1
|
Wong SL, Awatade NT, Astore MA, Allan KM, Carnell MJ, Slapetova I, Chen PC, Setiadi J, Pandzic E, Fawcett LK, Widger JR, Whan RM, Griffith R, Ooi CY, Kuyucak S, Jaffe A, Waters SA. Molecular Dynamics and Theratyping in Airway and Gut Organoids Reveal R352Q-CFTR Conductance Defect. Am J Respir Cell Mol Biol 2022; 67:99-111. [PMID: 35471184 PMCID: PMC9273222 DOI: 10.1165/rcmb.2021-0337oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.
Collapse
Affiliation(s)
- Sharon L Wong
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Nikhil T Awatade
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Miro A Astore
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Katelin M Allan
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Michael J Carnell
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Iveta Slapetova
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Po-Chia Chen
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Jeffry Setiadi
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Elvis Pandzic
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Cen, Sydney, New South Wales, Australia
| | - Laura K Fawcett
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia.,Sydney Children's Hospital Randwick, 63623, Department of Respiratory Medicine, Randwick, New South Wales, Australia
| | - John R Widger
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia.,Sydney Children's Hospital Randwick, 63623, Department of Respiratory Medicine, Randwick, New South Wales, Australia
| | - Renee M Whan
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Renate Griffith
- University of New South Wales, 7800, School of Chemistry, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Sydney Children's Hospital Randwick, Gastroenterology, Sydney, New South Wales, Australia
| | - Serdar Kuyucak
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Adam Jaffe
- Sydney Children`s Hospital, Respiratory Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, School of Women`s and Children`s Health, Sydney, New South Wales, Australia
| | - Shafagh A Waters
- Sydney Children's Hospital, Department of Respiratory Medicine, Sydney, New South Wales, Australia.,Univeristy of New South Wales, School of Women's and Children's Health, Sydney, New South Wales, Australia;
| |
Collapse
|
2
|
Barbieri A, Thonghin N, Shafi T, Prince SM, Collins RF, Ford RC. Structure of ABCB1/P-glycoprotein bound to the CFTR potentiator ivacaftor.. [DOI: 10.1101/2021.06.11.448073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractABCB1 (P-glycoprotein) is an ATP binding cassette transporter that is involved in the clearance of xenobiotics and it affects the disposition of many drugs in the body. Here we have studied ABCB1 in the drug-bound and drug-free states, simultaneously, using high contrast cryo-electron microscopy imaging and a Volta phase plate. The binding of the potent CFTR potentiator, ivacaftor, at a site in the central aqueous cavity is mediated by transmembrane α-helices 3,6,10,11 & 12. Binding is associated with a wider separation of the two halves of the transporter in the inward-facing state. Induced-fit changes the nucleotide binding domains in a way that may explain their increased affinity for ATP when drug is bound. Comparison of ivacaftor-bound structures of CFTR and ABCB1 suggests common features in the binding modes.
Collapse
|
3
|
Abreu B, Lopes EF, Oliveira ASF, Soares CM. F508del disturbs the dynamics of the nucleotide binding domains of CFTR before and after ATP hydrolysis. Proteins 2019; 88:113-126. [PMID: 31298435 DOI: 10.1002/prot.25776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is an ion channel responsible for chloride transport in epithelia and it belongs to the class of ABC transporters. The deletion of phenylalanine 508 (F508del) in CFTR is the most common mutation responsible for cystic fibrosis. Little is known about the effect of the mutation in the isolated nucleotide binding domains (NBDs), on dimer dynamics, ATP hydrolysis and even on nucleotide binding. Using molecular dynamics simulations of the human CFTR NBD dimer, we showed that F508del increases, in the prehydrolysis state, the inter-motif distance in both ATP binding sites (ABP) when ATP is bound. Additionally, a decrease in the number of catalytically competent conformations was observed in the presence of F508del. We used the subtraction technique to study the first 300 ps after ATP hydrolysis in the catalytic competent site and found that the F508del dimer evidences lower conformational changes than the wild type. Using longer simulation times, the magnitude of the conformational changes in both forms increases. Nonetheless, the F508del dimer shows lower C-α RMS values in comparison to the wild-type, on the F508del loop, on the residues surrounding the catalytic site and the portion of NBD2 adjacent to ABP1. These results provide evidence that F508del interferes with the NBD dynamics before and after ATP hydrolysis. These findings shed a new light on the effect of F508del on NBD dynamics and reveal a novel mechanism for the influence of F508del on CFTR.
Collapse
Affiliation(s)
- Bárbara Abreu
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Emanuel F Lopes
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - A S F Oliveira
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal.,School of Biochemistry & Center for Computational Chemistry, University of Bristol, Bristol, UK
| | - Cláudio M Soares
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Sayed ME, Cheng A, Yadav GP, Ludlow AT, Shay JW, Wright WE, Jiang QX. Catalysis-dependent inactivation of human telomerase and its reactivation by intracellular telomerase-activating factors (iTAFs). J Biol Chem 2019; 294:11579-11596. [PMID: 31186347 DOI: 10.1074/jbc.ra118.007234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.
