1
|
Hussey JW, DeMarco E, DiSilvestre D, Brohus M, Busuioc AO, Iversen ED, Jensen HH, Nyegaard M, Overgaard MT, Ben-Johny M, Dick IE. Voltage Gated Calcium Channel Dysregulation May Contribute to Neurological Symptoms in Calmodulinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626503. [PMID: 39677635 PMCID: PMC11642847 DOI: 10.1101/2024.12.02.626503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Calmodulinopathies are caused by mutations in calmodulin (CaM), and result in debilitating cardiac arrythmias such as long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). In addition, many patients exhibit neurological comorbidities, including developmental delay and autism spectrum disorder. Until now, most work into these mutations has focused on cardiac effects, identifying impairment of Ca 2+ /CaM-dependent inactivation (CDI) of Ca V 1.2 channels as a major pathogenic mechanism. However, the impact of these mutations on neurological function has yet to be fully explored. CaM regulation of voltage-gated calcium channels (VGCCs) is a critical element of neuronal function, implicating multiple VGCC subtypes in the neurological pathogenesis of calmodulinopathies. Here, we explore the potential for pathological CaM variants to impair the Ca 2+ /CaM-dependent regulation of Ca V 1.3 and Ca V 2.1, both essential for neuronal function. We find that mutations in CaM can impair the CDI of Ca V 1.3 and reduce the Ca 2+ -dependent facilitation (CDF) of Ca V 2.1 channels. We find that mutations associated with significant neurological symptoms exhibit marked effects on Ca V 1.3 CDI, with overlapping but distinct impacts on Ca V 2.1 CDF. Moreover, while the majority of CaM variants demonstrated the ability to bind the IQ region of each channel, distinct differences were noted between Ca V 1.3 and Ca V 2.1, demonstrating distinct CaM interactions across the two channel subtypes. Further, C-domain CaM variants display a reduced ability to sense Ca 2+ when in complex with the Ca V IQ domains, explaining the Ca 2+ /CaM regulation deficits. Overall, these results support the possibility that disrupted Ca 2+ /CaM regulation of VGCCs may contribute to neurological pathogenesis of calmodulinopathies.
Collapse
|
2
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
3
|
Campiglio M, Dyrda A, Tuinte WE, Török E. Ca V1.1 Calcium Channel Signaling Complexes in Excitation-Contraction Coupling: Insights from Channelopathies. Handb Exp Pharmacol 2023; 279:3-39. [PMID: 36592225 DOI: 10.1007/164_2022_627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVβ1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.
Collapse
Affiliation(s)
- Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| | - Agnieszka Dyrda
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Wietske E Tuinte
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Enikő Török
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Tuinte WE, Török E, Mahlknecht I, Tuluc P, Flucher BE, Campiglio M. STAC3 determines the slow activation kinetics of Ca V 1.1 currents and inhibits its voltage-dependent inactivation. J Cell Physiol 2022; 237:4197-4214. [PMID: 36161458 DOI: 10.1002/jcp.30870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
The skeletal muscle CaV 1.1 channel functions as the voltage-sensor of excitation-contraction (EC) coupling. Recently, the adaptor protein STAC3 was found to be essential for both CaV 1.1 functional expression and EC coupling. Interestingly, STAC proteins were also reported to inhibit calcium-dependent inactivation (CDI) of L-type calcium channels (LTCC), an important negative feedback mechanism in calcium signaling. The same could not be demonstrated for CaV 1.1, as STAC3 is required for its functional expression. However, upon strong membrane depolarization, CaV 1.1 conducts calcium currents characterized by very slow kinetics of activation and inactivation. Therefore, we hypothesized that the negligible inactivation observed in CaV 1.1 currents reflects the inhibitory effect of STAC3. Here, we inserted a triple mutation in the linker region of STAC3 (ETLAAA), as the analogous mutation abolished the inhibitory effect of STAC2 on CDI of CaV 1.3 currents. When coexpressed in