1
|
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland MF, Lin K, Chen WC, Choksi SP, Chen G, Holtzman MJ, Reiter JF, Wan Y, Xuan Z, Xiang YK, Xu CS, Upadhyayula S, Hess HF, He L. Multicilia dynamically transduce Shh signaling to regulate choroid plexus functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.633415. [PMID: 39896593 PMCID: PMC11785054 DOI: 10.1101/2025.01.21.633415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or Intraflagellar transport yields neonatal hydrocephalus, at least in part, due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Shh signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by Smo/Gαi/cAMP pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in developing choroid plexus, a derepression of Aqp1 and Atp1a2, and ultimately, an increased CSF production. Hence, developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production.
Collapse
|
2
|
Bedioune I, Gandon-Renard M, Dessillons M, Barthou A, Varin A, Mika D, Bichali S, Cellier J, Lechène P, Karam S, Dia M, Gomez S, Pereira de Vasconcelos W, Mercier-Nomé F, Mateo P, Dubourg A, Stratakis CA, Mercadier JJ, Benitah JP, Algalarrondo V, Leroy J, Fischmeister R, Gomez AM, Vandecasteele G. Essential Role of the RIα Subunit of cAMP-Dependent Protein Kinase in Regulating Cardiac Contractility and Heart Failure Development. Circulation 2024; 150:2031-2045. [PMID: 39355927 DOI: 10.1161/circulationaha.124.068858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling. METHODS We measured PKA subunit expression in human heart and developed a conditional mouse model with cardiomyocyte-specific knockout of RIα (RIα-icKO). Myocardial structure and function were evaluated by echocardiography, histology, and ECG and in Langendorff-perfused hearts. PKA activity and cAMP levels were determined by immunoassay, and phosphorylation of PKA targets was assessed by Western blot. L-type Ca2+ current (ICa,L), sarcomere shortening, Ca2+ transients, Ca2+ sparks and waves, and subcellular cAMP were recorded in isolated ventricular myocytes (VMs). RESULTS RIα protein was decreased by 50% in failing human heart with ischemic cardiomyopathy and by 75% in the ventricles and in VMs from RIα-icKO mice but not in atria or sinoatrial node. Basal PKA activity was increased ≈3-fold in RIα-icKO VMs. In young RIα-icKO mice, left ventricular ejection fraction was increased and the negative inotropic effect of propranolol was prevented, whereas heart rate and the negative chronotropic effect of propranolol were not modified. Phosphorylation of phospholamban, ryanodine receptor, troponin I, and cardiac myosin-binding protein C at PKA sites was increased in propranolol-treated RIα-icKO mice. Hearts from RIα-icKO mice were hypercontractile, associated with increased ICa,L, and [Ca2+]i transients and sarcomere shortening in VMs. These effects were suppressed by the PKA inhibitor, H89. Global cAMP content was decreased in RIα-icKO hearts, whereas local cAMP at the phospholamban/sarcoplasmic reticulum Ca2+ ATPase complex was unchanged in RIα-icKO VMs. RIα-icKO VMs had an increased frequency of Ca2+ sparks and proarrhythmic Ca2+ waves, and RIα-icKO mice had an increased susceptibility to ventricular tachycardia. On aging, RIα-icKO mice showed progressive contractile dysfunction, cardiac hypertrophy, and fibrosis, culminating in congestive heart failure with reduced ejection fraction that caused 50% mortality at 1 year. CONCLUSIONS These results identify RIα as a key negative regulator of cardiac contractile function, arrhythmia, and pathological remodeling.
Collapse
Affiliation(s)
- Ibrahim Bedioune
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Marine Gandon-Renard
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Matthieu Dessillons
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Aurélien Barthou
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Audrey Varin
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Saïd Bichali
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Joffrey Cellier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Patrick Lechène
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Sarah Karam
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Maya Dia
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Susana Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Walma Pereira de Vasconcelos
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | | | - Philippe Mateo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Audrey Dubourg
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Constantine A Stratakis
- Human Genetics and Precision Medicine, IMBB, FORTH, Heraklion, Crete, Greece (C.A.S.)
- ELPEN Research Institute, Athens, Greece (C.A.S.)
