1
|
Flück M, Sanchez C, Jacquemond V, Berthier C, Giraud MN, Jacko D, Bersiner K, Gehlert S, Baan G, Jaspers RT. Enhanced capacity for CaMKII signaling mitigates calcium release related contractile fatigue with high intensity exercise. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119610. [PMID: 37913845 DOI: 10.1016/j.bbamcr.2023.119610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and β CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS Co-transfection with αCaMKII-pcDNA3/βCaMKII-pcDNA3 increased α and βCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-βCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/β CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION Enhanced capacity for α/β CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.
Collapse
Affiliation(s)
- Martin Flück
- Department of Medicine, University of Fribourg, Switzerland; Manchester Metropolitan University, United Kingdom.
| | - Colline Sanchez
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle, 69008 Lyon, France
| | - Vincent Jacquemond
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle, 69008 Lyon, France
| | - Christine Berthier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle, 69008 Lyon, France
| | | | - Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Germany
| | - Käthe Bersiner
- Department of Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Sebastian Gehlert
- Department of Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Guus Baan
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HZ Amsterdam, the Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
2
|
Wang X, Dupont C, Grant D, Voss AA, Rich MM. Plateau potentials contribute to myotonia in mouse models of myotonia congenita. Exp Neurol 2023; 361:114303. [PMID: 36563835 PMCID: PMC9892346 DOI: 10.1016/j.expneurol.2022.114303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
It has long been accepted that myotonia (muscle stiffness) in patients with muscle channelopathies is due to myotonic discharges (involuntary firing of action potentials). In a previous study, we identified a novel phenomenon in myotonic muscle: development of plateau potentials, transient depolarizations to near -35 mV lasting for seconds to minutes. In the current study we examined whether plateau potentials contribute to myotonia. A recessive genetic model (ClCadr mice) with complete loss of muscle chloride channel (ClC-1) function was used to model severe myotonia congenita with complete loss of ClC-1 function and a pharmacologic model using anthracene-9-carboxylic acid (9 AC) was used to model milder myotonia congenita with incomplete loss of ClC-1 function. Simultaneous measurements of action potentials and myoplasmic Ca2+ from individual muscle fibers were compared to recordings of whole muscle force generation. In ClCadr muscle both myotonia and plateau potentials lasted 10s of seconds to minutes. During plateau potentials lasting 1-2 min, there was a gradual transition from high to low intracellular Ca2+, suggesting a transition in individual fibers from myotonia to flaccid paralysis in severe myotonia congenita. In 9 AC-treated muscles, both myotonia and plateau potentials lasted only a few seconds and Ca2+ remained elevated during the plateau potentials, suggesting plateau potentials contribute to myotonia without causing weakness. We propose, that in myotonic muscle, there is a novel state in which there is contraction in the absence of action potentials. This discovery provides a mechanism to explain reports of patients with myotonia who suffer from electrically silent muscle contraction lasting minutes.
Collapse
Affiliation(s)
- Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Delaney Grant
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Andrew A Voss
- Department of Biology, Wright State University, Dayton, OH 45435, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
3
|
Chivet M, McCluskey M, Nicot AS, Brocard J, Beaufils M, Giovannini D, Giannesini B, Poreau B, Brocard J, Humbert S, Saudou F, Fauré J, Marty I. Huntingtin regulates calcium fluxes in skeletal muscle. J Gen Physiol 2022; 155:213700. [PMID: 36409218 PMCID: PMC9682417 DOI: 10.1085/jgp.202213103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/09/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
The expression of the Huntingtin protein, well known for its involvement in the neurodegenerative Huntington's disease, has been confirmed in skeletal muscle. The impact of HTT deficiency was studied in human skeletal muscle cell lines and in a mouse model with inducible and muscle-specific HTT deletion. Characterization of calcium fluxes in the knock-out cell lines demonstrated a reduction in excitation-contraction (EC) coupling, related to an alteration in the coupling between the dihydropyridine receptor and the ryanodine receptor, and an increase in the amount of calcium stored within the sarcoplasmic reticulum, linked to the hyperactivity of store-operated calcium entry (SOCE). Immunoprecipitation experiments demonstrated an association of HTT with junctophilin 1 (JPH1) and stromal interaction molecule 1 (STIM1), both providing clues on the functional effects of HTT deletion on calcium fluxes. Characterization of muscle strength and muscle anatomy of the muscle-specific HTT-KO mice demonstrated that HTT deletion induced moderate muscle weakness and mild muscle atrophy associated with histological abnormalities, similar to the phenotype observed in tubular aggregate myopathy. Altogether, this study points toward the hypotheses of the involvement of HTT in EC coupling via its interaction with JPH1, and on SOCE via its interaction with JPH1 and/or STIM1.