CaV 1.1/STAC3 double knockout myotubes, the mutant STAC3-ETLAAA failed to colocalize with CaV 1.1 in the sarcoplasmic reticulum/membrane junctions. However, combined patch-clamp and calcium recording experiments revealed that STAC3-ETLAAA supports CaV 1.1 functional expression and EC coupling, although at a reduced extent compared to wild-type STAC3. Importantly, STAC3-ETLAAA coexpression dramatically accelerated the kinetics of activation and inactivation of CaV 1.1 currents, suggesting that STAC3 determines the slow CaV 1.1 currents kinetics. To examine if STAC3 specifically inhibits the CDI of CaV 1.1 currents, we performed patch-clamp recordings using calcium and barium as charge carriers in HEK cells. While CaV 1.1 displayed negligible CDI with STAC3, this did not increase in the presence of STAC3-ETLAAA. On the contrary, our data demonstrate that STAC3 specifically inhibits the voltage-dependent inactivation (VDI) of CaV 1.1 currents. Altogether, these results designate STAC3 as a crucial determinant for the slow activation kinetics of CaV 1.1 currents and implicate STAC proteins as modulators of both components of inactivation of LTCC.
Collapse
Affiliation(s)
- Wietske E Tuinte
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Enikő Török
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Irene Mahlknecht
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
El Ghaleb Y, Ortner NJ, Posch W, Fernández-Quintero ML, Tuinte WE, Monteleone S, Draheim HJ, Liedl KR, Wilflingseder D, Striessnig J, Tuluc P, Flucher BE, Campiglio M. Calcium current modulation by the γ1 subunit depends on alternative splicing of CaV1.1. J Gen Physiol 2022; 154:e202113028. [PMID: 35349630 PMCID: PMC9037348 DOI: 10.1085/jgp.202113028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/08/2022] [Indexed: 01/01/2023] Open
Abstract
The skeletal muscle voltage-gated calcium channel (CaV1.1) primarily functions as a voltage sensor for excitation-contraction coupling. Conversely, its ion-conducting function is modulated by multiple mechanisms within the pore-forming α1S subunit and the auxiliary α2δ-1 and γ1 subunits. In particular, developmentally regulated alternative splicing of exon 29, which inserts 19 amino acids in the extracellular IVS3-S4 loop of CaV1.1a, greatly reduces the current density and shifts the voltage dependence of activation to positive potentials outside the physiological range. We generated new HEK293 cell lines stably expressing α2δ-1, β3, and STAC3. When the adult (CaV1.1a) and embryonic (CaV1.1e) splice variants were expressed in these cells, the difference in the voltage dependence of activation observed in muscle cells was reproduced, but not the reduced current density of CaV1.1a. Only when we further coexpressed the γ1 subunit was the current density of CaV1.1a, but not that of CaV1.1e, reduced by >50%. In addition, γ1 caused a shift of the voltage dependence of inactivation to negative voltages in both variants. Thus, the current-reducing effect of γ1, unlike its effect on inactivation, is specifically dependent on the inclusion of exon 29 in CaV1.1a. Molecular structure modeling revealed several direct ionic interactions between residues in the IVS3-S4 loop and the γ1 subunit. However, substitution of these residues by alanine, individually or in combination, did not abolish the γ1-dependent reduction of current density, suggesting that structural rearrangements in CaV1.1a induced by inclusion of exon 29 may allosterically empower the γ1 subunit to exert its inhibitory action on CaV1.1 calcium currents.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Nadine J. Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Wietske E. Tuinte
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefania Monteleone
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Henning J. Draheim
- Boehringer Ingelheim Pharma GmbH & Co KG, CNS Research, Biberach an der Riss, Germany
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Bernhard E. Flucher