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S.)
| | - Jean-Jacques Mercadier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
- Xavier Bichat school of Medicine, Paris, France (J.-J.M.)
| | - Jean-Pierre Benitah
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Vincent Algalarrondo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Ana-Maria Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| |
Collapse
|
3
|
Zhu Z, Guan Q, Xu B, Bahriz S, Shen A, West TM, Zhang Y, Deng B, Wei W, Han Y, Wang Q, Xiang YK. Inhibition of the upregulated phosphodiesterase 4D isoforms improves SERCA2a function in diabetic cardiomyopathy. Br J Pharmacol 2024. [PMID: 39662482 DOI: 10.1111/bph.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is impaired in heart failure. Phosphodiesterases (PDEs) are implicated in the modulation of local cAMP signals and protein kinase A (PKA) activity essential for cardiac function. We characterise PDE isoforms that underlie decreased activities of SERCA2a and reduced cardiac contractile function in diabetic cardiomyopathy. EXPERIMENTAL APPROACH Wild type mice were fed with either normal chow or a high-fat diet (HFD). Cardiomyocytes were isolated for excitation-contraction coupling (ECC), fluorescence resonant energy transfer PKA biosensor and proximity ligation assays. KEY RESULTS The upregulated PDE4D3 and PDE4D9 isoforms in HFD cardiomyocytes specifically bound to SERCA2a but not ryanodine receptor 2 (RyR2) on the sarcoplasmic reticulum (SR). The increased association of PDE4D isoforms with SERCA2a in HFD cardiomyocytes led to reduced local PKA activities and phosphorylation of phospholamban (PLB) but minimally effected the PKA activities and phosphorylation of RyR2. These changes correlate with slower calcium decay tau in the SR and attenuation of ECC in HFD cardiomyocytes. Selective inhibition of PDE4D3 or PDE4D9 restored PKA activities and phosphorylation of PLB at the SERCA2a complex, recovered calcium decay tau, and increased ECC in HFD cardiomyocytes. Therapies with PDE4 inhibitor roflumilast, PDE4D inhibitor BPN14770 or genetical deletion of PDE4D restored PKA phosphorylation of PLB and cardiac contractile function. CONCLUSION AND IMPLICATIONS The current study identifies upregulation of specific PDE4D isoforms that selectively inhibit SERCA2a function in HFD-induced cardiomyopathy, indicating that this remodelling can be targeted to restore cardiac contractility in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, USA
| | - Sherif Bahriz
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Ao Shen
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Toni M West
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Yu Zhang
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingqing Deng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, USA
| |
Collapse
|
4
|
Wang Y, Zhao M, Liu X, Xu B, Reddy GR, Jovanovic A, Wang Q, Zhu C, Xu H, Bayne EF, Xiang W, Tilley DG, Ge Y, Tate CG, Feil R, Chiu JC, Bers DM, Xiang YK. Carvedilol Activates a Myofilament Signaling Circuitry to Restore Cardiac Contractility in Heart Failure. JACC Basic Transl Sci 2024; 9:982-1001. [PMID: 39297139 PMCID: PMC11405995 DOI: 10.1016/j.jacbts.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 09/21/2024]
Abstract
Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). β-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac β-adrenoceptors (βARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local βAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different βAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by β1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced β1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the β1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with β1AR were observed. Stimulating β1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament β1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meimi Zhao
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Bing Xu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Qingtong Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Heli Xu
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Elizabeth F. Bayne
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Douglas G. Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
5
|
Casiraghi M, Wang H, Brennan P, Habrian C, Hubner H, Schmidt MF, Maul L, Pani B, Bahriz SM, Xu B, White E, Sunahara RK, Xiang YK, Lefkowitz RJ, Isacoff EY, Nucci N, Gmeiner P, Lerch M, Kobilka BK. Structure and dynamics determine G protein coupling specificity at a class A GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587240. [PMID: 38586060 PMCID: PMC10996611 DOI: 10.1101/2024.03.28.587240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The β2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.