Collapse
Affiliation(s)
- Mathilde Chivet
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Maximilian McCluskey
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Anne Sophie Nicot
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Julie Brocard
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Mathilde Beaufils
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Diane Giovannini
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Benoit Giannesini
- Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Aix Marseille University, Marseille, France
| | - Brice Poreau
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Jacques Brocard
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Sandrine Humbert
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Frédéric Saudou
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Julien Fauré
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Isabelle Marty
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France,Correspondence to Isabelle Marty:
| |
Collapse
|
4
|
Tomczyk M, Braczko A, Mierzejewska P, Podlacha M, Krol O, Jablonska P, Jedrzejewska A, Pierzynowska K, Wegrzyn G, Slominska EM, Smolenski RT. Rosiglitazone Ameliorates Cardiac and Skeletal Muscle Dysfunction by Correction of Energetics in Huntington’s Disease. Cells 2022; 11:cells11172662. [PMID: 36078070 PMCID: PMC9454785 DOI: 10.3390/cells11172662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare neurodegenerative disease that is accompanied by skeletal muscle atrophy and cardiomyopathy. Tissues affected by HD (central nervous system [CNS], skeletal muscle, and heart) are known to suffer from deteriorated cellular energy metabolism that manifests already at presymptomatic stages. This work aimed to test the effects of peroxisome proliferator-activated receptor (PPAR)-γ agonist—rosiglitazone on grip strength and heart function in an experimental HD model—on R6/1 mice and to address the mechanisms. We noted that rosiglitazone treatment lead to improvement of R6/1 mice grip strength and cardiac mechanical function. It was accompanied by an enhancement of the total adenine nucleotides pool, increased glucose oxidation, changes in mitochondrial number (indicated as increased citric synthase activity), and reduction in mitochondrial complex I activity. These metabolic changes were supported by increased total antioxidant status in HD mice injected with rosiglitazone. Correction of energy deficits with rosiglitazone was further indicated by decreased accumulation of nucleotide catabolites in HD mice serum. Thus, rosiglitazone treatment may not only delay neurodegeneration but also may ameliorate cardio- and myopathy linked to HD by improvement of cellular energetics.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| |
Collapse
|
5
|
Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022; 11:2105. [PMID: 35805189 PMCID: PMC9265456 DOI: 10.3390/cells11132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15100, USA;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38100 Trento, Italy;
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
6
|
Effects of Exercise on Skeletal Muscle Pathophysiology in Huntington's Disease. J Funct Morphol Kinesiol 2022; 7:jfmk7020040. [PMID: 35645302 PMCID: PMC9149967 DOI: 10.3390/jfmk7020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, and progressive neurodegenerative disease, characterized by involuntary choreatic movements with cognitive and behavioral disturbances. In order to mitigate impairments in motor function, physical exercise was integrated in HD rehabilitative interventions, showing to be a powerful tool to ameliorate the quality of life of HD-affected patients. This review aims to describe the effects of physical exercise on HD-related skeletal muscle disorders in both murine and human models. We performed a literature search using PubMed, Scopus, and Web of Science databases on the role of physical activity in mouse models of HD and human patients. Fifteen publications fulfilled the criteria and were included in the review. Studies performed on mouse models showed a controversial role played by exercise, whereas in HD-affected patients, physical activity appeared to have positive effects on gait, motor function, UHDMRS scale, cognitive function, quality of life, postural stability, total body mass, fatty acid oxidative capacity, and VO2 max. Physical activity seems to be feasible, safe, and effective for HD patients. However, further studies with longer follow-up and larger cohorts of patients will be needed to draw firm conclusions on the positive effects of exercise for HD patients.
Collapse
|
7
|
Wang X, Nawaz M, DuPont C, Myers JH, Burke SR, Bannister RA, Foy BD, Voss AA, Rich MM. The role of action potential changes in depolarization-induced failure of excitation contraction coupling in mouse skeletal muscle. eLife 2022; 11:71588. [PMID: 34985413 PMCID: PMC8730720 DOI: 10.7554/elife.71588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
Excitation-contraction coupling (ECC) is the process by which electrical excitation of muscle is converted into force generation. Depolarization of skeletal muscle resting potential contributes to failure of ECC in diseases such as periodic paralysis, intensive care unit acquired weakness and possibly fatigue of muscle during vigorous exercise. When extracellular K+ is raised to depolarize the resting potential, failure of ECC occurs suddenly, over a narrow range of resting potentials. Simultaneous imaging of Ca2+ transients and recording of action potentials (APs) demonstrated failure to generate Ca2+ transients when APs peaked at potentials more negative than -30mV. An AP property that closely correlated with failure of the Ca2+ transient was the integral of AP voltage with respect to time. Simultaneous recording of Ca2+ transients and APs with electrodes separated by 1.6mm revealed AP conduction fails when APs peak below -21mV. We hypothesize propagation of APs and generation of Ca2+ transients are governed by distinct AP properties: AP conduction is governed by AP peak, whereas Ca2+ release from the sarcoplasmic reticulum is governed by AP integral. The reason distinct AP properties may govern distinct steps of ECC is the kinetics of the ion channels involved. Na channels, which govern propagation, have rapid kinetics and are insensitive to AP width (and thus AP integral) whereas Ca2+ release is governed by gating charge movement of Cav1.1 channels, which have slower kinetics such that Ca2+ release is sensitive to AP integral. The quantitative relationships established between resting potential, AP properties, AP conduction and Ca2+ transients provide the foundation for future studies of failure of ECC induced by depolarization of the resting potential.