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Savalli N, Angelini M, Steccanella F, Wier J, Wu F, Quinonez M, DiFranco M, Neely A, Cannon SC, Olcese R. The distinct role of the four voltage sensors of the skeletal CaV1.1 channel in voltage-dependent activation. J Gen Physiol 2021; 153:212652. [PMID: 34546289 PMCID: PMC8460119 DOI: 10.1085/jgp.202112915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Initiation of skeletal muscle contraction is triggered by rapid activation of RYR1 channels in response to sarcolemmal depolarization. RYR1 is intracellular and has no voltage-sensing structures, but it is coupled with the voltage-sensing apparatus of CaV1.1 channels to inherit voltage sensitivity. Using an opto-electrophysiological approach, we resolved the excitation-driven molecular events controlling both CaV1.1 and RYR1 activations, reported as fluorescence changes. We discovered that each of the four human CaV1.1 voltage-sensing domains (VSDs) exhibits unique biophysical properties: VSD-I time-dependent properties were similar to ionic current activation kinetics, suggesting a critical role of this voltage sensor in CaV1.1 activation; VSD-II, VSD-III, and VSD-IV displayed faster activation, compatible with kinetics of sarcoplasmic reticulum Ca2+ release. The prominent role of VSD-I in governing CaV1.1 activation was also confirmed using a naturally occurring, charge-neutralizing mutation in VSD-I (R174W). This mutation abolished CaV1.1 current at physiological membrane potentials by impairing VSD-I activation without affecting the other VSDs. Using a structurally relevant allosteric model of CaV activation, which accounted for both time- and voltage-dependent properties of CaV1.1, to predict VSD-pore coupling energies, we found that VSD-I contributed the most energy (~75 meV or ∼3 kT) toward the stabilization of the open states of the channel, with smaller (VSD-IV) or negligible (VSDs II and III) energetic contribution from the other voltage sensors (<25 meV or ∼1 kT). This study settles the longstanding question of how CaV1.1, a slowly activating channel, can trigger RYR1 rapid activation, and reveals a new mechanism for voltage-dependent activation in ion channels, whereby pore opening of human CaV1.1 channels is primarily driven by the activation of one voltage sensor, a mechanism distinct from that of all other voltage-gated channels.
Collapse
Affiliation(s)
- Nicoletta Savalli
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Federica Steccanella
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Julian Wier
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marbella Quinonez
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alan Neely
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Rufenach B, Van Petegem F. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 2021; 297:100874. [PMID: 34129875 PMCID: PMC8258685 DOI: 10.1016/j.jbc.2021.100874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, an intriguing mechanical coupling exists between two ion channels from different membranes: the L-type voltage-gated calcium channel (CaV1.1), located in the plasma membrane, and ryanodine receptor 1 (RyR1) located in the sarcoplasmic reticulum membrane. Excitable cells rely on Cavs to initiate Ca2+ entry in response to action potentials. RyRs can amplify this signal by releasing Ca2+ from internal stores. Although this process can be mediated through Ca2+ as a messenger, an overwhelming amount of evidence suggests that RyR1 has recruited CaV1.1 directly as its voltage sensor. The exact mechanisms that underlie this coupling have been enigmatic, but a recent wave of reports have illuminated the coupling protein STAC3 as a critical player. Without STAC3, the mechanical coupling between Cav1.1 and RyR1 is lost, and muscles fail to contract. Various sequence variants of this protein have been linked to congenital myopathy. Other STAC isoforms are expressed in the brain and may serve as regulators of L-type CaVs. Despite the short length of STACs, several points of contacts have been proposed between them and CaVs. However, it is currently unclear whether STAC3 also forms direct interactions with RyR1, and whether this modulates RyR1 function. In this review, we discuss the 3D architecture of STAC proteins, the biochemical evidence for their interactions, the relevance of these connections for functional modulation, and their involvement in myopathy.