Collapse
|
6
|
Jovanovic A, Xu B, Zhu C, Ren D, Wang H, Krause-Hauch M, Abel ED, Li J, Xiang YK. Characterizing Adrenergic Regulation of Glucose Transporter 4-Mediated Glucose Uptake and Metabolism in the Heart. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Wang Y, Zhao M, Xu B, Bahriz SMF, Zhu C, Jovanovic A, Ni H, Jacobi A, Kaludercic N, Di Lisa F, Hell JW, Shih JC, Paolocci N, Xiang YK. Monoamine oxidase A and organic cation transporter 3 coordinate intracellular β 1AR signaling to calibrate cardiac contractile function. Basic Res Cardiol 2022; 117:37. [PMID: 35842861 PMCID: PMC9288959 DOI: 10.1007/s00395-022-00944-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
We have recently identified a pool of intracellular β1 adrenergic receptors (β1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular β1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized β1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local β1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-β1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-β1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, 110122, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Sherif M F Bahriz
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Ariel Jacobi
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Institute for Pediatric Research Città Della Speranza, Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA.
- VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
8
|
Zhu D, Zhang Z, Zhao J, Liu D, Gan L, Lau WB, Xie D, Meng Z, Yao P, Tsukuda J, Christopher TA, Lopez BL, Gao E, Koch WJ, Wang Y, Ma XL. Targeting Adiponectin Receptor 1 Phosphorylation Against Ischemic Heart Failure. Circ Res 2022; 131:e34-e50. [PMID: 35611695 PMCID: PMC9308652 DOI: 10.1161/circresaha.121.319976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.
Collapse
Affiliation(s)
- Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard L. Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| |
Collapse
|
9
|
Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022; 25:103693. [PMID: 35036877 PMCID: PMC8749457 DOI: 10.1016/j.isci.2021.103693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Gopireddy R. Reddy
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Jessica L. Caldwell
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| |
Collapse
|
10
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
11
|
Wang Y, Shi Q, Li M, Zhao M, Reddy Gopireddy R, Teoh JP, Xu B, Zhu C, Ireton KE, Srinivasan S, Chen S, Gasser PJ, Bossuyt J, Hell JW, Bers DM, Xiang YK. Intracellular β 1-Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circ Res 2021; 128:246-261. [PMID: 33183171 PMCID: PMC7856104 DOI: 10.1161/circresaha.120.317452] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE β1ARs (β1-adrenoceptors) exist at intracellular membranes and OCT3 (organic cation transporter 3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular β1AR in cardiac contractility remains to be elucidated. OBJECTIVE Test localization and function of intracellular β1AR on cardiac contractility. METHODS AND RESULTS Membrane fractionation, super-resolution imaging, proximity ligation, coimmunoprecipitation, and single-molecule pull-down demonstrated a pool of β1ARs in mouse hearts that were associated with sarco/endoplasmic reticulum Ca2+-ATPase at the sarcoplasmic reticulum (SR). Local PKA (protein kinase A) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared with wild-type, myocytes lacking OCT3 (OCT3-KO [OCT3 knockout]) responded identically to the membrane-permeant βAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3-KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3-KO selectively suppressed calcium transients and contraction responses to norepinephrine but not isoproterenol. Furthermore, sotalol, a membrane-impermeant βAR-blocker, suppressed isoproterenol-induced PKA activation at the PM but permitted PKA activation at the SR, phospholamban phosphorylation, and contractility. Moreover, pretreatment with sotalol in OCT3-KO myocytes prevented norepinephrine-induced PKA activation at both PM and the SR and contractility. CONCLUSIONS Functional β1ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular β1ARs requires catecholamine transport via OCT3.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Calcium-Binding Proteins/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Female
- Heart Rate
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Phosphorylation
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Sarcoplasmic Reticulum/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Qian Shi
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Minghui Li
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- Nanjing First Hospital, Nanjing Medical University, China (M.L., S.C.)
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- Department of Pharmaceutical Toxicology, China Medical University (M.Z.)
| | - Raghavender Reddy Gopireddy
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Jian-Peng Teoh
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Bing Xu
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.)
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Kyle E Ireton
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Sanghavi Srinivasan
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Shaoliang Chen
- Nanjing First Hospital, Nanjing Medical University, China (M.L., S.C.)
