disorder (ASD) and adrenal gland dysfunction. In the more severe type-2 form (TS2), the missense mutation G406R is on exon 8 coding for the IS6-helix of the Cav1.2 channel. The mutation causes reduced inactivation and induces autism. How this occurs and how Cav1.2 gating-changes alter cell excitability, neuronal firing and hormone release on a molecular basis is still largely unknown. Here, using the TS2-neo mouse model of TS we show that the G406R mutation altered excitability and reduced secretory activity in adrenal chromaffin cells (CCs). Specifically, the TS2 mutation reduced the rate of voltage-dependent inactivation and shifted leftward the activation and steady-state inactivation of L-type channels. This markedly increased the resting 'window' Ca2+ current that caused an increased percentage of CCs undergoing abnormal action potential (AP) burst firing, cell swelling, reduced mitochondrial metabolism and decreased catecholamine release. The increased 'window' Ca2+ current caused also decreased NaV channel density and increased steady-state inactivation, which contributed to the increased abnormal burst firing. Overnight incubation with the L-type channel blocker nifedipine rescued the normal AP firing of CCs, the density of functioning NaV channels and their steady-state inactivation. We provide evidence that CC malfunction derives from the altered Cav1.2 channel gating and that dihydropyridines are potential therapeutics for ASD.
Collapse
Affiliation(s)
- Chiara Calorio
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Daniela Gavello
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Department of Physiology & Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Glenna C Bett
- Department of Physiology & Biophysics, State University of New York, Buffalo, NY, USA
| | - Randall L Rasmusson
- Department of Physiology & Biophysics, State University of New York, Buffalo, NY, USA
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| |
Collapse
|
26
|
Kuljis D, Kudo T, Tahara Y, Ghiani CA, Colwell CS. Pathophysiology in the suprachiasmatic nucleus in mouse models of Huntington's disease. J Neurosci Res 2018; 96:1862-1875. [PMID: 30168855 DOI: 10.1002/jnr.24320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022]
Abstract
Disturbances in sleep/wake cycle are a common complaint of individuals with Huntington's disease (HD) and are displayed by HD mouse models. The underlying mechanisms, including the possible role of the circadian timing system, are not well established. The BACHD mouse model of HD exhibits disrupted behavioral and physiological rhythms, including decreased electrical activity in the central circadian clock (suprachiasmatic nucleus, SCN). In this study, electrophysiological techniques were used to explore the ionic underpinning of the reduced spontaneous neural activity in male mice. We found that SCN neural activity rhythms were lost early in the disease progression and was accompanied by loss of the normal daily variation in resting membrane potential in the mutant SCN neurons. The low neural activity could be transiently reversed by direct current injection or application of exogenous N-methyl-d-aspartate (NMDA) thus demonstrating that the neurons have the capacity to discharge at WT levels. Exploring the potassium currents known to regulate the electrical activity of SCN neurons, our most striking finding was that these cells in the mutants exhibited an enhancement in the large-conductance calcium activated K+ (BK) currents. The expression of the pore forming subunit (Kcnma1) of the BK channel was higher in the mutant SCN. We found a similar decrease in daytime electrical activity and enhancement in the magnitude of the BK currents early in disease in another HD mouse model (Q175). These findings suggest that SCN neurons of both HD models exhibit early pathophysiology and that dysregulation of BK current may be responsible.
Collapse
Affiliation(s)
- Dika Kuljis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California.,Department of Biological Sciences, Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Takashi Kudo
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Yu Tahara
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Cristina A Ghiani
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
27
|
Hilton JK, Salehpour T, Sisco NJ, Rath P, Van Horn WD. Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels. J Biol Chem 2018; 293:9423-9434. [PMID: 29724821 DOI: 10.1074/jbc.ra118.003563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative Western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites.
