1
|
Cullinan MM, Klipp RC, Camenisch A, Bankston JR. Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a. eLife 2023; 12:RP90755. [PMID: 38054969 PMCID: PMC10699805 DOI: 10.7554/elife.90755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
2
|
Dynes JL, Yeromin AV, Cahalan MD. Photoswitching alters fluorescence readout of jGCaMP8 Ca 2+ indicators tethered to Orai1 channels. Proc Natl Acad Sci U S A 2023; 120:e2309328120. [PMID: 37729200 PMCID: PMC10523504 DOI: 10.1073/pnas.2309328120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
We used electrophysiology and Ca2+ channel tethering to evaluate the performance of jGCaMP8 genetically encoded Ca2+ indicators (GECIs). Orai1 Ca2+ channel-jGCaMP8 fusions were transfected into HEK 293A cells and jGCaMP8 fluorescence responses recorded by simultaneous total internal reflection fluorescence microscopy and whole-cell patch clamp electrophysiology. Noninactivating currents from the Orai1 Y80E mutant provided a steady flux of Ca2+ controlled on a millisecond time scale by step changes in membrane potential. Test pulses to -100 mV produced Orai1 Y80E-jGCaMP8f fluorescence traces that unexpectedly declined by ~50% over 100 ms before reaching a stable plateau. Testing of Orai1-jGCaMP8f using unroofed cells further demonstrated that rapid and partial fluorescence inactivation is a property of the indicator itself, rather than channel function. Photoinactivation spontaneously recovered over 5 min in the dark, and recovery was accelerated in the absence of Ca2+. Mutational analysis of residues near the tripeptide fluorophore of jGCaMP8f pointed to a mechanism: Q69M/C70V greatly increased (~90%) photoinactivation, reminiscent of fluorescent protein fluorophore cis-trans photoswitching. Indeed, 405-nm illumination of jGCaMP8f or 8m/8s/6f led to immediate photorecovery, and simultaneous illumination with 405 and 488-nm light blocked photoinactivation. Subsequent mutagenesis produced a variant, V203Y, that lacks photoinactivation but largely preserves the desirable properties of jGCaMP8f. Our results point to caution in interpreting rapidly changing Ca2+ signals using jGCaMP8 and earlier series GECIs, suggest strategies to avoid photoswitching, and serve as a starting point to produce more photostable, and thus more accurate, GECI derivatives.
Collapse
Affiliation(s)
- Joseph L. Dynes
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Andriy V. Yeromin
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Institute for Immunology, University of California, Irvine, CA92697
| |
Collapse
|
3
|
Cullinan MM, Klipp RC, Camenisch A, Bankston JR. Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547693. [PMID: 37461628 PMCID: PMC10350031 DOI: 10.1101/2023.07.05.547693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recently it has been shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of the channel is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C-terminus and the N-terminus which blocks the RIPK1 binding site. Here, we use a combination of two transition metal ion FRET methods to investigate the conformational dynamics of the termini while the channel is closed and desensitized. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together when desensitized. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Abigail Camenisch
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
6
|
Dynes JL, Yeromin AV, Cahalan MD. Cell-wide mapping of Orai1 channel activity reveals functional heterogeneity in STIM1-Orai1 puncta. J Gen Physiol 2021; 152:151900. [PMID: 32589186 PMCID: PMC7478869 DOI: 10.1085/jgp.201812239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Upon Ca2+ store depletion, Orai1 channels cluster and open at endoplasmic reticulum–plasma membrane (ER–PM) junctions in signaling complexes called puncta. Little is known about whether and how Orai1 channel activity may vary between individual puncta. Previously, we developed and validated optical recording of Orai channel activity, using genetically encoded Ca2+ indicators fused to Orai1 or Orai3 N or C termini. We have now combined total internal reflection fluorescence microscopy with whole-cell recording to map functional properties of channels at individual puncta. After Ca2+ store depletion in HEK cells cotransfected with mCherry-STIM1 and Orai1-GCaMP6f, Orai1-GCaMP6f fluorescence increased progressively with increasingly negative test potentials and robust responses could be recorded from individual puncta. Cell-wide fluorescence half-rise and -fall times during steps to −100 mV test potential indicated probe response times of <50 ms. The in situ Orai1-GCaMP6f affinity for Ca2+ was 620 nM, assessed by monitoring fluorescence using buffered Ca2+ solutions in “unroofed” cells. Channel activity and temporal activation profile were tracked in individual puncta using image maps and automated puncta identification and recording. Simultaneous measurement of mCherry-STIM1 fluorescence uncovered an unexpected gradient in STIM1/Orai1 ratio that extends across the cell surface. Orai1-GCaMP6f channel activity was found to vary across the cell, with inactive channels occurring in the corners of cells where the STIM1/Orai1 ratio was lowest; low-activity channels typically at edges displayed a slow activation phase lasting hundreds of milliseconds. Puncta with high STIM1/Orai1 ratios exhibited a range of channel activity that appeared unrelated to the stoichiometric requirements for gating. These findings demonstrate functional heterogeneity of Orai1 channel activity between individual puncta and establish a new experimental platform that facilitates systematic comparisons between puncta composition and activity.