Collapse
Affiliation(s)
- Britany Rufenach
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
9
|
Flucher BE. Skeletal muscle Ca V1.1 channelopathies. Pflugers Arch 2020; 472:739-754. [PMID: 32222817 PMCID: PMC7351834 DOI: 10.1007/s00424-020-02368-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
CaV1.1 is specifically expressed in skeletal muscle where it functions as voltage sensor of skeletal muscle excitation-contraction (EC) coupling independently of its functions as L-type calcium channel. Consequently, all known CaV1.1-related diseases are muscle diseases and the molecular and cellular disease mechanisms relate to the dual functions of CaV1.1 in this tissue. To date, four types of muscle diseases are known that can be linked to mutations in the CACNA1S gene or to splicing defects. These are hypo- and normokalemic periodic paralysis, malignant hyperthermia susceptibility, CaV1.1-related myopathies, and myotonic dystrophy type 1. In addition, the CaV1.1 function in EC coupling is perturbed in Native American myopathy, arising from mutations in the CaV1.1-associated protein STAC3. Here, we first address general considerations concerning the possible roles of CaV1.1 in disease and then discuss the state of the art regarding the pathophysiology of the CaV1.1-related skeletal muscle diseases with an emphasis on molecular disease mechanisms.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Biophysics, Medical University Innsbruck, Schöpfstraße 41, A6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Shishmarev D. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Biophys Rev 2020; 12:143-153. [PMID: 31950344 DOI: 10.1007/s12551-020-00610-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Excitation-contraction coupling (ECC) is a physiological process that links excitation of muscles by the nervous system to their mechanical contraction. In skeletal muscle, ECC is initiated with an action potential, generated by the somatic nervous system, which causes a depolarisation of the muscle fibre membrane (sarcolemma). This leads to a rapid change in the transmembrane potential, which is detected by the voltage-gated Ca2+ channel dihydropyridine receptor (DHPR) embedded in the sarcolemma. DHPR transmits the contractile signal to another Ca2+ channel, ryanodine receptor (RyR1), embedded in the membrane of the sarcoplasmic reticulum (SR), which releases a large amount of Ca2+ ions from the SR that initiate muscle contraction. Despite the fundamental role of ECC in skeletal muscle function of all vertebrate species, the molecular mechanism underpinning the communication between the two key proteins involved in the process (DHPR and RyR1) is still largely unknown. The goal of this work is to review the recent progress in our understanding of ECC in skeletal muscle from the point of view of the structure and interactions of proteins involved in the process, and to highlight the unanswered questions in the field.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
11
|
Flucher BE, Campiglio M. STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1101-1110. [PMID: 30543836 DOI: 10.1016/j.bbamcr.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023]
Abstract
Excitation-contraction coupling is the signaling process by which action potentials control calcium release and consequently the force of muscle contraction. Until recently, three triad proteins were known to be essential for skeletal muscle EC coupling: the voltage-gated calcium channel CaV1.1 acting as voltage sensor, the SR calcium release channel RyR1 representing the only relevant calcium source, and the auxiliary CaV β1a subunit. Whether CaV1.1 and RyR1 are directly coupled or whether their interaction is mediated by another triad protein is still unknown. The recent identification of the adaptor protein STAC3 as fourth essential component of skeletal muscle EC coupling prompted vigorous research to reveal its role in this signaling process. Accumulating evidence supports its possible involvement in linking CaV1.1 and RyR1 in skeletal muscle EC coupling, but also indicates a second, much broader role of STAC proteins in the regulation of calcium/calmodulin-dependent feedback regulation of L-type calcium channels.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Schöpfstraße 41, A6020 Innsbruck, Austria.