Collapse
Affiliation(s)
- Xueyong Wang
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Murad Nawaz
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Chris DuPont
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Jessica H Myers
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| | - Steve Ra Burke
- Wright State University, Department of Biological Sciences, Dayton, United States
| | - Roger A Bannister
- University of Maryland School of Medicine, Departments of Pathology/Biochemistry & Molecular Biology, Baltimore, United States
| | - Brent D Foy
- Wright State University, Department of Physics, Dayton, United States
| | - Andrew A Voss
- Wright State University, Department of Biological Sciences, Dayton, United States
| | - Mark M Rich
- Wright State University, Department of Neuroscience, Cell Biology, and Physiology, Dayton, United States
| |
Collapse
|
8
|
Romer SH, Metzger S, Peraza K, Wright MC, Jobe DS, Song LS, Rich MM, Foy BD, Talmadge RJ, Voss AA. A mouse model of Huntington's disease shows altered ultrastructure of transverse tubules in skeletal muscle fibers. J Gen Physiol 2021; 153:211860. [PMID: 33683318 PMCID: PMC7931643 DOI: 10.1085/jgp.202012637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is a fatal and progressive condition with severe debilitating motor defects and muscle weakness. Although classically recognized as a neurodegenerative disorder, there is increasing evidence of cell autonomous toxicity in skeletal muscle. We recently demonstrated that skeletal muscle fibers from the R6/2 model mouse of HD have a decrease in specific membrane capacitance, suggesting a loss of transverse tubule (t-tubule) membrane in R6/2 muscle. A previous report also indicated that Cav1.1 current was reduced in R6/2 skeletal muscle, suggesting defects in excitation–contraction (EC) coupling. Thus, we hypothesized that a loss and/or disruption of the skeletal muscle t-tubule system contributes to changes in EC coupling in R6/2 skeletal muscle. We used live-cell imaging with multiphoton confocal microscopy and transmission electron microscopy to assess the t-tubule architecture in late-stage R6/2 muscle and found no significant differences in the t-tubule system density, regularity, or integrity. However, electron microscopy images revealed that the cross-sectional area of t-tubules at the triad were 25% smaller in R6/2 compared with age-matched control skeletal muscle. Computer simulation revealed that the resulting decrease in the R6/2 t-tubule luminal conductance contributed to, but did not fully explain, the reduced R6/2 membrane capacitance. Analyses of bridging integrator-1 (Bin1), which plays a primary role in t-tubule formation, revealed decreased Bin1 protein levels and aberrant splicing of Bin1 mRNA in R6/2 muscle. Additionally, the distance between the t-tubule and sarcoplasmic reticulum was wider in R6/2 compared with control muscle, which was associated with a decrease in junctophilin 1 and 2 mRNA levels. Altogether, these findings can help explain dysregulated EC coupling and motor impairment in Huntington’s disease.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Biological Sciences, Wright State University, Dayton, OH.,Odyssey Systems, Environmental Health Effects Laboratory, Navy Medical Research Unit, Dayton, Wright-Patterson Air Force Base, Dayton, OH
| | - Sabrina Metzger
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Kristiana Peraza
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - Matthew C Wright
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - D Scott Jobe
- Department of Biological Sciences, Wright State University, Dayton, OH
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Brent D Foy
- Department of Physics, Wright State University, Dayton, OH
| | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH
| |
Collapse
|
9
|
Sanchez C, Berthier C, Tourneur Y, Monteiro L, Allard B, Csernoch L, Jacquemond V. Detection of Ca2+ transients near ryanodine receptors by targeting fluorescent Ca2+ sensors to the triad. J Gen Physiol 2021; 153:211757. [PMID: 33538764 PMCID: PMC7868779 DOI: 10.1085/jgp.202012592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
In intact muscle fibers, functional properties of ryanodine receptor (RYR)–mediated sarcoplasmic reticulum (SR) Ca2+ release triggered by activation of the voltage sensor CaV1.1 have so far essentially been addressed with diffusible Ca2+-sensitive dyes. Here, we used a domain (T306) of the protein triadin to target the Ca2+-sensitive probe GCaMP6f to the junctional SR membrane, in the immediate vicinity of RYR channels, within the triad region. Fluorescence of untargeted GCaMP6f was distributed throughout the muscle fibers and experienced large Ca2+-dependent changes, with obvious kinetic delays, upon application of voltage-clamp depolarizing pulses. Conversely, T306-GCaMP6f localized to the triad and generated Ca2+-dependent fluorescence transients of lower amplitude and faster kinetics for low and intermediate levels of Ca2+ release than those of untargeted GCaMP6f. By contrast, model simulation of the spatial gradients of Ca2+ following Ca2+ release predicted limited kinetic differences under the assumptions that the two probes were present at the same concentration and suffered from identical kinetic limitations. At the spatial level, T306-GCaMP6f transients within distinct regions of a same fiber yielded a uniform time course, even at low levels of Ca2+ release activation. Similar observations were made using GCaMP6f fused to the γ1 auxiliary subunit of CaV1.1. Despite the probe's limitations, our results point out the remarkable synchronicity of voltage-dependent Ca2+ release activation and termination among individual triads and highlight the potential of the approach to visualize activation or closure of single groups of RYR channels. We anticipate targeting of improved Ca2+ sensors to the triad will provide illuminating insights into physiological normal RYR function and its dysfunction under stress or pathological conditions.