Collapse
Affiliation(s)
- Jacob K Hilton
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Taraneh Salehpour
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Nicholas J Sisco
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Parthasarathi Rath
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Wade D Van Horn
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, .,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
28
|
Ryan DP, Henzel KS, Pearson BL, Siwek ME, Papazoglou A, Guo L, Paesler K, Yu M, Müller R, Xie K, Schröder S, Becker L, Garrett L, Hölter SM, Neff F, Rácz I, Rathkolb B, Rozman J, Ehninger G, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Sidiropoulou K, Weiergräber M, Zhou Y, Ehninger D. A paternal methyl donor-rich diet altered cognitive and neural functions in offspring mice. Mol Psychiatry 2018; 23:1345-1355. [PMID: 28373690 PMCID: PMC5984088 DOI: 10.1038/mp.2017.53] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
Dietary intake of methyl donors, such as folic acid and methionine, shows considerable intra-individual variation in human populations. While it is recognized that maternal departures from the optimum of dietary methyl donor intake can increase the risk for mental health issues and neurological disorders in offspring, it has not been explored whether paternal dietary methyl donor intake influences behavioral and cognitive functions in the next generation. Here, we report that elevated paternal dietary methyl donor intake in a mouse model, transiently applied prior to mating, resulted in offspring animals (methyl donor-rich diet (MD) F1 mice) with deficits in hippocampus-dependent learning and memory, impaired hippocampal synaptic plasticity and reduced hippocampal theta oscillations. Gene expression analyses revealed altered expression of the methionine adenosyltransferase Mat2a and BK channel subunit Kcnmb2, which was associated with changes in Kcnmb2 promoter methylation in MD F1 mice. Hippocampal overexpression of Kcnmb2 in MD F1 mice ameliorated altered spatial learning and memory, supporting a role of this BK channel subunit in the MD F1 behavioral phenotype. Behavioral and gene expression changes did not extend into the F2 offspring generation. Together, our data indicate that paternal dietary factors influence cognitive and neural functions in the offspring generation.
Collapse
Affiliation(s)
- D P Ryan
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - K S Henzel
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - B L Pearson
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - M E Siwek
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - A Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - L Guo
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - K Paesler
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - M Yu
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - R Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - K Xie
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - S Schröder
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - L Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - L Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - S M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - F Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - I Rácz
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - B Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Chair of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany,Member of German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - J Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Member of German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - G Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - M Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan, Germany
| | - T Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany,DZNE, German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,DZNE, German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany,Chair of Developmental Genetics, Technische Universität München, c/o Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - A Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - H Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - V Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Member of German Center for Diabetes Research (DZD), München-Neuherberg, Germany,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - K Sidiropoulou
- Department of Biology, University of Crete, Vassilika Vouton, Heraklio, Greece
| | - M Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Y Zhou
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - D Ehninger
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn 53127, Germany. E-mail:
| |
Collapse
|
29
|
Zhang YY, Han X, Liu Y, Chen J, Hua L, Ma Q, Huang YYX, Tang QY, Zhang Z. +mRNA expression of LRRC55 protein (leucine-rich repeat-containing protein 55) in the adult mouse brain. PLoS One 2018; 13:e0191749. [PMID: 29370300 PMCID: PMC5784982 DOI: 10.1371/journal.pone.0191749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
LRRC55 (leucine-rich repeat-containing protein 55) protein is an auxiliary γ subunit of BK (Big conductance potassium channel) channels, which leftward shifts GVs of BK channels around 50 mV in the absence of cytosolic Ca2+. LRRC55 protein is also the only γ subunit of BK channels that is expressed in mammalian nervous system. However, the expression pattern of LRRC55 gene in adult mammalian brain remains elusive. In this study, we investigated the distribution of LRRC55 mRNA in the adult mouse brain by using in situ hybridization. We found that LRRC55 mRNA is richly expressed in the adult mouse medial habenula nucleus (MHb), cerebellum and pons. However, the potential role of LRRC55 in MHb and cerebellum could be different based on the function of BK channels in these brain regions.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Han
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lei Hua
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qian Ma
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yang-Yu-Xin Huang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiong-Yao Tang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhe Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
30
|
Wang Y, Shi W, Blanchette A, Peng J, Qi S, Luo H, Ledoux J, Wu J. EPHB6 and testosterone in concert regulate epinephrine release by adrenal gland chromaffin cells. Sci Rep 2018; 8:842. [PMID: 29339804 PMCID: PMC5770418 DOI: 10.1038/s41598-018-19215-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptor (EPH) B6 (EPHB6) is a member of the receptor tyrosine kinase family. We previously demonstrated that EPHB6 knockout reduces catecholamine secretion in male but not female mice, and castration reverses this phenotype. We showed here that male EPHB6 knockout adrenal gland chromaffin cells presented reduced acetylcholine-triggered Ca2+ influx. Such reduction depended on the non-genomic effect of testosterone. Increased large conductance calcium-activated potassium channel current densities were recorded in adrenal gland chromaffin cells from male EPHB6 knockout mice but not from castrated knockout or female knockout mice. Blocking of the large conductance calcium-activated potassium channel in adrenal gland chromaffin cells from male knockout mice corrected their reduced Ca2+ influx. We conclude that the absence of EPHB6 and the presence of testosterone would lead to augmented large conductance calcium-activated potassium channel currents, which limit voltage-gated calcium channel opening in adrenal gland chromaffin cells. Consequently, acetylcholine-triggered Ca2+ influx is reduced, leading to lower catecholamine release in adrenal gland chromaffin cells from male knockout mice. This explains the reduced resting-state blood catecholamine levels, and hence the blood pressure, in male but not female EPHB6 knock mice. These findings have certain clinical implications.