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI (P.J.G.)
| | - Julie Bossuyt
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.)
| |
Collapse
|
12
|
Xu B, Li M, Wang Y, Zhao M, Morotti S, Shi Q, Wang Q, Barbagallo F, Teoh JP, Reddy GR, Bayne EF, Liu Y, Shen A, Puglisi JL, Ge Y, Li J, Grandi E, Nieves-Cintron M, Xiang YK. GRK5 Controls SAP97-Dependent Cardiotoxic β 1 Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circ Res 2020; 127:796-810. [PMID: 32507058 DOI: 10.1161/circresaha.119.316319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Cardiotoxic β1 adrenergic receptor (β1AR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of β1AR and organizes a receptor signalosome. OBJECTIVE We aim to elucidate the dynamics of β1AR-SAP97 signalosome and its potential role in chronic cardiotoxic β1AR-CaMKII signaling that contributes to development of heart failure. METHODS AND RESULTS The integrity of cardiac β1AR-SAP97 complex was examined in heart failure. Cardiac-specific deletion of SAP97 was developed to examine β1AR signaling in aging mice, after chronic adrenergic stimulation, and in pressure overload hypertrophic heart failure. We show that the β1AR-SAP97 signaling complex is reduced in heart failure. Cardiac-specific deletion of SAP97 yields an aging-dependent cardiomyopathy and exacerbates cardiac dysfunction induced by chronic adrenergic stimulation and pressure overload, which are associated with elevated CaMKII activity. Loss of SAP97 promotes PKA (protein kinase A)-dependent association of β1AR with arrestin2 and CaMKII and turns on an Epac (exchange protein directly activated by cAMP)-dependent activation of CaMKII, which drives detrimental functional and structural remodeling in myocardium. Moreover, we have identified that GRK5 (G-protein receptor kinase-5) is necessary to promote agonist-induced dissociation of SAP97 from β1AR. Cardiac deletion of GRK5 prevents adrenergic-induced dissociation of β1AR-SAP97 complex and increases in CaMKII activity in hearts. CONCLUSIONS These data reveal a critical role of SAP97 in maintaining the integrity of cardiac β1AR signaling and a detrimental cardiac GRK5-CaMKII axis that can be potentially targeted in heart failure therapy. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Bing Xu
- From the VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.).,Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Minghui Li
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,Nanjing First Hospital, Nanjing Medical University, China (M.L.)
| | - Ying Wang
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Stefano Morotti
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Qian Shi
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Qingtong Wang
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China (Q.W.)
| | - Federica Barbagallo
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Jian-Peng Teoh
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison (E.F.B., Y.G.)
| | - Yongming Liu
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,Shuguang Hospital, Shanghai University of Traditional Medicine, China (Y.L.)
| | - Ao Shen
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, China (A.S.)
| | - Jose L Puglisi
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison (E.F.B., Y.G.)
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa (J.L.)
| | - Eleonora Grandi
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Madeline Nieves-Cintron
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Yang K Xiang
- From the VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.).,Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| |
Collapse
|
13
|
Kirschner Peretz N, Segal S, Yaniv Y. May the Force Not Be With You During Culture: Eliminating Mechano-Associated Feedback During Culture Preserves Cultured Atrial and Pacemaker Cell Functions. Front Physiol 2020; 11:163. [PMID: 32265724 PMCID: PMC7100534 DOI: 10.3389/fphys.2020.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Cultured cardiomyocytes have been shown to possess significant potential as a model for characterization of mechano-Ca2+, mechano-electric, and mechano-metabolic feedbacks in the heart. However, the majority of cultured cardiomyocytes exhibit impaired electrical, mechanical, biochemical, and metabolic functions. More specifically, the cells do not beat spontaneously (pacemaker cells) or beat at a rate far lower than their physiological counterparts and self-oscillate (atrial and ventricular cells) in culture. Thus, efforts are being invested in ensuring that cultured cardiomyocytes maintain the shape and function of freshly isolated cells. Elimination of contraction during culture has been shown to preserve the mechano-Ca2+, mechano-electric, and mechano-metabolic feedback loops of cultured cells. This review focuses on pacemaker cells, which reside in the sinoatrial node (SAN) and generate regular heartbeat through the initiation of the heart’s electrical, metabolic, and biochemical activities. In parallel, it places emphasis on atrial cells, which are responsible for bridging the electrical conductance from the SAN to the ventricle. The review provides a summary of the main mechanisms responsible for mechano-electrical, Ca2+, and metabolic feedback in pacemaker and atrial cells and of culture methods existing for both cell types. The work concludes with an explanation of how the elimination of mechano-electrical, mechano-Ca2+, and mechano-metabolic feedbacks during culture results in sustained cultured cell function.
