1
|
Benndorf K, Enke U, Tewari D, Kusch J, Liu H, Sun H, Schmauder R, Sattler C. Subunit-specific conductance of single homomeric and heteromeric HCN pacemaker channels at femtosiemens resolution. Proc Natl Acad Sci U S A 2025; 122:e2422533122. [PMID: 39879240 PMCID: PMC11804576 DOI: 10.1073/pnas.2422533122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, γ, of HCN channels is highly controversial. We analyzed the unitary conductance at femtosiemens resolution of all four homotetrameric channels of the mouse, mHCN1-4. All conductance values are in the range of 1 pS which is exceptionally small compared to most other ion channels. Surprisingly, the conductance among the isoforms differs up to threefold (γmHCN2 = 1.54 pS > γmHCN1 = 0.84 pS > γmHCN3 = 0.54 pS ≈ γmHCN4 = 0.51 pS) though the residues in the two narrow parts of the pore, the selectivity filter and the inner gate, are conserved. Mutagenesis and all-atom molecular dynamics simulations demonstrate that the differences in the conductance are generated by different amounts of negative charges in the outer channel vestibule, which control ion accumulation. In line with these results, heterotetrameric channels exhibit intermediate unitary conductance values with respect to the homotetrameric channels. Our approach demonstrates how HCN channels can be functionally differentiated at the single-channel level, paving the way to target specific channels with selective drugs.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Debanjan Tewari
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Haoran Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin10623, Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin10623, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Christian Sattler
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| |
Collapse
|
2
|
Kunzmann P, Krumbach JH, Saponaro A, Moroni A, Thiel G, Hamacher K. Anisotropic Network Analysis of Open/Closed HCN4 Channel Advocates Asymmetric Subunit Cooperativity in cAMP Modulation of Gating. J Chem Inf Model 2024; 64:4727-4738. [PMID: 38830626 PMCID: PMC11203669 DOI: 10.1021/acs.jcim.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are opened in an allosteric manner by membrane hyperpolarization and cyclic nucleotides such as cAMP. Because of conflicting reports from experimental studies on whether cAMP binding to the four available binding sites in the channel tetramer operates cooperatively in gating, we employ here a computational approach as a promising route to examine ligand-induced conformational changes after binding to individual sites. By combining an elastic network model (ENM) with linear response theory (LRT) for modeling the apo-holo transition of the cyclic nucleotide-binding domain (CNBD) in HCN channels, we observe a distinct pattern of cooperativity matching the "positive-negative-positive" cooperativity reported from functional studies. This cooperativity pattern is highly conserved among HCN subtypes (HCN4, HCN1), but only to a lesser extent visible in structurally related channels, which are only gated by voltage (KAT1) or cyclic nucleotides (TAX4). This suggests an inherent cooperativity between subunits in HCN channels as part of a ligand-triggered gating mechanism in these channels.
Collapse
Affiliation(s)
- Patrick Kunzmann
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Jan H. Krumbach
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Andrea Saponaro
- Department
of Pharmacology and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Anna Moroni
- Department
of Biosciences, Ion Channel Biophysics, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Gerhard Thiel
- Department
of Biology, Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Peters CH, Singh RK, Langley AA, Nichols WG, Ferris HR, Jeffrey DA, Proenza C, Bankston JR. LRMP inhibits cAMP potentiation of HCN4 channels by disrupting intramolecular signal transduction. eLife 2024; 12:RP92411. [PMID: 38652113 PMCID: PMC11037915 DOI: 10.7554/elife.92411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Rohit K Singh
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Skaggs School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Avery A Langley
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - William G Nichols
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hannah R Ferris
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Danielle A Jeffrey
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
4
|
Vera E, Cornejo I, Henao JC, Tribiños F, Burgos J, Sepúlveda FV, Cid LP. Normal vision and development in mice with low functional expression of Kir7.1 in heterozygosis for a blindness-producing mutation inactivating the channel. Am J Physiol Cell Physiol 2024; 326:C1178-C1192. [PMID: 38406825 DOI: 10.1152/ajpcell.00597.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.