Collapse
Affiliation(s)
- Colline Sanchez
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Christine Berthier
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Yves Tourneur
- Departamento Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Laloé Monteiro
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Bruno Allard
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
10
|
Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021; 99:141-162. [PMID: 31997405 PMCID: PMC9394523 DOI: 10.1002/jnr.24585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Bozzi M, Sciandra F. Molecular Mechanisms Underlying Muscle Wasting in Huntington's Disease. Int J Mol Sci 2020; 21:ijms21218314. [PMID: 33167595 PMCID: PMC7664236 DOI: 10.3390/ijms21218314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by pathogenic expansions of the triplet cytosine-adenosine-guanosine (CAG) within the Huntingtin gene. These expansions lead to a prolongation of the poly-glutamine stretch at the N-terminus of Huntingtin causing protein misfolding and aggregation. Huntingtin and its pathological variants are widely expressed, but the central nervous system is mainly affected, as proved by the wide spectrum of neurological symptoms, including behavioral anomalies, cognitive decline and motor disorders. Other hallmarks of HD are loss of body weight and muscle atrophy. This review highlights some key elements that likely provide a major contribution to muscle atrophy, namely, alteration of the transcriptional processes, mitochondrial dysfunction, which is strictly correlated to loss of energy homeostasis, inflammation, apoptosis and defects in the processes responsible for the protein quality control. The improvement of muscular symptoms has proven to slow the disease progression and extend the life span of animal models of HD, underlining the importance of a deep comprehension of the molecular mechanisms driving deterioration of muscular tissue.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento Universitario di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore di Roma, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
- Correspondence:
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
| |
Collapse
|
12
|
Sun L, Wei H. Ryanodine Receptors: A Potential Treatment Target in Various Neurodegenerative Disease. Cell Mol Neurobiol 2020; 41:1613-1624. [PMID: 32833122 DOI: 10.1007/s10571-020-00936-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Progressive neuronal demise is a key contributor to the key pathogenic event implicated in many different neurodegenerative disorders (NDDs). There are several therapeutic strategies available; however, none of them are particularly effective. Targeted neuroprotective therapy is one such therapy, which seems a compelling option, yet remains challenging due to the internal heterogeneity of the mechanisms underlying various NDDs. An alternative method to treat NDDs is to exploit common modalities involving molecularly distinct subtypes and thus develop specialized drugs with broad-spectrum characteristics. There is mounting evidence which supports for the theory that dysfunctional ryanodine receptors (RyRs) disrupt intracellular Ca2+ homeostasis, contributing to NDDs significantly. This review aims to provide direct and indirect evidence on the intersection of NDDs and RyRs malfunction, and to shed light on novel strategies to treat RyRs-mediated disease, modifying pharmacological therapies such as the potential therapeutic role of dantrolene, a RyRs antagonist.
Collapse
Affiliation(s)
- Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
14
|
Miranda DR, Reed E, Jama A, Bottomley M, Ren H, Rich MM, Voss AA. Mechanisms of altered skeletal muscle action potentials in the R6/2 mouse model of Huntington's disease. Am J Physiol Cell Physiol 2020; 319:C218-C232. [PMID: 32432924 DOI: 10.1152/ajpcell.00153.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) patients suffer from progressive and debilitating motor dysfunction for which only palliative treatment is currently available. Previously, we discovered reduced skeletal muscle Cl- channel (ClC-1) and inwardly rectifying K+ channel (Kir) currents in R6/2 HD transgenic mice. To further investigate the role of ClC-1 and Kir currents in HD skeletal muscle pathology, we measured the effect of reduced ClC-1 and Kir currents on action potential (AP) repetitive firing in R6/2 mice using a two-electrode current clamp. We found that R6/2 APs had a significantly lower peak amplitude, depolarized maximum repolarization, and prolonged decay time compared with wild type (WT). Of these differences, only the maximum repolarization was accounted for by the reduction in ClC-1 and Kir currents, indicating the presence of additional ion channel defects. We found that both KV1.5 and KV3.4 mRNA levels were significantly reduced in R6/2 skeletal muscle compared with WT, which explains the prolonged decay time of R6/2 APs. Overall, we found that APs in WT and R6/2 muscle significantly and progressively change during activity to maintain peak amplitude despite buildup of Na+ channel inactivation. Even with this resilience, the persistently reduced peak amplitude of R6/2 APs is expected to result in earlier fatigue and may help explain the motor impersistence experienced by HD patients. This work lays the foundation to link electrical changes to force generation defects in R6/2 HD mice and to examine the regulatory events controlling APs in WT muscle.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Eric Reed
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, Ohio
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
15
|
Miranda AS, Cardozo PL, Silva FR, de Souza JM, Olmo IG, Cruz JS, Gomez MV, Ribeiro FM, Vieira LB. Alterations of Calcium Channels in a Mouse Model of Huntington's Disease and Neuroprotection by Blockage of Ca V1 Channels. ASN Neuro 2020; 11:1759091419856811. [PMID: 31216184 PMCID: PMC6585245 DOI: 10.1177/1759091419856811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative autosomal dominant disorder, characterized by symptoms of involuntary movement of the body, loss of cognitive function, psychiatric disorder, leading inevitably to death. It has been previously described that higher levels of brain expression of Cav1 channels are involved in major neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Our results demonstrate that a bacterial artificial chromosome (BAC)-mediated transgenic mouse model (BACHD mice) at the age of 3 and 12 months exhibits significantly increased Cav1.2 protein levels in the cortex, as compared with wild-type littermates. Importantly, electrophysiological analyses confirm a significant increase in L-type Ca2+ currents and total Ca2+ current density in cortical neurons from BACHD mice. By using an in vitro assay to measure neuronal cell death, we were able to observe neuronal protection against glutamate toxicity after treatment with Cav1 blockers, in wild-type and, more importantly, in BACHD neurons. According to our data, Cav1 blockers may offer an interesting strategy for the treatment of HD. Altogether, our results show that mutant huntingtin (mHtt) expression may cause a dysregulation of Cav1.2 channels and we hypothesize that this contributes to neurodegeneration during HD.