Collapse
Affiliation(s)
- Noa Kirschner Peretz
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Sofia Segal
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Riehle C, Weatherford ET, Wende AR, Jaishy BP, Seei AW, McCarty NS, Rech M, Shi Q, Reddy GR, Kutschke WJ, Oliveira K, Pires KM, Anderson JC, Diakos NA, Weiss RM, White MF, Drakos SG, Xiang YK, Abel ED. Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling. JCI Insight 2020; 5:134920. [PMID: 32213702 DOI: 10.1172/jci.insight.134920] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G-mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.
Collapse
Affiliation(s)
- Christian Riehle
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Eric T Weatherford
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Adam R Wende
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bharat P Jaishy
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alec W Seei
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas S McCarty
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Monika Rech
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Qian Shi
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology, UCD, Davis, California, USA
| | | | - William J Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Karen Oliveira
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nikolaos A Diakos
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert M Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yang K Xiang
- Department of Pharmacology, UCD, Davis, California, USA.,VA Northern California Health Care System, Mather, California, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
West TM, Wang Q, Deng B, Zhang Y, Barbagallo F, Reddy GR, Chen D, Phan KS, Xu B, Isidori A, Xiang YK. Phosphodiesterase 5 Associates With β2 Adrenergic Receptor to Modulate Cardiac Function in Type 2 Diabetic Hearts. J Am Heart Assoc 2019; 8:e012273. [PMID: 31311394 PMCID: PMC6761630 DOI: 10.1161/jaha.119.012273] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background In murine heart failure models and in humans with diabetic‐related heart hypertrophy, inhibition of phosphodiesterase 5 (PDE5) by sildenafil improves cardiac outcomes. However, the mechanism by which sildenafil improves cardiac function is unclear. We have observed a relationship between PDE5 and β2 adrenergic receptor (β2AR), which is characterized here as a novel mechanistic axis by which sildenafil improves symptoms of diabetic cardiomyopathy. Methods and Results Wild‐type and β2AR knockout mice fed a high fat diet (HFD) were treated with sildenafil, and echocardiogram analysis was performed. Cardiomyocytes were isolated for excitation‐contraction (E‐C) coupling, fluorescence resonant energy transfer, and proximity ligation assays; while heart tissues were implemented for biochemical and histological analyses. PDE5 selectively associates with β2AR, but not β1 adrenergic receptor, and inhibition of PDE5 with sildenafil restores the impaired response to adrenergic stimulation in HFD mice and isolated ventriculomyocytes. Sildenafil enhances β adrenergic receptor (βAR)‐stimulated cGMP and cAMP signals in HFD myocytes. Consequently, inhibition of PDE5 leads to protein kinase G–, and to a lesser extent, calcium/calmodulin‐dependent kinase II–dependent improvements in adrenergically stimulated E‐C coupling. Deletion of β2AR abolishes sildenafil's effect. Although the PDE5‐β2AR association is not altered in HFD, phosphodiesterase 3 displays an increased association with the β2AR‐PDE5 complex in HFD myocytes. Conclusions This study elucidates mechanisms by which the β2AR‐PDE5 axis can be targeted for treating diabetic cardiomyopathy. Inhibition of PDE5 enhances β2AR stimulation of cGMP and cAMP signals, as well as protein kinase G–dependent E‐C coupling in HFD myocytes.