Collapse
Affiliation(s)
- Erwin Vera
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Isabel Cornejo
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Juan Carlos Henao
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Francisco V Sepúlveda
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
5
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
6
|
Peters CH, Singh RK, Langley AA, Nichols WG, Ferris HR, Jeffrey DA, Proenza C, Bankston JR. LRMP inhibits cAMP potentiation of HCN4 channels by disrupting intramolecular signal transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555242. [PMID: 37693562 PMCID: PMC10491135 DOI: 10.1101/2023.08.29.555242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4 but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here we identify the domains of LRMP essential for regulation. We show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating. And we demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we showed that the initial 227 residues of LRMP and the N-terminus of HCN4 are necessary for LRMP to interact with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. And we demonstrate that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of 5 residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Rohit K Singh
- Skaggs School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Boulevard, Aurora, CO 80045
| | - Avery A Langley
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - William G Nichols
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Hannah R Ferris
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Danielle A Jeffrey
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12631 E. 17 Avenue, Aurora, CO 80045
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| |
Collapse
|
7
|
Benndorf K, Schulz E. Identifiability of equilibrium constants for receptors with two to five binding sites. J Gen Physiol 2023; 155:e202313423. [PMID: 37882789 PMCID: PMC10602793 DOI: 10.1085/jgp.202313423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Ligand-gated ion channels (LGICs) are regularly oligomers containing between two and five binding sites for ligands. Neither in homomeric nor heteromeric LGICs the activation process evoked by the ligand binding is fully understood. Here, we show on theoretical grounds that for LGICs with two to five binding sites, the cooperativity upon channel activation can be determined in considerable detail. The main requirements for our strategy are a defined number of binding sites in a channel, which can be achieved by concatenation, a systematic mutation of all binding sites and a global fit of all concentration-activation relationships (CARs) with corresponding intimately coupled Markovian state models. We take advantage of translating these state models to cubes with dimensions 2, 3, 4, and 5. We show that the maximum possible number of CARs for these LGICs specify all 7, 13, 23, and 41 independent model parameters, respectively, which directly provide all equilibrium constants within the respective schemes. Moreover, a fit that uses stochastically varied scaled unitary start vectors enables the determination of all parameters, without any bias imposed by specific start vectors. A comparison of the outcome of the analyses for the models with 2 to 5 binding sites showed that the identifiability of the parameters is best for a case with 5 binding sites and 41 parameters. Our strategy can be used to analyze experimental data of other LGICs and may be applicable to voltage-gated ion channels and metabotropic receptors.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Faculty of Electrical Engineering, Schmalkalden University of Applied Sciences, Schmalkalden, Germany
| |
Collapse
|
8
|
Yüksel S, Bonus M, Schwabe T, Pfleger C, Zimmer T, Enke U, Saß I, Gohlke H, Benndorf K, Kusch J. Uncoupling of Voltage- and Ligand-Induced Activation in HCN2 Channels by Glycine Inserts. Front Physiol 2022; 13:895324. [PMID: 36091400 PMCID: PMC9452628 DOI: 10.3389/fphys.2022.895324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A′-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A′-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A′-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.
Collapse
Affiliation(s)
- Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christopher Pfleger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Zimmer
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Uta Enke
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Inga Saß
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| |
Collapse
|
9
|
Kondapuram M, Frieg B, Yüksel S, Schwabe T, Sattler C, Lelle M, Schweinitz A, Schmauder R, Benndorf K, Gohlke H, Kusch J. Functional and structural characterization of interactions between opposite subunits in HCN pacemaker channels. Commun Biol 2022; 5:430. [PMID: 35534535 PMCID: PMC9085832 DOI: 10.1038/s42003-022-03360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics (MD) simulations to show that residue K464 of the C-linker is relevant for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that in the K464E channel, a rotation of the intracellular domain relative to the channel pore is induced, which is similar to the cAMP-induced rotation, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. We suggest that this CL-CNBD rotation is considerably involved in activation-induced affinity increase but only indirectly involved in gate modulation. The adopted poses shown herein are in excellent agreement with previous structural results. Interactions between opposite subunits of HCN channels are relevant for stabilizing the auto-inhibited state of the channel. Like cAMP-binding, K464E-mutation breaks these interactions to favor a channel’s pre-activated state.
Collapse
Affiliation(s)
- Mahesh Kondapuram
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Benedikt Frieg
- John von Neumann-Institut für Computing (NIC), Jülich Supercomputing Centre (JSC), and Institut für Biologische Informationsprozesse (IBI-7: Strukturbiochemie), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christian Sattler
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Marco Lelle
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Andrea Schweinitz
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Ralf Schmauder
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- John von Neumann-Institut für Computing (NIC), Jülich Supercomputing Centre (JSC), and Institut für Biologische Informationsprozesse (IBI-7: Strukturbiochemie), Forschungszentrum Jülich GmbH, Jülich, Germany. .,Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany. .,Institut für Bio- und Geowissenschaften (IBG-4: Bioinformatik), Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany.
| |
Collapse
|
10
|
Thermodynamic profile of mutual subunit control in a heteromeric receptor. Proc Natl Acad Sci U S A 2021; 118:2100469118. [PMID: 34301910 PMCID: PMC8325370 DOI: 10.1073/pnas.2100469118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.