Collapse
Affiliation(s)
- Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada.
| | - Jonathan Ledoux
- Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada.
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada.
- Nephrology Department, CHUM, Montreal, Quebec, H2L 4M1, Canada.
| |
Collapse
|
31
|
Whitt JP, McNally BA, Meredith AL. Differential contribution of Ca 2+ sources to day and night BK current activation in the circadian clock. J Gen Physiol 2017; 150:259-275. [PMID: 29237755 PMCID: PMC5806683 DOI: 10.1085/jgp.201711945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/16/2023] Open
Abstract
Large conductance K+ (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca2+ (Ca2+i). To enable this regulation, BK channels functionally couple to both voltage-gated Ca2+ channels (VGCCs) and channels mediating Ca2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca2+i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca2+i are reduced. Here, to determine whether diurnal regulation of Ca2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca2+ channels (LTCCs) are the primary daytime Ca2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca2+i release. The N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca2+ sources in the SCN, contributing to diurnal regulation of SCN excitability.
Collapse
Affiliation(s)
- Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Beth A McNally
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Clay JR. Novel description of the large conductance Ca 2+-modulated K + channel current, BK, during an action potential from suprachiasmatic nucleus neurons. Physiol Rep 2017; 5:5/20/e13473. [PMID: 29084840 PMCID: PMC5661234 DOI: 10.14814/phy2.13473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 01/14/2023] Open
Abstract
The contribution of the large conductance, Ca2+‐modulated, voltage‐gated K+ channel current, IBK, to the total current during an action potential (AP) from suprachiasmatic nucleus (SCN) neurons is described using a novel computational approach. An experimental recording of an SCN AP and the corresponding AP‐clamp recording of IBK from the literature were both digitized. The AP data set was applied computationally to a kinetic model of IBK that was based on results from a clone of the BK channel α subunit heterologolously expressed in Xenopus oocytes. The IBK model result during an AP was compared with the AP‐clamp recording of IBK. The comparison suggests that a change in the intracellular Ca2+ concentration does not have an immediate effect on BK channel kinetics. Rather, a delay of a few milliseconds may occur prior to the full effect of a change in Cai2+. As shown elsewhere, the β2 subunit of the BK channel in the SCN, which is present in the daytime along with the α subunit, shifts the BK channel activation curve leftward on the voltage axis relative to the activation curve of BK channels comprised of the α subunit alone. That shift may underlie the diurnal changes in electrical activity that occur in the SCN and it may also enhance the delay in the effect of a change in Cai2+ on BK kinetics reported here. The implication of these results for models of the AP for neurons in which BK channels are present is that an additional time dependent process may be required in the models, a process that describes the time dependence of the development of a change in the intracellular Ca2+ concentration on BK channel gating.