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Schöpfstraße 41, A6020 Innsbruck, Austria
| |
Collapse
|
12
|
Niu J, Dick IE, Yang W, Bamgboye MA, Yue DT, Tomaselli G, Inoue T, Ben-Johny M. Allosteric regulators selectively prevent Ca 2+-feedback of Ca V and Na V channels. eLife 2018; 7:35222. [PMID: 30198845 PMCID: PMC6156082 DOI: 10.7554/elife.35222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Calmodulin (CaM) serves as a pervasive regulatory subunit of CaV1, CaV2, and NaV1 channels, exploiting a functionally conserved carboxy-tail element to afford dynamic Ca2+-feedback of cellular excitability in neurons and cardiomyocytes. Yet this modularity counters functional adaptability, as global changes in ambient CaM indiscriminately alter its targets. Here, we demonstrate that two structurally unrelated proteins, SH3 and cysteine-rich domain (stac) and fibroblast growth factor homologous factors (fhf) selectively diminish Ca2+/CaM-regulation of CaV1 and NaV1 families, respectively. The two proteins operate on allosteric sites within upstream portions of respective channel carboxy-tails, distinct from the CaM-binding interface. Generalizing this mechanism, insertion of a short RxxK binding motif into CaV1.3 carboxy-tail confers synthetic switching of CaM regulation by Mona SH3 domain. Overall, our findings identify a general class of auxiliary proteins that modify Ca2+/CaM signaling to individual targets allowing spatial and temporal orchestration of feedback, and outline strategies for engineering Ca2+/CaM signaling to individual targets.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Ivy E Dick
- Department of Physiology, University of Maryland, Baltimore, United States
| | - Wanjun Yang
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | | | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Gordon Tomaselli
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States.,Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, United States
| |
Collapse
|
13
|
Stac Proteins Suppress Ca 2+-Dependent Inactivation of Neuronal l-type Ca 2+ Channels. J Neurosci 2018; 38:9215-9227. [PMID: 30201773 DOI: 10.1523/jneurosci.0695-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 01/28/2023] Open
Abstract
Stac protein (named for its SH3- and cysteine-rich domains) was first identified in brain 20 years ago and is currently known to have three isoforms. Stac2, Stac1, and Stac3 transcripts are found at high, modest, and very low levels, respectively, in the cerebellum and forebrain, but their neuronal functions have been little investigated. Here, we tested the effects of Stac proteins on neuronal, high-voltage-activated Ca2+ channels. Overexpression of the three Stac isoforms eliminated Ca2+-dependent inactivation (CDI) of l-type current in rat neonatal hippocampal neurons (sex unknown), but not CDI of non-l-type current. Using heterologous expression in tsA201 cells (together with β and α2-δ1 auxiliary subunits), we found that CDI for CaV1.2 and CaV1.3 (the predominant, neuronal l-type Ca2+ channels) was suppressed by all three Stac isoforms, whereas CDI for the P/Q channel, CaV2.1, was not. For CaV1.2, the inhibition of CDI by the Stac proteins appeared to involve their direct interaction with the channel's C terminus. Within the Stac proteins, a weakly conserved segment containing ∼100 residues and linking the structurally conserved PKC C1 and SH3_1 domains was sufficient to fully suppress CDI. The presence of CDI for l-type current in control neonatal neurons raised the possibility that endogenous Stac levels are low in these neurons and Western blotting indicated that the expression of Stac2 was substantially increased in adult forebrain and cerebellum compared with neonate. Together, our results indicate that one likely function of neuronal Stac proteins is to tune Ca2+ entry via neuronal l-type channels.SIGNIFICANCE STATEMENT Stac protein, first identified 20 years ago in brain, has recently been found to be essential for proper trafficking and function of the skeletal muscle l-type Ca2+ channel and is the site of mutations causing a severe, inherited human myopathy. In neurons, however, functions for Stac protein have remained unexplored. Here, we report that one likely function of neuronal Stac proteins is tuning Ca2+ entry via l-type, but not that via non-l-type, Ca2+ channels. Moreover, there is a large postnatal increase in protein levels of the major neuronal isoform (Stac2) in forebrain and cerebellum, which could provide developmental regulation of l-type channel Ca2+ signaling in these brain regions.
Collapse
|