Collapse
Affiliation(s)
- Artur S Miranda
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Leal Cardozo
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavia R Silva
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica M de Souza
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella G Olmo
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jader S Cruz
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabiola M Ribeiro
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciene B Vieira
- 3 Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Banks Q, Pratt SJP, Iyer SR, Lovering RM, Hernández-Ochoa EO, Schneider MF. Optical Recording of Action Potential Initiation and Propagation in Mouse Skeletal Muscle Fibers. Biophys J 2018; 115:2127-2140. [PMID: 30448039 PMCID: PMC6289662 DOI: 10.1016/j.bpj.2018.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/29/2023] Open
Abstract
Skeletal muscle fibers have been used to examine a variety of cellular functions and pathologies. Among other parameters, skeletal muscle action potential (AP) propagation has been measured to assess the integrity and function of skeletal muscle. In this work, we utilize 1-(3-sulfonatopropyl)-4[β[2-(Di-n-octylamino)-6-naphtyl]vinyl]pyridinium betaine, a potentiometric dye, and mag-fluo-4, a low-affinity intracellular Ca2+indicator, to noninvasively and reliably measure AP conduction velocity in skeletal muscle. We used remote extracellular bipolar electrodes to generate an alternating polarity electric field that initiates an AP at either end of the fiber. Using enzymatically dissociated flexor digitorum brevis (FDB) fibers and high-speed line scans, we determine the conduction velocity to be ∼0.4 m/s. We applied these methodologies to FDB fibers under elevated extracellular potassium conditions and confirmed that the conduction velocity is significantly reduced in elevated [K+]o. Because our recorded velocities for FDB fibers were much slower than previously reported for other muscle groups, we compared the conduction velocity in FDB fibers to that of extensor digitorum longus (EDL) fibers and measured a significantly faster velocity in EDL fibers than FDB fibers. As a basis for this difference in conduction velocity, we found a similarly higher level of expression of Na+ channels in EDL than in FDB fibers. In addition to measuring the conduction velocity, we can also measure the passive electrotonic potentials elicited by pulses by applying tetrodotoxin and have constructed a circuit model of a skeletal muscle fiber to predict passive polarization of the fiber by the field stimuli. Our predictions from the model fiber closely resemble the recordings acquired from in vitro assays. With these techniques, we can examine how various pathologies and mutations affect skeletal muscle AP propagation. Our work demonstrates the utility of using 1-(3-sulfonatopropyl)-4[β[2-(Di-n-octylamino)-6-naphtyl]vinyl]pyridinium betaine or mag-fluo-4 to noninvasively measure AP initiation and conduction.
Collapse
Affiliation(s)
- Quinton Banks
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen Joseph Paul Pratt
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shama Rajan Iyer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Erick Omar Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin Frederick Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Zullo A, Textor M, Elischer P, Mall S, Alt A, Klingler W, Melzer W. Voltage modulates halothane-triggered Ca 2+ release in malignant hyperthermia-susceptible muscle. J Gen Physiol 2017; 150:111-125. [PMID: 29247050 PMCID: PMC5749113 DOI: 10.1085/jgp.201711864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Malignant hyperthermia can result from mutations in the ryanodine receptor that favor anesthetic-induced Ca2+ release. Zullo et al. find that membrane potential modulates the effect of the volatile anesthetic halothane on skeletal muscle ryanodine receptors possessing the Y524S mutation. Malignant hyperthermia (MH) is a fatal hypermetabolic state that may occur during general anesthesia in susceptible individuals. It is often caused by mutations in the ryanodine receptor RyR1 that favor drug-induced release of Ca2+ from the sarcoplasmic reticulum. Here, knowing that membrane depolarization triggers Ca2+ release in normal muscle function, we study the cross-influence of membrane potential and anesthetic drugs on Ca2+ release. We used short single muscle fibers of knock-in mice heterozygous for the RyR1 mutation Y524S combined with microfluorimetry to measure intracellular Ca2+ signals. Halothane, a volatile anesthetic used in contracture testing for MH susceptibility, was equilibrated with the solution superfusing the cells by means of a vaporizer system. In the range 0.2 to 3%, the drug causes significantly larger elevations of free myoplasmic [Ca2+] in mutant (YS) compared with wild-type (WT) fibers. Action potential–induced Ca2+ signals exhibit a slowing of their time course of relaxation that can be attributed to a component of delayed Ca2+ release turnoff. In further experiments, we applied halothane to single fibers that were voltage-clamped using two intracellular microelectrodes and studied the effect of small (10-mV) deviations from the holding potential (−80 mV). Untreated WT fibers show essentially no changes in [Ca2+], whereas the Ca2+ level of YS fibers increases and decreases on depolarization and hyperpolarization, respectively. The drug causes a significant enhancement of this response. Depolarizing pulses reveal a substantial negative shift in the voltage dependence of activation of Ca2+ release. This behavior likely results from the allosteric coupling between RyR1 and its transverse tubular voltage sensor. We conclude that the binding of halothane to RyR1 alters the voltage dependence of Ca2+ release in MH-susceptible muscle fibers such that the resting membrane potential becomes a decisive factor for the efficiency of the drug to trigger Ca2+ release.