Collapse
Affiliation(s)
- John R Clay
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
34
|
Roles of Na +, Ca 2+, and K + channels in the generation of repetitive firing and rhythmic bursting in adrenal chromaffin cells. Pflugers Arch 2017; 470:39-52. [PMID: 28776261 DOI: 10.1007/s00424-017-2048-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 12/30/2022]
Abstract
Adrenal chromaffin cells (CCs) are the main source of circulating catecholamines (CAs) that regulate the body response to stress. Release of CAs is controlled neurogenically by the activity of preganglionic sympathetic neurons through trains of action potentials (APs). APs in CCs are generated by robust depolarization following the activation of nicotinic and muscarinic receptors that are highly expressed in CCs. Bovine, rat, mouse, and human CCs also express a composite array of Na+, K+, and Ca2+ channels that regulate the resting potential, shape the APs, and set the frequency of AP trains. AP trains of increasing frequency induce enhanced release of CAs. If the primary role of CCs is simply to relay preganglionic nerve commands to CA secretion, why should they express such a diverse set of ion channels? An answer to this comes from recent observations that, like in neurons, CCs undergo complex firing patterns of APs suggesting the existence of an intrinsic CC excitability (non-neurogenically controlled). Recent work has shown that CCs undergo occasional or persistent burst firing elicited by altered physiological conditions or deletion of pore-regulating auxiliary subunits. In this review, we aim to give a rationale to the role of the many ion channel types regulating CC excitability. We will first describe their functional properties and then analyze how they contribute to pacemaking, AP shape, and burst waveforms. We will also furnish clear indications on missing ion conductances that may be involved in pacemaking and highlight the contribution of the crucial channels involved in burst firing.
Collapse
|
35
|
Baker D, Pryce G, Visintin C, Sisay S, Bondarenko AI, Vanessa Ho WS, Jackson SJ, Williams TE, Al-Izki S, Sevastou I, Okuyama M, Graier WF, Stevenson LA, Tanner C, Ross R, Pertwee RG, Henstridge CM, Irving AJ, Schulman J, Powell K, Baker MD, Giovannoni G, Selwood DL. Big conductance calcium-activated potassium channel openers control spasticity without sedation. Br J Pharmacol 2017; 174:2662-2681. [PMID: 28677901 PMCID: PMC5522996 DOI: 10.1111/bph.13889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Our initial aim was to generate cannabinoid agents that control spasticity, occurring as a consequence of multiple sclerosis (MS), whilst avoiding the sedative side effects associated with cannabis. VSN16R was synthesized as an anandamide (endocannabinoid) analogue in an anti‐metabolite approach to identify drugs that target spasticity. Experimental Approach Following the initial chemistry, a variety of biochemical, pharmacological and electrophysiological approaches, using isolated cells, tissue‐based assays and in vivo animal models, were used to demonstrate the activity, efficacy, pharmacokinetics and mechanism of action of VSN16R. Toxicological and safety studies were performed in animals and humans. Key Results VSN16R had nanomolar activity in tissue‐based, functional assays and dose‐dependently inhibited spasticity in a mouse experimental encephalomyelitis model of MS. This effect occurred with over 1000‐fold therapeutic window, without affecting normal muscle tone. Efficacy was achieved at plasma levels that are feasible and safe in humans. VSN16R did not bind to known CB1/CB2/GPPR55 cannabinoid‐related receptors in receptor‐based assays but acted on a vascular cannabinoid target. This was identified as the major neuronal form of the big conductance, calcium‐activated potassium (BKCa) channel. Drug‐induced opening of neuronal BKCa channels induced membrane hyperpolarization, limiting excessive neural‐excitability and controlling spasticity. Conclusions and Implications We identified the neuronal form of the BKCa channel as the target for VSN16R and demonstrated that its activation alleviates neuronal excitability and spasticity in an experimental model of MS, revealing a novel mechanism to control spasticity. VSN16R is a potential, safe and selective ligand for controlling neural hyper‐excitability in spasticity.