Collapse
Affiliation(s)
- Mohammed E Sayed
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Ao Cheng
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gaya P Yadav
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 .,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
5
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
6
|
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations. PLoS One 2018; 13:e0209862. [PMID: 30596737 PMCID: PMC6312236 DOI: 10.1371/journal.pone.0209862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
Collapse
|
7
|
Yeh JT, Yu YC, Hwang TC. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis. J Physiol 2018; 597:543-560. [PMID: 30408177 DOI: 10.1113/jp277042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Electrophysiological characterization of Q1412X-CFTR, a C-terminal truncation mutation of cystic fibrosis transmembrane conductance regulator (CFTR) associated with the severe form of cystic fibrosis (CF), reveals a gating defect that has not been reported previously. Mechanistic investigations of the gating deficit in Q1412X-CFTR suggest that the reduced open probability in Q1412X-CFTR is the result of a disruption of the function of the second ATP binding site (or site 2) in the nucleotide binding domains (NBDs). Detailed comparisons of several mutations with different degrees of truncation in the C-terminal region of NBD2 reveal the importance of the last two beta-strands in NBD2 for maintaining proper gating functions. The results of the present study also show that the application of clinically-approved drugs (VX-770 and VX-809) can greatly enhance the function of Q1412X, providing in vitro evidence for a therapeutic strategy employing both reagents for patients bearing Q1412X or similar truncation mutations. ABSTRACT Cystic fibrosis (CF) is caused by loss-of-function mutations of cystic fibrosis transmembrane conductance regulator (CFTR), a phosphorylation-activated but ATP-gated chloride channel. Based on the molecular mechanism of CF pathogenesis, disease-associated mutations are categorized into six classes. Among them, Class VI, whose members include some of the C-terminal truncation mutations such as Q1412X, is defined as decreased membrane expression because of a faster turnover rate. In the present study, we characterized the functional properties of Q1412X-CFTR, a severe-form premature stop codon mutation. We confirmed previous findings of a ∼90% decrease in membrane expression but found a ∼95% reduction in the open probability (Po ). Detailed kinetic studies support the idea that the gating defect is the result of a dysfunctional ATP-binding site 2 in the nucleotide binding domains (NBDs). Because the Q1412X mutation results in a deletion of the last two beta-strands in NBD2 and the whole C-terminal region, we further characterized truncation mutations with different degrees of deletion in this segment. Mutations that completely or partially remove the C-terminus of CFTR at the same time as keeping an intact NBD2 (i.e. D1425X and S1455X) assume gating function almost identical to that of wild-type channels. However, the deletion of the last beta-strand in the NBD2 (i.e. N1419X) causes gating dysfunction that is milder than that of Q1412X. Thus, normal CFTR gating requires structural integrity of NBD2. Moreover, our observation that clinically-approved VX-809 (Lumacaftor, Vertex Pharmaceuticals, Boston, MA, USA) and VX-770 (Ivacaftor, Vertex Pharmaceuticals, Boston, MA, USA) significantly enhance the overall function of Q1412X-CFTR provides the conceptual basis for the treatment of patients carrying this mutation.
Collapse
Affiliation(s)
- Jiunn-Tyng Yeh
- Interdisciplinary Neuroscience Program.,Dalton Cardiovascular Research Center
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center.,Department of Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO, USA
| | - Tzyh-Chang Hwang
- Interdisciplinary Neuroscience Program.,Dalton Cardiovascular Research Center.,Department of Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO, USA
| |
Collapse
|
8
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
9
|
Yang Z, Hildebrandt E, Jiang F, Aleksandrov AA, Khazanov N, Zhou Q, An J, Mezzell AT, Xavier BM, Ding H, Riordan JR, Senderowitz H, Kappes JC, Brouillette CG, Urbatsch IL. Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1193-1204. [PMID: 29425673 DOI: 10.1016/j.bbamem.2018.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric Tm > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development.
Collapse
Affiliation(s)
- Zhengrong Yang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics and Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Qingxian Zhou
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianli An
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew T Mezzell
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - Bala M Xavier
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - John R Riordan
- Department of Biochemistry and Biophysics and Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | | | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| |
Collapse
|
10
|
Jih KY, Lin WY, Sohma Y, Hwang TC. CFTR potentiators: from bench to bedside. Curr Opin Pharmacol 2017; 34:98-104. [PMID: 29073476 DOI: 10.1016/j.coph.2017.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 01/14/2023]
Abstract
One major breakthrough in cystic fibrosis research in the past decade is the development of drugs that target the root cause of the disease-dysfunctional CFTR protein. One of the compounds, Ivacaftor or Kalydeco, which has been approved for clinical use since 2012, acts by promoting the gating function of CFTR. Our recent studies have led to a gating model that features energetic coupling between nucleotide-binding domain (NBD) dimerization and gate opening/closing in CFTR's transmembrane domains (TMDs). Based on this model, we showed that ATP analogs can enhance CFTR gating by facilitating NBD dimerization, whereas Ivacaftor works by stabilizing the open channel conformation of the TMDs. This latter idea also explains the near omnipotence of Ivacaftor. Furthermore, this model identifies multiple approaches to synergistically boost the open probability of CFTR by influencing distinct molecular events that control gating conformational changes.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Ying Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yoshiro Sohma
- Department of Pharmacology, Keio University, Tokyo, Japan; Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Abstract
Csanády discusses a new study that provides insight into the unique conductance properties of the CFTR chloride channel.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary .,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest H-1094, Hungary
| |
Collapse
|