Collapse
|
11
|
Biophysical analysis of an HCN1 epilepsy variant suggests a critical role for S5 helix Met-305 in voltage sensor to pore domain coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:156-172. [PMID: 34298002 DOI: 10.1016/j.pbiomolbio.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Hyperpolarization-gated, cyclic nucleotide-activated (HCN1-4) channels are inwardly rectifying cation channels that display voltage dependent activation and de-activation. Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies including the de novo HCN1 M305L variant. M305 is located in the S5 domain that is implicated in coupling voltage sensor domain movement to pore opening. This variant lacks voltage-dependent activation and de-activation and displays normal cation selectivity. To elucidate the impact of the mutation on the channel structure-function relations, molecular dynamics simulations of the wild type and mutant homotetramers were compared and identified a sulphur-aromatic interaction between M305 and F389 that contributes to the coupling of the voltage-sensing domain to the pore domain. To mimic the heterozygous condition as a heterotetrameric channel assembly, Xenopus oocytes were co-injected with various ratios of wild-type and mutant subunit cRNAs and the biophysical properties of channels with different subunit stoichiometries were determined. The results showed that a single mutated subunit was sufficient to significantly disrupt the voltage dependence of activation. The functional data were qualitatively consistent with predictions of a model that assumes independent activation of the voltage sensing domains allosterically controlling the closed to open transition of the pore. Overall, the M305L mutation results in an HCN1 channel that lacks voltage dependence and facilitates excitatory cation flow at membrane potentials that would normally close the channel. Our findings provide molecular insights into HCN1 channels and reveal the structural and biophysical basis of the severe epilepsy phenotype associated with the M305L mutation.
Collapse
|
12
|
Regulation of sinoatrial funny channels by cyclic nucleotides: From adrenaline and I K2 to direct binding of ligands to protein subunits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:12-21. [PMID: 34237319 DOI: 10.1016/j.pbiomolbio.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
The funny current, and the HCN channels that form it, are affected by the direct binding of cyclic nucleotides. Binding of these second messengers causes a depolarizing shift of the activation curve, which leads to greater availability of current at physiological membrane voltages. This review outlines a brief history on this regulation and provides some evidence that other cyclic nucleotides, especially cGMP, may be important for the regulation of the funny channel in the heart. Current understanding of the molecular mechanism of cyclic nucleotide regulation is also presented, which includes the notions that full and partial agonism occur as a consequence of negatively cooperative binding. Knowledge gaps, including a potential role of cyclic nucleotide-regulation of the funny current under pathophysiological conditions, are included. The work highlighted here is in dedication to Dario DiFrancesco on his retirement.
Collapse
|
13
|
Loss of HCN2 in Dorsal Hippocampus of Young Adult Mice Induces Specific Apoptosis of the CA1 Pyramidal Neuron Layer. Int J Mol Sci 2021; 22:ijms22136699. [PMID: 34206649 PMCID: PMC8269412 DOI: 10.3390/ijms22136699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural signaling. In mammals, four genes (hcn1-4) encode subunits of HCN channels. These subunits can assemble as hetero- or homotetrameric ion-conducting channels. In order to elaborate on the specific role of the HCN2 subunit in shaping electrical properties of neurons, we applied an Adeno-associated virus (AAV)-mediated, RNAi-based knock-down strategy of hcn2 gene expression both in vitro and in vivo. Electrophysiological measurements showed that HCN2 subunit knock-down resulted in specific yet anticipated changes in Ih-current properties in primary hippocampal neurons and, in addition, corroborated that the HCN2 subunit participates in postsynaptic signal integration. To further address the role of the HCN2 subunit in vivo, we injected recombinant (r)AAVs into the dorsal hippocampus of young adult male mice. Behavioral and biochemical analyses were conducted to assess the contribution of HCN2-containing channels in shaping hippocampal network properties. Surprisingly, knock-down of hcn2 expression resulted in a severe degeneration of the CA1 pyramidal cell layer, which did not occur in mice injected with control rAAV constructs. This finding might pinpoint to a vital and yet unknown contribution of HCN2 channels in establishing or maintaining the proper function of CA1 pyramidal neurons of the dorsal hippocampus.
Collapse
|
14
|
Pfleger C, Kusch J, Kondapuram M, Schwabe T, Sattler C, Benndorf K, Gohlke H. Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels. Biophys J 2021; 120:950-963. [PMID: 33515603 DOI: 10.1016/j.bpj.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.
Collapse
Affiliation(s)
- Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jana Kusch
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | | | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | | | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing, Jülich Supercomputing Centre, and Institute of Biological Information Processing (IBI-7, Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
15
|
Lehnhoff J, Strauss U, Wierschke S, Grosser S, Pollali E, Schneider UC, Holtkamp M, Dehnicke C, Deisz RA. The anticonvulsant lamotrigine enhances Ih in layer 2/3 neocortical pyramidal neurons of patients with pharmacoresistant epilepsy. Neuropharmacology 2019; 144:58-69. [DOI: 10.1016/j.neuropharm.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
|
16
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|