Collapse
Affiliation(s)
- Joseph L Dynes
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA.,Institute for Immunology, University of California, Irvine, Irvine, CA
| |
Collapse
|
7
|
Couch T, Berger K, Kneisley DL, McCullock TW, Kammermeier P, Maclean DM. Topography and motion of acid-sensing ion channel intracellular domains. eLife 2021; 10:68955. [PMID: 34292153 PMCID: PMC8341984 DOI: 10.7554/elife.68955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 01/12/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by decreases in extracellular pH. The intracellular N and C terminal tails of ASIC1 influence channel gating, trafficking, and signaling in ischemic cell death. Despite several X-ray and cryo-EM structures of the extracellular and transmembrane segments of ASIC1, these important intracellular tails remain unresolved. Here, we describe the coarse topography of the chicken ASIC1 intracellular domains determined by fluorescence resonance energy transfer (FRET), measured using either fluorescent lifetime imaging or patch clamp fluorometry. We find the C terminal tail projects into the cytosol by approximately 35 Å and that the N and C tails from the same subunits are closer than adjacent subunits. Using pH-insensitive fluorescent proteins, we fail to detect any relative movement between the N and C tails upon extracellular acidification but do observe axial motions of the membrane proximal segments toward the plasma membrane. Taken together, our study furnishes a coarse topographic map of the ASIC intracellular domains while providing directionality and context to intracellular conformational changes induced by extracellular acidification.
Collapse
Affiliation(s)
- Tyler Couch
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, Reno, United States
| | - Kyle Berger
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| | - Dana L Kneisley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| | - Tyler W McCullock
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, Reno, United States
| | - Paul Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| | - David M Maclean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| |
Collapse
|
8
|
Abstract
![]()
Since the establishment
of site-specific mutagenesis of single
amino acids to interrogate protein function in the 1970s, biochemists
have sought to tailor protein structure in the native cell environment.
Fine-tuning the chemical properties of proteins is an indispensable
way to address fundamental mechanistic questions. Unnatural amino
acids (UAAs) offer the possibility to expand beyond the 20 naturally
occurring amino acids in most species and install new and useful chemical
functions. Here, we review the literature about advances in UAA incorporation
technology from chemoenzymatic aminoacylation of modified tRNAs to in vitro translation systems to genetic encoding of UAAs
in the native cell environment and whole organisms. We discuss innovative
applications of the UAA technology to challenges in bioengineering
and medicine.
Collapse
Affiliation(s)
- Mia A Shandell
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, U.K
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Department of Systems Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
10
|
Abstract
Measurement of atomic-scale conformational dynamics in proteins has proved a challenging endeavor, although these movements are pivotal for understanding the mechanisms behind protein function. Herein we describe a fluorescence-based method that enables the measurement of distances between specific domains within a protein and how it might change during protein function. The method is transition metal ion Förster resonance energy transfer (tmFRET) and builds on the principle that the fluorescence emission from a fluorophore can be quenched in a distance-dependent manner by a colored transition metal such as nickel (Ni2+), copper (Cu2+), or cobalt (Co2+). It can be applied to literally any protein where it is possible to perform site-specific incorporation of a fluorescent molecule. This chapter will explain the use and applications of tmFRET in detail using incorporation of the dye with cysteine chemistry on a purified protein sample.