Collapse
Affiliation(s)
- Alberto Zullo
- Institute of Applied Physiology, Ulm University, Ulm, Germany.,CEINGE - Biotecnologie Avanzate, Napoli, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Martin Textor
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Stefan Mall
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Andreas Alt
- Institute of Legal Medicine, Ulm University, Ulm, Germany
| | - Werner Klingler
- Department of Neuroanaesthesiology, Ulm University, Günzburg, Germany.,Queensland University of Technology, Brisbane, Australia
| | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
18
|
Endocannabinoid-Specific Impairment in Synaptic Plasticity in Striatum of Huntington's Disease Mouse Model. J Neurosci 2017; 38:544-554. [PMID: 29192125 DOI: 10.1523/jneurosci.1739-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease affecting predominantly striatum and cortex that results in motor and cognitive disorders. Before a motor phenotype, animal models of HD show aberrant cortical-striatal glutamate signaling. Here, we tested synaptic plasticity of cortical excitatory synapses onto striatal spiny projection neurons (SPNs) early in the YAC128 mouse model of HD. High-frequency stimulation-induced long-term depression, mediated by the endocannabinoid anandamide and cannabinoid receptor 1 (CB1), was significantly attenuated in male and female YAC128 SPNs. Indirect pathway SPNs, which are more vulnerable in HD, were most affected. Our experiments show metabotropic glutamate receptor and endocannabinoid 2-arachidonoylglycerol-dependent plasticity, as well as direct CB1 activation by agonists, was similar in YAC128 and FVB/N wild-type SPNs suggesting that presynaptic CB1 is functioning normally. These results are consistent with a specific impairment in postsynaptic anandamide synthesis in YAC128 SPN. Strikingly, although suppression of degradation of anandamide was not effective, elevating 2-arachidonoylglycerol levels restored long-term depression in YAC128 striatal neurons. Together, these results have potential implications for neuroprotection and ameliorating early cognitive and motor deficits in HD.SIGNIFICANCE STATEMENT Huntington's disease (HD) is an inherited neurodegenerative disease with no cure. Recent studies find impairment of the endocannabinoid system in animal models but the functional implication for synaptic plasticity in HD remains unclear. Sepers et al. show a selective deficit in synaptic plasticity mediated by the endocannabinoid anandamide, but not 2-arachidonoylglycerol in a mouse model of HD. The deficit is rescued by selectively elevating levels of 2-arachidonoylglycerol produced on-demand. This mechanism could be targeted in the development of future therapeutics for HD.
Collapse
|
19
|
Dayal A, Schrötter K, Pan Y, Föhr K, Melzer W, Grabner M. The Ca 2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance. Nat Commun 2017; 8:475. [PMID: 28883413 PMCID: PMC5589907 DOI: 10.1038/s41467-017-00629-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle excitation-contraction (EC) coupling is initiated by sarcolemmal depolarization, which is translated into a conformational change of the dihydropyridine receptor (DHPR), which in turn activates sarcoplasmic reticulum (SR) Ca2+ release to trigger muscle contraction. During EC coupling, the mammalian DHPR embraces functional duality, as voltage sensor and L-type Ca2+ channel. Although its unique role as voltage sensor for conformational EC coupling is firmly established, the conventional function as Ca2+ channel is still enigmatic. Here we show that Ca2+ influx via DHPR is not necessary for muscle performance by generating a knock-in mouse where DHPR-mediated Ca2+ influx is eliminated. Homozygous knock-in mice display SR Ca2+ release, locomotor activity, motor coordination, muscle strength and susceptibility to fatigue comparable to wild-type controls, without any compensatory regulation of multiple key proteins of the EC coupling machinery and Ca2+ homeostasis. These findings support the hypothesis that the DHPR-mediated Ca2+ influx in mammalian skeletal muscle is an evolutionary remnant.In mammalian skeletal muscle, the DHPR functions as a voltage sensor to trigger muscle contraction and as a Ca2+ channel. Here the authors show that mice where Ca2+ influx through the DHPR is eliminated display no difference in skeletal muscle function, suggesting that the Ca2+ influx through this channel is vestigial.