Collapse
Affiliation(s)
- Toni M West
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Qingtong Wang
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Bingqing Deng
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,Sun-Yet Sen Memorial hospital Sun-Yet Sen University Guangzhou China
| | - Yu Zhang
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,College of Pharmacy Guangzhou Medical University Guangzhou China
| | - Federica Barbagallo
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,Department of Experimental Medicine Sapienza University of Rome Rome Italy
| | - Gopireddy R Reddy
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Dana Chen
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Kyle S Phan
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Bing Xu
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,College of Pharmacy Guangzhou Medical University Guangzhou China
| | - Andres Isidori
- Department of Experimental Medicine Sapienza University of Rome Rome Italy
| | - Yang K Xiang
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,VA Northern California Health Care System Mather CA
| |
Collapse
|
16
|
Studying β 1 and β 2 adrenergic receptor signals in cardiac cells using FRET-based sensors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:30-38. [PMID: 31266653 DOI: 10.1016/j.pbiomolbio.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Cyclic 3'-5' adenosine monophosphate (cAMP) is a key modulator of cardiac function. Thanks to the sophisticated organization of its pathway in distinct functional units called microdomains, cAMP is involved in the regulation of both inotropy and chronotropy as well as transcription and cardiac death. While visualization of cAMP microdomains can be achieved thanks to cAMP-sensitive FRET-based sensors, the molecular mechanisms through which cAMP-generating stimuli are coupled to distinct functional outcomes are not well understood. One possibility is that each stimulus activates multiple microdomains in order to generate a spatiotemporal code that translates into function. To test this hypothesis here we propose a series of experimental protocols that allow to simultaneously follow cAMP or Protein Kinase A (PKA)-dependent phosphorylation in different subcellular compartments of living cells. We investigate the responses of β Adrenergic receptors (β1AR and β2AR) challenged with selective drugs that enabled us to measure the actions of each receptor independently. At the whole cell level, we used a combination of co-culture with selective βAR stimulation and were able to molecularly separate cardiac fibroblasts from neonatal rat ventricular myocytes based on their cAMP responses. On the other hand, at the subcellular level, these experimental protocols allowed us to dissect the relative weight of β1 and β2 adrenergic receptors on cAMP signalling at the cytosol and outer mitochondrial membrane of NRVMs. We propose that experimental procedures that allow the collection of multiparametric data are necessary in order to understand the molecular mechanisms underlying the coupling between extracellular signals and cellular responses.
Collapse
|
17
|
Prada MP, Syed AU, Buonarati OR, Reddy GR, Nystoriak MA, Ghosh D, Simó S, Sato D, Sasse KC, Ward SM, Santana LF, Xiang YK, Hell JW, Nieves-Cintrón M, Navedo MF. A G s-coupled purinergic receptor boosts Ca 2+ influx and vascular contractility during diabetic hyperglycemia. eLife 2019; 8:e42214. [PMID: 30821687 PMCID: PMC6397001 DOI: 10.7554/elife.42214] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/16/2019] [Indexed: 12/21/2022] Open
Abstract
Elevated glucose increases vascular reactivity by promoting L-type CaV1.2 channel (LTCC) activity by protein kinase A (PKA). Yet, how glucose activates PKA is unknown. We hypothesized that a Gs-coupled P2Y receptor is an upstream activator of PKA mediating LTCC potentiation during diabetic hyperglycemia. Experiments in apyrase-treated cells suggested involvement of a P2Y receptor underlying the glucose effects on LTTCs. Using human tissue, expression for P2Y11, the only Gs-coupled P2Y receptor, was detected in nanometer proximity to CaV1.2 and PKA. FRET-based experiments revealed that the selective P2Y11 agonist NF546 and elevated glucose stimulate cAMP production resulting in enhanced PKA-dependent LTCC activity. These changes were blocked by the selective P2Y11 inhibitor NF340. Comparable results were observed in mouse tissue, suggesting that a P2Y11-like receptor is mediating the glucose response in these cells. These findings established a key role for P2Y11 in regulating PKA-dependent LTCC function and vascular reactivity during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Maria Paz Prada
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | - Arsalan U Syed
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | - Olivia R Buonarati
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | - Gopireddy R Reddy
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | - Matthew A Nystoriak
- Diabetes & Obesity Center, Department of MedicineUniversity of LouisvilleKentuckyUnited States
| | - Debapriya Ghosh
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | - Sergi Simó
- Department of Cell Biology & Human AnatomyUniversity of California, DavisDavisUnited States
| | - Daisuke Sato
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | | | - Sean M Ward
- Department of Physiology & Cell BiologyUniversity of NevadaRenoUnited States
| | - Luis F Santana
- Department of Physiology & Membrane BiologyUniversity of California, DavisDavisUnited States
| | - Yang K Xiang
- Department of PharmacologyUniversity of California, DavisDavisUnited States
- VA Northern California Healthcare SystemMatherUnited States
| | - Johannes W Hell
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | | | - Manuel F Navedo
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| |
Collapse
|