Collapse
Affiliation(s)
- Jonas S Mortensen
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus J Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Feng X, Ma T, Yamaura D, Tadaki D, Hirano-Iwata A. Formation and Characterization of Air-Stable Lipid Bilayer Membranes Incorporated with Phthalocyanine Molecules. J Phys Chem B 2019; 123:6515-6520. [PMID: 31280566 DOI: 10.1021/acs.jpcb.9b05135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bilayer lipid membranes (BLMs) are used as basic frameworks for biosensors and biohybrid devices due to their unique properties, which include ultrathin thickness, ultrahigh resistivity, and self-assembling ability. However, BLMs can only form and maintain their structure in aqueous environments, which pose significant limitations to their use. In this work, we report on the formation of highly uniform hybrid BLMs at a water/air interface through self-assembly by simply doping the BLMs with a functional organic molecule, copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc). By transferring the membrane onto substrates, we were able to produce stable hybrid BLMs under anhydrous conditions. Atomic force microscopy and X-ray diffraction measurements confirmed that the hybrid membranes were composed of single, highly uniform BLMs or stacks of BLMs. Fluorescence resonance energy transfer measurements indicated that the CuPc molecules were located between the hydrophobic tails of lipid molecules, forming a sandwich structure in the hybrid membranes. The hybrid BLMs fabricated by this method substantially expand the range of applications of BLMs to solid-state devices.
Collapse
|
12
|
Witkowska D, Rowińska-Żyrek M. Biophysical approaches for the study of metal-protein interactions. J Inorg Biochem 2019; 199:110783. [PMID: 31349072 DOI: 10.1016/j.jinorgbio.2019.110783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.
Collapse
Affiliation(s)
- Danuta Witkowska
- Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland.
| | | |
Collapse
|
13
|
Dai G, Aman TK, DiMaio F, Zagotta WN. The HCN channel voltage sensor undergoes a large downward motion during hyperpolarization. Nat Struct Mol Biol 2019; 26:686-694. [PMID: 31285608 PMCID: PMC6692172 DOI: 10.1038/s41594-019-0259-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
Voltage-gated ion channels (VGICs) contain positively-charged residues within the S4 helix of the voltage-sensing domain (VSD) that are displaced in response to changes in transmembrane voltage, promoting conformational changes that open the pore. Pacemaker HCN channels are unique among VGICs because their open probability is increased by membrane hyperpolarization rather than depolarization. Here we measured the precise movement of the S4 helix of a sea urchin HCN channel using transition metal ion fluorescence resonance energy transfer (tmFRET). We show that the S4 undergoes a significant (~10 Å) downward movement in response to membrane hyperpolarization. Furthermore, by applying distance constraints determined from tmFRET experiments to Rosetta modeling, we reveal that the C-terminal part of the S4 helix exhibits an unexpected tilting motion during hyperpolarization activation. These data provide a long-sought glimpse of the hyperpolarized state of a functioning VSD and also a framework for understanding the dynamics of reverse gating in HCN channels.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Teresa K Aman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Kasimova MA, Yazici AT, Yudin Y, Granata D, Klein ML, Rohacs T, Carnevale V. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J Gen Physiol 2018; 150:1554-1566. [PMID: 30333107 PMCID: PMC6219692 DOI: 10.1085/jgp.201812124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
TRPV1 channels comprise four subunits containing six transmembrane segments (S1–S6) that surround a central pore. Kasimova et al. hypothesize that channel opening involves rotation of an S6 asparagine residue toward the pore, as well as associated pore hydration and external cavity dehydration. The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very little is known about its activation mechanism. In particular, the conformational changes that occur in the pore domain and result in ionic conduction have not yet been identified. Here we suggest a hypothetical molecular mechanism for TRPV1 activation, which involves rotation of a conserved asparagine in S6 from a position facing the S4–S5 linker toward the pore. This rotation is associated with hydration of the pore and dehydration of the four peripheral cavities located between each S6 and S4–S5 linker. In light of our hypothesis, we perform bioinformatics analyses of TRP and other evolutionary related ion channels, evaluate newly available structures, and reexamine previously reported water accessibility and mutagenesis experiments. These analyses provide several independent lines of evidence to support our hypothesis. Finally, we show that our proposed molecular mechanism is compatible with the prevailing theory that the selectivity filter acts as a secondary gate in TRPV1.