Collapse
Affiliation(s)
- David Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Gareth Pryce
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Cristina Visintin
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK.,Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sofia Sisay
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alexander I Bondarenko
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - W S Vanessa Ho
- Vascular Biology Research Centre. St. George's, University of London, London, UK
| | - Samuel J Jackson
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas E Williams
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah Al-Izki
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Sevastou
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Masahiro Okuyama
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lesley A Stevenson
- Vascular Biology Research Centre. St. George's, University of London, London, UK
| | - Carolyn Tanner
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Ruth Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Roger G Pertwee
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher M Henstridge
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Irving
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jesse Schulman
- Canbex Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Keith Powell
- Canbex Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Mark D Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - David L Selwood
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
36
|
Guarina L, Vandael DHF, Carabelli V, Carbone E. Low pH o boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J Physiol 2017; 595:2587-2609. [PMID: 28026020 DOI: 10.1113/jp273735] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Mouse chromaffin cells (MCCs) generate spontaneous burst-firing that causes large increases of Ca2+ -dependent catecholamine release, and is thus a key mechanism for regulating the functions of MCCs. With the aim to uncover a physiological role for burst-firing we investigated the effects of acidosis on MCC activity. Lowering the extracellular pH (pHo ) from 7.4 to 6.6 induces cell depolarizations of 10-15 mV that generate bursts of ∼330 ms at 1-2 Hz and a 7.4-fold increase of cumulative catecholamine-release. Burst-firing originates from the inhibition of the pH-sensitive TASK-1-channels and a 60% reduction of BK-channel conductance at pHo 6.6. Blockers of the two channels (A1899 and paxilline) mimic the effects of pHo 6.6, and this is reverted by the Cav1 channel blocker nifedipine. MCCs act as pH-sensors. At low pHo , they depolarize, undergo burst-firing and increase catecholamine-secretion, generating an effective physiological response that may compensate for the acute acidosis and hyperkalaemia generated during heavy exercise and muscle fatigue. ABSTRACT Mouse chromaffin cells (MCCs) generate action potential (AP) firing that regulates the Ca2+ -dependent release of catecholamines (CAs). Recent findings indicate that MCCs possess a variety of spontaneous firing modes that span from the common 'tonic-irregular' to the less frequent 'burst' firing. This latter is evident in a small fraction of MCCs but occurs regularly when Nav1.3/1.7 channels are made less available or when the Slo1β2-subunit responsible for BK channel inactivation is deleted. Burst firing causes large increases of Ca2+ -entry and potentiates CA release by ∼3.5-fold and thus may be a key mechanism for regulating MCC function. With the aim to uncover a physiological role for burst-firing we investigated the effects of acidosis on MCC activity. Lowering the extracellular pH (pHo ) from 7.4 to 7.0 and 6.6 induces cell depolarizations of 10-15 mV that generate repeated bursts. Bursts at pHo 6.6 lasted ∼330 ms, occurred at 1-2 Hz and caused an ∼7-fold increase of CA cumulative release. Burst firing originates from the inhibition of the pH-sensitive TASK-1/TASK-3 channels and from a 40% BK channel conductance reduction at pHo 7.0. The same pHo had little or no effect on Nav, Cav, Kv and SK channels that support AP firing in MCCs. Burst firing of pHo 6.6 could be mimicked by mixtures of the TASK-1 blocker A1899 (300 nm) and BK blocker paxilline (300 nm) and could be prevented by blocking L-type channels by adding 3 μm nifedipine. Mixtures of the two blockers raised cumulative CA-secretion even more than low pHo (∼12-fold), showing that the action of protons on vesicle release is mainly a result of the ionic conductance changes that increase Ca2+ -entry during bursts. Our data provide direct evidence suggesting that MCCs respond to low pHo with sustained depolarization, burst firing and enhanced CA-secretion, thus mimicking the physiological response of CCs to acute acidosis and hyperkalaemia generated during heavy exercise and muscle fatigue.
Collapse
Affiliation(s)
- Laura Guarina
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy
| | - David H F Vandael
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy.,Present address: Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Valentina Carabelli
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy
| |
Collapse
|
37
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Abstract
The sigma-1 receptor (Sig-1R), via interaction with various proteins, including voltage-gated and ligand-gated ion channels (VGICs and LGICs), is involved in a plethora of neuronal functions. This capability to regulate a variety of ion channel targets endows the Sig-1R with a powerful capability to fine tune neuronal excitability, and thereby the transmission of information within brain circuits. This versatility may also explain why the Sig-1R is associated to numerous diseases at both peripheral and central levels. To date, how the Sig-1R chooses its targets and how the combinations of target modulations alter overall neuronal excitability is one of the challenges in the field of Sig-1R-dependent regulation of neuronal activity. Here, we will describe and discuss the latest findings on Sig-1R-dependent modulation of VGICs and LGICs, and provide hypotheses that may explain the diverse excitability outcomes that have been reported so far.