Collapse
Affiliation(s)
- Anamika Dayal
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Kai Schrötter
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Yuan Pan
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Karl Föhr
- Department of Anaesthesiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Manfred Grabner
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
20
|
Miranda DR, Wong M, Romer SH, McKee C, Garza-Vasquez G, Medina AC, Bahn V, Steele AD, Talmadge RJ, Voss AA. Progressive Cl- channel defects reveal disrupted skeletal muscle maturation in R6/2 Huntington's mice. J Gen Physiol 2016; 149:55-74. [PMID: 27899419 PMCID: PMC5217084 DOI: 10.1085/jgp.201611603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022] Open
Abstract
The R6/2 mouse model of Huntington’s disease exhibits reduced skeletal muscle ClC-1 currents. Miranda et al. investigate early stages of disease in these mice and find an early and progressive disruption of ClC-1 as well as altered muscle maturation based on myosin heavy chain isoform expression. Huntington’s disease (HD) patients suffer from progressive and debilitating motor dysfunction. Previously, we discovered reduced skeletal muscle chloride channel (ClC-1) currents, inwardly rectifying potassium (Kir) channel currents, and membrane capacitance in R6/2 transgenic HD mice. The ClC-1 loss-of-function correlated with increased aberrant mRNA processing and decreased levels of full-length ClC-1 mRNA (Clcn1 gene). Physiologically, the resulting muscle hyperexcitability may help explain involuntary contractions of HD. In this study, the onset and progression of these defects are investigated in R6/2 mice, ranging from 3 wk old (presymptomatic) to 9–13 wk old (late-stage disease), and compared with age-matched wild-type (WT) siblings. The R6/2 ClC-1 current density and level of aberrantly spliced Clcn1 mRNA remain constant with age. In contrast, the ClC-1 current density increases, and the level of aberrantly spliced Clcn1 mRNA decreases with age in WT mice. The R6/2 ClC-1 properties diverge from WT before the onset of motor symptoms, which occurs at 5 wk of age. The relative decrease in R6/2 muscle capacitance also begins in 5-wk-old mice and is independent of fiber atrophy. Kir current density is consistently lower in R6/2 compared with WT muscle. The invariable R6/2 ClC-1 properties suggest a disruption in muscle maturation, which we confirm by measuring elevated levels of neonatal myosin heavy chain (MyHC) in late-stage R6/2 skeletal muscle. Similar changes in ClC-1 and MyHC isoforms in the more slowly developing Q175 HD mice suggest an altered maturational state is relevant to adult-onset HD. Finally, we find nuclear aggregates of muscleblind-like protein 1 without predominant CAG repeat colocalization in R6/2 muscle. This is unlike myotonic dystrophy, another trinucleotide repeat disorder with similar ClC-1 defects, and suggests a novel mechanism of aberrant mRNA splicing in HD. These early and progressive skeletal muscle defects reveal much needed peripheral biomarkers of disease progression and better elucidate the mechanism underlying HD myopathy.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768.,Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Monica Wong
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Shannon H Romer
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Cynthia McKee
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Gabriela Garza-Vasquez
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Alyssa C Medina
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Volker Bahn
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Andrew D Steele
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| |
Collapse
|
21
|
Hering T, Braubach P, Landwehrmeyer GB, Lindenberg KS, Melzer W. Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2016; 11:e0166106. [PMID: 27820862 PMCID: PMC5098792 DOI: 10.1371/journal.pone.0166106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Huntington´s disease (HD) is a hereditary neurodegenerative disease resulting from an expanded polyglutamine sequence (poly-Q) in the protein huntingtin (HTT). Various studies report atrophy and metabolic pathology of skeletal muscle in HD and suggest as part of the process a fast-to-slow fiber type transition that may be caused by the pathological changes in central motor control or/and by mutant HTT in the muscle tissue itself. To investigate muscle pathology in HD, we used R6/2 mice, a common animal model for a rapidly progressing variant of the disease expressing exon 1 of the mutant human gene. We investigated alterations in the extensor digitorum longus (EDL), a typical fast-twitch muscle, and the soleus (SOL), a slow-twitch muscle. We focussed on mechanographic measurements of excised muscles using single and repetitive electrical stimulation and on the expression of the various myosin isoforms (heavy and light chains) using dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole muscle and single fiber preparations. In EDL of R6/2, the functional tests showed a left shift of the force-frequency relation and decrease in specific force. Moreover, the estimated relative contribution of the fastest myosin isoform MyHC IIb decreased, whereas the contribution of the slower MyHC IIx isoform increased. An additional change occurred in the alkali MyLC forms showing a decrease in 3f and an increase in 1f level. In SOL, a shift from fast MyHC IIa to the slow isoform I was detectable in male R6/2 mice only, and there was no evidence of isoform interconversion in the MyLC pattern. These alterations point to a partial remodeling of the contractile apparatus of R6/2 mice towards a slower contractile phenotype, predominantly in fast glycolytic fibers.
Collapse
Affiliation(s)
- Tanja Hering
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | - Peter Braubach
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | | | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
22
|
Vilmont V, Cadot B, Ouanounou G, Gomes ER. A system for studying mechanisms of neuromuscular junction development and maintenance. Development 2016; 143:2464-77. [PMID: 27226316 PMCID: PMC4958317 DOI: 10.1242/dev.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
The neuromuscular junction (NMJ), a cellular synapse between a motor neuron and a skeletal muscle fiber, enables the translation of chemical cues into physical activity. The development of this special structure has been subject to numerous investigations, but its complexity renders in vivo studies particularly difficult to perform. In vitro modeling of the neuromuscular junction represents a powerful tool to delineate fully the fine tuning of events that lead to subcellular specialization at the pre-synaptic and post-synaptic sites. Here, we describe a novel heterologous co-culture in vitro method using rat spinal cord explants with dorsal root ganglia and murine primary myoblasts to study neuromuscular junctions. This system allows the formation and long-term survival of highly differentiated myofibers, motor neurons, supporting glial cells and functional neuromuscular junctions with post-synaptic specialization. Therefore, fundamental aspects of NMJ formation and maintenance can be studied using the described system, which can be adapted to model multiple NMJ-associated disorders.