Collapse
Affiliation(s)
- Marina A Kasimova
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Daniele Granata
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| |
Collapse
|
15
|
Yang F, Xiao X, Lee BH, Vu S, Yang W, Yarov-Yarovoy V, Zheng J. The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel. Nat Commun 2018; 9:2879. [PMID: 30038260 PMCID: PMC6056546 DOI: 10.1038/s41467-018-05339-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/19/2018] [Indexed: 01/17/2023] Open
Abstract
The capsaicin receptor TRPV1 has been intensively studied by cryo-electron microscopy and functional tests. However, though the apo and capsaicin-bound structural models are available, the dynamic process of capsaicin activation remains intangible, largely due to the lack of a capsaicin-induced open structural model and the low occupancy of the transition states. Here we report that reducing temperature toward the freezing point substantially increased channel closure events even in the presence of saturating capsaicin. We further used a combination of fluorescent unnatural amino acid (fUAA) incorporation, computational modeling, and rate-equilibrium linear free-energy relationships analysis (Φ-analysis) to derive the fully open capsaicin-bound state model, and reveal how the channel transits from the apo to the open state. We observed that capsaicin initiates a conformational wave that propagates through the S4–S5 linker towards the S6 bundle and finally reaching the selectivity filter. Our study provides a temporal mechanism for capsaicin activation of TRPV1. The capsaicin receptor TRPV1 has been structurally characterized, but the capsaicin activation dynamics remain elusive. Here authors use fluorescent unnatural amino acid incorporation, computational modeling and Φ-analysis to derive the capsaicin-bound open state model and reveal the capsaicin induced conformational changes.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China. .,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| | - Xian Xiao
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.,Institute for Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Bo Hyun Lee
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.,University of Washington, Department of Physiology and Biophysics, Seattle, WA, 98195, USA
| | - Simon Vu
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Wei Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Gordon SE, Munari M, Zagotta WN. Visualizing conformational dynamics of proteins in solution and at the cell membrane. eLife 2018; 7:37248. [PMID: 29923827 PMCID: PMC6056233 DOI: 10.7554/elife.37248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Conformational dynamics underlie enzyme function, yet are generally inaccessible via traditional structural approaches. FRET has the potential to measure conformational dynamics in vitro and in intact cells, but technical barriers have thus far limited its accuracy, particularly in membrane proteins. Here, we combine amber codon suppression to introduce a donor fluorescent noncanonical amino acid with a new, biocompatible approach for labeling proteins with acceptor transition metals in a method called ACCuRET (Anap Cyclen-Cu2+ resonance energy transfer). We show that ACCuRET measures absolute distances and distance changes with high precision and accuracy using maltose binding protein as a benchmark. Using cell unroofing, we show that ACCuRET can accurately measure rearrangements of proteins in native membranes. Finally, we implement a computational method for correcting the measured distances for the distance distributions observed in proteins. ACCuRET thus provides a flexible, powerful method for measuring conformational dynamics in both soluble proteins and membrane proteins.
Collapse
Affiliation(s)
- Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Mika Munari
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
17
|
Jung SR, Lee SW, Hohng S. Real-Time Monitoring of the Binding/Dissociation and Redox States of a Single Transition Metal Ions. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physics and Astronomy; Seoul National University; Seoul Republic of Korea
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
| | - Sang-Wook Lee
- Department of Physics and Astronomy; Seoul National University; Seoul Republic of Korea
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
| | - Sungchul Hohng
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
- Institute of Applied Physics, Seoul National University; Seoul Republic of Korea
| |
Collapse
|
18
|
Sendecki AM, Poyton MF, Baxter AJ, Yang T, Cremer PS. Supported Lipid Bilayers with Phosphatidylethanolamine as the Major Component. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13423-13429. [PMID: 29119796 DOI: 10.1021/acs.langmuir.7b02323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phosphatidylethanolamine (PE) is notoriously difficult to incorporate into model membrane systems, such as fluid supported lipid bilayers (SLBs), at high concentrations because of its intrinsic negative curvature. Using fluorescence-based techniques, we demonstrate that having fewer sites of unsaturation in the lipid tails leads to high-quality SLBs because these lipids help to minimize the curvature. Moreover, shorter saturated chains can help maintain the membranes in the fluid phase. Using these two guidelines, we find that up to 70 mol % PE can be incorporated into SLBs at room temperature and up to 90 mol % PE can be incorporated at 37 °C. Curiously, conditions under which three-dimensional tubules project outward from the planar surface as well as conditions under which domain formation occurs can be found. We have employed these model membrane systems to explore the ability of Ni2+ to bind to PE. It was found that this transition metal ion binds 1000-fold tighter to PE than to phosphatidylcholine lipids. In the future, this platform could be exploited to monitor the binding of other transition metal ions or the binding of antimicrobial peptides. It could also be employed to explore the physical properties of PE-containing membranes, such as phase domain behavior and intermolecular hydrogen bonding.