Collapse
Affiliation(s)
- Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center, 2201 Inwood Road, Dallas, TX, 75390-9070, USA.
| |
Collapse
|
39
|
Wang B, Bugay V, Ling L, Chuang HH, Jaffe DB, Brenner R. Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability. J Neurophysiol 2016; 116:456-65. [PMID: 27146987 PMCID: PMC4978790 DOI: 10.1152/jn.00857.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/03/2016] [Indexed: 01/24/2023] Open
Abstract
BK channels are large-conductance calcium- and voltage-activated potassium channels with diverse properties. Knockout of the accessory BK β4-subunit in hippocampus dentate gyrus granule neurons causes BK channels to change properties from slow-gated type II channels to fast-gated type I channels that sharpen the action potential, increase the fast afterhyperpolarization (fAHP) amplitude, and increase spike frequency. Here we studied the calcium channels that contribute to fast-gated BK channel activation and increased excitability of β4 knockout neurons. By using pharmacological blockers during current-clamp recording, we find that BK channel activation during the fAHP is dependent on ryanodine receptor activation. In contrast, L-type calcium channel blocker (nifedipine) affects the BK channel-dependent repolarization phase of the action potential but has no effect on the fAHP. Reducing BK channel activation during the repolarization phase with nifedipine, or during the fAHP with ryanodine, indicated that it is the BK-mediated increase of the fAHP that confers proexcitatory effects. The proexcitatory role of the fAHP was corroborated using dynamic current clamp. Increase or decrease of the fAHP amplitude during spiking revealed an inverse relationship between fAHP amplitude and interspike interval. Finally, we show that the seizure-prone ryanodine receptor gain-of-function (R2474S) knockin mice have an unaltered repolarization phase but larger fAHP and increased AP frequency compared with their control littermates. In summary, these results indicate that an important role of the β4-subunit is to reduce ryanodine receptor-BK channel functional coupling during the fAHP component of the action potential, thereby decreasing excitability of dentate gyrus neurons.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Vladislav Bugay
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Ling Ling
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Hui-Hsui Chuang
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - David B Jaffe
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Robert Brenner
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
40
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
41
|
Hoshi T, Heinemann SH. Modulation of BK Channels by Small Endogenous Molecules and Pharmaceutical Channel Openers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:193-237. [PMID: 27238265 DOI: 10.1016/bs.irn.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage- and Ca(2+)-activated K(+) channels of big conductance (BK channels) are abundantly found in various organs and their relevance for smooth muscle tone and neuronal signaling is well documented. Dysfunction of BK channels is implicated in an array of human diseases involving many organs including the nervous, pulmonary, cardiovascular, renal, and urinary systems. In humans a single gene (KCNMA1) encodes the pore-forming α subunit (Slo1) of BK channels, but the channel properties are variable because of alternative splicing, tissue- and subcellular-specific auxiliary subunits (β, γ), posttranslational modifications, and a multitude of endogenous signaling molecules directly affecting the channel function. Initiatives to develop drugs capable of activating BK channels (channel openers) therefore need to consider the tissue-specific variability of BK channel structure and the potential interference with endogenously produced regulatory factors. The atomic structural basis of BK channel function is only beginning to be revealed. However, building on detailed knowledge of BK channel function, including its single-channel characteristics, voltage- and Ca(2+) dependence of channel gating, and modulation by diffusible messengers, a multi-tier allosteric model of BK channel gating (Horrigan and Aldrich (HA) model) has become a valuable tool in studying modulation of the channel. Using the conceptual framework of the HA model, we here review the functional impact of endogenous modulatory factors and select small synthetic compounds that regulate BK channel activity. Furthermore, we devise experimental approaches for studying BK channel-drug interactions with the aim to classify BK-modulating substances according to their molecular mode of action.