Collapse
Affiliation(s)
- Valérie Vilmont
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Bruno Cadot
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Gilles Ouanounou
- FRE CNRS 3693 (U.N.I.C), Unité de Neuroscience, Information et Complexité CNRS, Bât. 33, 1 Ave de la Terasse, Gif sur Yvette 91198, France
| | - Edgar R Gomes
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Domingo A, Erro R, Lohmann K. Novel Dystonia Genes: Clues on Disease Mechanisms and the Complexities of High-Throughput Sequencing. Mov Disord 2016; 31:471-7. [PMID: 26991507 DOI: 10.1002/mds.26600] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/24/2022] Open
Abstract
Dystonia is a genetically heterogenous disease and a prototype disorder where next-generation sequencing has facilitated the identification of new pathogenic genes. This includes the first two genes linked to recessively inherited isolated dystonia, that is, HPCA (hippocalcin) and COL6A3 (collagen VI alpha 3). These genes are proposed to underlie cases of the so-called DYT2-like dystonia, while also reiterating two distinct pathways in dystonia pathogenesis. First, deficiency in HPCA function is thought to alter calcium homeostasis, a mechanism that has previously been forwarded for CACNA1A and ANO3. The novel myoclonus-dystonia genes KCTD17 and CACNA1B also implicate abnormal calcium signaling in dystonia. Second, the phenotype in COL6A3-loss-of-function zebrafish models argues for a neurodevelopmental defect, which has previously been suggested as a possible biological mechanism for THAP1, TOR1A, and TAF1 based on expression data. The newly reported myoclonus-dystonia gene, RELN, plays also a role in the formation of brain structures. Defects in neurodevelopment likewise seem to be a recurrent scheme underpinning mainly complex dystonias, for example those attributable to biallelic mutations in GCH1, TH, SPR, or to heterozygous TUBB4A mutations. To date, it remains unclear whether dystonia is a common phenotypic outcome of diverse underlying disease mechanisms, or whether the different genetic causes converge in a single pathway. Importantly, the relevance of pathways highlighted by novel dystonia genes identified by high-throughput sequencing depends on the confirmation of mutation pathogenicity in subsequent genetic and functional studies. However, independent, careful validation of genetic findings lags behind publications of newly identified genes. We conclude with a discussion on the characteristics of true-positive reports.
Collapse
Affiliation(s)
- Aloysius Domingo
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
- Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Verona, Italy
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
24
|
DiFranco M, Kramerova I, Vergara JL, Spencer MJ. Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A. Skelet Muscle 2016; 6:11. [PMID: 26913171 PMCID: PMC4765215 DOI: 10.1186/s13395-016-0081-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/30/2016] [Indexed: 02/02/2023] Open
Abstract
Background Mutations in CAPN3 cause limb girdle muscular dystrophy type 2A (LGMD2A), a progressive muscle wasting disease. CAPN3 is a non-lysosomal, Ca-dependent, muscle-specific proteinase. Ablation of CAPN3 (calpain-3 knockout (C3KO) mice) leads to reduced ryanodine receptor (RyR1) expression and abnormal Ca2+/calmodulin-dependent protein kinase II (Ca-CaMKII)-mediated signaling. We previously reported that Ca2+ release measured by fura2-FF imaging in response to single action potential stimulation was reduced in old C3KO mice; however, the use of field stimulation prevented investigation of the mechanisms underlying this impairment. Furthermore, our prior studies were conducted on older animals, whose muscles showed advanced muscular dystrophy, which prevented us from establishing whether impaired Ca2+ handling is an early feature of disease. In the current study, we sought to overcome these matters by studying single fibers isolated from young wild-type (WT) and C3KO mice using a low affinity calcium dye and high intracellular ethylene glycol-bis(2-aminoethylether)-n,n,n′,n′-tetraacetic acid (EGTA) to measure Ca2+ fluxes. Muscles were subjected to both current and voltage clamp conditions. Methods Standard and confocal fluorescence microscopy was used to study Ca2+ release in single fibers enzymatically isolated from hind limb muscles of wild-type and C3KO mice. Two microelectrode amplifier and experiments were performed under current or voltage clamp conditions. Calcium concentration changes were detected with an impermeant low affinity dye in the presence of high EGTA intracellular concentrations, and fluxes were calculated with a single compartment model. Standard Western blotting analysis was used to measure the concentration of RyR1 and the α subunit of the dihydropyridine (αDHPR) receptors. Data are presented as mean ± SEM and compared with the Student’s test with significance set at p < 0.05. Results We found that the peak value of Ca2+ fluxes elicited by single action potentials was significantly reduced by 15–20 % in C3KO fibers, but the kinetics was unaltered. Ca2+ release elicited by tetanic stimulation was also impaired in C3KO fibers. Confocal studies confirmed that Ca2+ release was similarly reduced in all triads of C3KO mice. Voltage clamp experiments revealed a normal voltage dependence of Ca2+ release in C3KO mice but reduced peak Ca2+ fluxes as with action potential stimulation. These findings concur with biochemical observations of reduced RyR1 and αDHPR levels in C3KO muscles and reduced mechanical output. Confocal studies revealed a similar decrease in Ca2+ release at all triads consistent with a homogenous reduction of functional voltage activated Ca2+ release sites. Conclusions Overall, these results suggest that decreased Ca2+ release is an early defect in calpainopathy and may contribute to the observed reduction of CaMKII activation in C3KO mice.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| | - Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| | - Julio L Vergara
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| | - Melissa Jan Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, 635 Charles E. Young Dr. South, NRB Rm. 401, Los Angeles, CA 90095 USA
| |
Collapse
|