Collapse
Affiliation(s)
- Anne M Sendecki
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Matthew F Poyton
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexis J Baxter
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Ross JL. The Dark Matter of Biology. Biophys J 2017; 111:909-16. [PMID: 27602719 PMCID: PMC5018137 DOI: 10.1016/j.bpj.2016.07.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 02/04/2023] Open
Abstract
The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such “dark matter” inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology.
Collapse
Affiliation(s)
- Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
20
|
Aman TK, Gordon SE, Zagotta WN. Regulation of CNGA1 Channel Gating by Interactions with the Membrane. J Biol Chem 2016; 291:9939-47. [PMID: 26969165 DOI: 10.1074/jbc.m116.723932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are expressed in rod photoreceptors and open in response to direct binding of cyclic nucleotides. We have previously shown that potentiation of CNGA1 channels by transition metals requires a histidine in the A' helix following the S6 transmembrane segment. Here, we used transition metal ion FRET and patch clamp fluorometry with a fluorescent, noncanonical amino acid (3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap)) to show that the potentiating transition metal Co(2+) binds in or near the A' helix. Adding high-affinity metal-binding sites to the membrane (stearoyl-nitrilotriacetic acid (C18-NTA)) increased potentiation for low Co(2+) concentrations, indicating that the membrane can coordinate metal ions with the A' helix. These results suggest that restraining the A' helix to the plasma membrane potentiates CNGA1 channel opening. Similar interactions between the A' helix and the plasma membrane may underlie regulation of structurally related hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium subfamily H (KCNH) channels by plasma membrane components.
Collapse
Affiliation(s)
- Teresa K Aman
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Sharona E Gordon
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - William N Zagotta
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
21
|
Gordon SE, Senning EN, Aman TK, Zagotta WN. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane. J Biophys Biochem Cytol 2016. [DOI: 10.1083/jcb.2124oia26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Zagotta WN, Gordon MT, Senning EN, Munari MA, Gordon SE. Measuring distances between TRPV1 and the plasma membrane using a noncanonical amino acid and transition metal ion FRET. ACTA ACUST UNITED AC 2016; 147:201-16. [PMID: 26755770 PMCID: PMC4727949 DOI: 10.1085/jgp.201511531] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Transition metal ion FRET between a noncanonical fluorescent amino acid incorporated into TRPV1 and metal ions bound to the cell plasma can be used to measure distances and dynamics between cytosolic domains of proteins and the membrane. Despite recent advances, the structure and dynamics of membrane proteins in cell membranes remain elusive. We implemented transition metal ion fluorescence resonance energy transfer (tmFRET) to measure distances between sites on the N-terminal ankyrin repeat domains (ARDs) of the pain-transducing ion channel TRPV1 and the intracellular surface of the plasma membrane. To preserve the native context, we used unroofed cells, and to specifically label sites in TRPV1, we incorporated a fluorescent, noncanonical amino acid, L-ANAP. A metal chelating lipid was used to decorate the plasma membrane with high-density/high-affinity metal-binding sites. The fluorescence resonance energy transfer (FRET) efficiencies between L-ANAP in TRPV1 and Co2+ bound to the plasma membrane were consistent with the arrangement of the ARDs in recent cryoelectron microscopy structures of TRPV1. No change in tmFRET was observed with the TRPV1 agonist capsaicin. These results demonstrate the power of tmFRET for measuring structure and rearrangements of membrane proteins relative to the cell membrane.
Collapse
Affiliation(s)
- William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Moshe T Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Eric N Senning
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Mika A Munari
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|