Collapse
Affiliation(s)
- T Hoshi
- University of Pennsylvania, Philadelphia, PA, United States.
| | - S H Heinemann
- Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Li B, Gao TM. Functional Role of Mitochondrial and Nuclear BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:163-91. [PMID: 27238264 DOI: 10.1016/bs.irn.2016.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BK channels are important for the regulation of many cell functions. The significance of plasma membrane BK channels in the control of action potentials, resting membrane potential, and neurotransmitter release is well established; however, the composition and functions of mitochondrial and nuclear BK (nBK) channels are largely unknown. In this chapter, we summarize the recent findings on the subcellular localization, biophysical, and pharmacological properties of mitochondrial and nBK channels and discuss their molecular identity and physiological functions.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - T-M Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Abstract
BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties.
Collapse
Affiliation(s)
- A Pantazis
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - R Olcese
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
44
|
Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:51-90. [PMID: 27238261 DOI: 10.1016/bs.irn.2016.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The large-conductance, Ca(2+)- and voltage-activated K(+) (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1-β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings.
Collapse
|
45
|
BK channel inactivation gates daytime excitability in the circadian clock. Nat Commun 2016; 7:10837. [PMID: 26940770 PMCID: PMC4785228 DOI: 10.1038/ncomms10837] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/26/2016] [Indexed: 12/05/2022] Open
Abstract
Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. BK potassium channels have been previously shown to mediate SCN circadian firing, although the precise mechanisms are unclear. Here, using knockout and rescue approaches, the authors find that the ß2 ‘ball-and-chain' confers BK channel inactivation during the day, promoting SCN electrical upstate.
Collapse
|
46
|
Martinez-Espinosa PL, Wu J, Yang C, Gonzalez-Perez V, Zhou H, Liang H, Xia XM, Lingle CJ. Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons. eLife 2015; 4:e10013. [PMID: 26559620 PMCID: PMC4641468 DOI: 10.7554/elife.10013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/06/2015] [Indexed: 02/02/2023] Open
Abstract
Two mammalian genes, Kcnt1 and Kcnt2, encode pore-forming subunits of Na(+)-dependent K(+) (KNa) channels. Progress in understanding KNa channels has been hampered by the absence of specific tools and methods for rigorous KNa identification in native cells. Here, we report the genetic disruption of both Kcnt1 and Kcnt2, confirm the loss of Slo2.2 and Slo2.1 protein, respectively, in KO animals, and define tissues enriched in Slo2 expression. Noting the prevalence of Slo2.2 in dorsal root ganglion, we find that KO of Slo2.2, but not Slo2.1, results in enhanced itch and pain responses. In dissociated small diameter DRG neurons, KO of Slo2.2, but not Slo2.1, abolishes KNa current. Utilizing isolectin B4+ neurons, the absence of KNa current results in an increase in action potential (AP) firing and a decrease in AP threshold. Activation of KNa acts as a brake to initiation of the first depolarization-elicited AP with no discernible effect on afterhyperpolarizations.
Collapse
Affiliation(s)
| | - Jianping Wu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Huifang Zhou
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Hongwu Liang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
47
|
Zemen BG, Lai MH, Whitt JP, Khan Z, Zhao G, Meredith AL. Generation of Kcnma1fl-tdTomato, a conditional deletion of the BK channel α subunit in mouse. Physiol Rep 2015; 3:e12612. [PMID: 26537348 PMCID: PMC4673641 DOI: 10.14814/phy2.12612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
BK large conductance calcium-activated K(+) channels (KC a1.1) are expressed widely across many tissues, contributing to systemic regulation of cardiovascular, neurological, and other specialized physiological functions. The pore-forming α subunit is encoded by the Kcnma1 gene, originally named mSlo1 in mouse and slowpoke in Drosophila. Global deletion in mouse (Kcnma1(-/-)) produces a plethora of defects in neuron and muscle excitability, as well as other phenotypes related to channel function in nonexcitable cells. While homozygous null mice are viable, the ubiquitous loss of BK function has complicated the interpretation of phenotypes involving the interaction of multiple cell types which independently express BK channels. Here, we report the generation of a targeted allele for conditional inactivation of Kcnma1 using the Cre-loxP system (Kcnma1(fl)-tdTomato). Cre-mediated recombination generates a null allele, and BK currents were not detectable in neurons and muscle cells from Nestin-Cre; Kcnma1(fl/fl) and SM22α-Cre; Kcnma1(fl/fl) mice, respectively. tdTomato expression was detected in Cre-expressing tissues, but not in Cre-negative controls. These data demonstrate the utility of Kcnma1(fl)-tdTomato for conditional deletion of the BK channel, facilitating the understanding of tissue-specific contributions to physiological function in vivo.
Collapse
Affiliation(s)
- Betsir G Zemen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael H Lai
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zulqarnain Khan
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Guiling Zhao
- Center of BioMedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J Physiol 2015; 593:4835-53. [PMID: 26282459 DOI: 10.1113/jp271078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect and, as such, exerts a relevant action on the adipo-adrenal axis. Leptin has a dual action on adrenal mouse chromaffin cells both at rest and during stimulation. At rest, the adipokine inhibits the spontaneous firing of most cells by enhancing the probability of BK channel opening through the phosphoinositide 3-kinase signalling cascade. This inhibitory effect is absent in db(-) /db(-) mice deprived of Ob receptors. During sustained stimulation, leptin preserves cell excitability by generating well-adapted action potential (AP) trains of lower frequency and broader width and increases catecholamine secretion by increasing the size of the ready-releasable pool and the rate of vesicle release. In conclusion, leptin dampens AP firing at rest but preserves AP firing and enhances catecholamine release during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release. ABSTRACT Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect. Besides being expressed in the hypothalamus and hippocampus, leptin receptors (ObRs) are also present in chromaffin cells of the adrenal medulla. In the present study, we report the effect of leptin on mouse chromaffin cell (MCC) functionality, focusing on cell excitability and catecholamine secretion. Acute application of leptin (1 nm) on spontaneously firing MCCs caused a slowly developing membrane hyperpolarization followed by complete blockade of action potential (AP) firing. This inhibitory effect at rest was abolished by the BK channel blocker paxilline (1 μm), suggesting the involvement of BK potassium channels. Single-channel recordings in 'perforated microvesicles' confirmed that leptin increased BK channel open probability without altering its unitary conductance. BK channel up-regulation was associated with the phosphoinositide 3-kinase (PI3K) signalling cascade because the PI3K specific inhibitor wortmannin (100 nm) fully prevented BK current increase. We also tested the effect of leptin on evoked AP firing and Ca(2+) -driven exocytosis. Although leptin preserves well-adapted AP trains of lower frequency, APs are broader and depolarization-evoked exocytosis is increased as a result of the larger size of the ready-releasable pool and higher frequency of vesicle release. The kinetics and quantal size of single secretory events remained unaltered. Leptin had no effect on firing and secretion in db(-) /db(-) mice lacking the ObR gene, confirming its specificity. In conclusion, leptin exhibits a dual action on MCC activity. It dampens AP firing at rest but preserves AP firing and increases catecholamine secretion during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - David Vandael
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy.,Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sara Gosso
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| |
Collapse
|
49
|
Gonzalez-Perez V, Xia XM, Lingle CJ. Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating. Nat Commun 2015; 6:8341. [PMID: 26388335 PMCID: PMC4578311 DOI: 10.1038/ncomms9341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/11/2015] [Indexed: 12/02/2022] Open
Abstract
High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca2+-and-voltage activated potassium channel (BK) is well-suited to discern nuanced differences in regulation arising from combinations of subunits. Here we examine whether assembly of two different classes of regulatory proteins, β and γ, in BK channels is exclusive or independent. Our results show that both γ1 and up to four β2-subunits can coexist in the same functional BK complex, with the gating shift caused by β2-subunits largely additive with that produced by the γ1-subunit(s). The multiplicity of β:γ combinations that can participate in a BK complex therefore allow a range of BK channels with distinct functional properties tuned by the specific stoichiometry of the contributing subunits. Ion channels are often an assembly of proteins, but it is not clear if protein combinations have additive effects or function to prevent binding of other proteins. Here, the authors show that β and γ subunits can assemble into the same BK complex, and the constituents of the complex have an effect on its function.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
50
|
Lingle CJ. NAVigating a transition from single action potential firing to bursting in chromaffin cells. J Physiol 2015; 593:761-2. [PMID: 25708919 DOI: 10.1113/jphysiol.2014.288464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/01/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Christopher J Lingle
- Department of Anaesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|