1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Yang X, Cai B, Zhang Z, Mo Y, Zhou Z, Wu R, Kong S, Cai D, Zhang R, Li Z, Nie Q. Exploring variances in meat quality between Qingyuan partridge chicken and Cobb broiler: Insights from combined multi-omics analysis. Poult Sci 2024; 104:104666. [PMID: 39721276 PMCID: PMC11732453 DOI: 10.1016/j.psj.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Previously, animal breeding prioritized enhancing key economic traits to improve production efficiency, leading to a gradual difference in meat quality. However, the genetic factors influencing meat quality remain unclear. To identify key genetic pathways contributing to meat quality, native Chinese yellow-feathered chicken (Qingyuan Partridge Chicken, QPC; female, n=10), and commercial chicken broiler (Cobb broiler, CB; female, n=10) were used for meat quality assessment through metabolomics, proteomics, and phosphoproteomics sequencing. The results show that QPC had lower pH (93.12%), shear force (81.46%), cooking loss (69.29%), moisture content (93.24%) and muscle fiber area (46.04%), but higher meat color values (a*(163.65%) and b*(250.27%)), drip loss (146.32%), and intramuscular fat content (382.01%) than CB (p < 0.05). Metabolomic, proteomic, and phosphoproteomic analyses were jointly conducted, revealing significant differences in energy metabolism strategies. Higher glycolytic enzyme activity was observed in QPC (ENO1, GAPDH, GPI, PFKM, PKM, and TPI1, p < 0.05), while more energetic phosphate compounds were stored in CB. CB had higher Na+/K+ Pump protein abundance (SCN4A, LOC107051305, ATP1B4, ATP12A, ATP1A1, and ATP1A2, p < 0.05) and phosphorylation (ATP1A2-Ser662, p < 0.05) and Ca2+ channel protein abundance (ATP2B4, SRL, CACNB1, CACNA1S, CACNA2D1, CAMK2G, LOC107050717 and TNNC2, p < 0.05) than QPC. In QPC, CAMKII autophosphorylation activated downstream protein and increased Ca2+. These results suggest CB is more contractile than QPC, contributing to meat quality between CB and QPC.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Bolin Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Zhaofeng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Yu Mo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Zhen Zhou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Ruiquan Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Shaofen Kong
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Danfeng Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Ruitong Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Zhenhui Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China.
| |
Collapse
|
3
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Zimmermann MA, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. J Gen Physiol 2024; 156:e202413604. [PMID: 39373654 PMCID: PMC11461142 DOI: 10.1085/jgp.202413604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal that MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development and prompting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility in the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting that MyBP-H may be functionally silent. However, our results suggest an active role. In vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake." These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Marcus A. Zimmermann
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
4
|
Roussel OP, Pignanelli C, Hubbard EF, Coates AM, Cheng AJ, Burr JF, Power GA. Effects of intensified training with insufficient recovery on joint level and single muscle fibre mechanical function: the role of myofibrillar Ca 2+ sensitivity. Appl Physiol Nutr Metab 2024; 49:1646-1657. [PMID: 39121503 DOI: 10.1139/apnm-2024-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Intense exercise training with insufficient recovery time is associated with reductions in neuromuscular performance. However, it is unclear how single muscle fibre mechanical function and myofibrillar Ca2+ sensitivity contribute to these impairments. We investigated the effects of overload training on joint-level neuromuscular performance and cellular-level mechanical function. Fourteen athletes (4 female and 10 male) underwent a 3-week intensified training protocol consisting of up to 150% of their regular training hours with three additional high-intensity training sessions per week. Neuromuscular performance of the knee extensors was assessed via maximal voluntary contraction (MVC) force, electrically evoked twitch contractions, and a force-frequency relationship. Muscle biopsies were taken from the vastus lateralis to assess single fibre mechanical function. Neither MVC force nor twitch parameters were altered following training (all p > 0.05), but a rightward shift in the force-frequency curve was observed with average reduction in force of 6%-27% across frequencies 5-20 Hz (all p < 0.05). In single fibres, maximal force output was not reduced following training, but there was a rightward shift in the force-pCa curve driven by a 6% reduction in Ca2+ sensitivity (p < 0.05). These data indicate intensified training leads to impaired Ca2+ sensitivity at the single fibre level, which in part explains impaired neuromuscular function at the joint level during lower frequencies of activation. This is an important consideration for athletes, as performance is often assessed at maximal levels of activation, and these underlying impairments in force generation may be less obvious.
Collapse
Affiliation(s)
- Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christopher Pignanelli
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Emma F Hubbard
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexandra M Coates
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593199. [PMID: 38798399 PMCID: PMC11118323 DOI: 10.1101/2024.05.10.593199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development, and promoting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility from the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting MyBP-H may be functionally silent. However, our results suggest an active role. Small angle x-ray diffraction of intact larval tails revealed MyBP-H contributes to the compression of the myofilament lattice accompanying stretch or contraction, while in vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake". These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT 05405
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| |
Collapse
|
6
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Hessel AL, Engels NM, Kuehn MN, Nissen D, Sadler RL, Ma W, Irving TC, Linke WA, Harris SP. Myosin-binding protein C regulates the sarcomere lattice and stabilizes the OFF states of myosin heads. Nat Commun 2024; 15:2628. [PMID: 38521794 PMCID: PMC10960836 DOI: 10.1038/s41467-024-46957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Muscle contraction is produced via the interaction of myofilaments and is regulated so that muscle performance matches demand. Myosin-binding protein C (MyBP-C) is a long and flexible protein that is tightly bound to the thick filament at its C-terminal end (MyBP-CC8C10), but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7) to myosin heads and/or the thin filament. MyBP-C is thought to control muscle contraction via the regulation of myosin motors, as mutations lead to debilitating disease. We use a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. We show that cleavage leads to alterations in crossbridge kinetics and passive structural signatures of myofilaments that are indicative of a shift of myosin heads towards the ON state, highlighting the importance of MyBP-CC1C7 to myofilament force production and regulation.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany.
- Accelerated Muscle Biotechnologies Consultants, Boston, MA, USA.
| | - Nichlas M Engels
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Michel N Kuehn
- Institute of Physiology II, University of Muenster, Muenster, Germany
- Accelerated Muscle Biotechnologies Consultants, Boston, MA, USA
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | |
Collapse
|
8
|
Leduc-Pessah H, Smith IC, Kernohan KD, Sampaio M, Melkus G, Strasser L, Chisholm C, Huang L, Hanes I, Tran MA, Venkateswaran S, Muir K, Charlesworth L, Warman-Chardon J. Congenital tremor and myopathy secondary to novel MYBPC1 variant. J Neurol Sci 2024; 457:122864. [PMID: 38185014 DOI: 10.1016/j.jns.2023.122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Congenital myopathy with tremor (MYOTREM) is a recently described disorder characterized by mild myopathy and a postural and intention tremor present since early infancy. MYOTREM is associated with pathogenic variants in MYBPC1 which encodes slow myosin-binding protein C, a sarcomere protein with regulatory and structural roles. Here, we describe a family with three generations of variably affected members exhibiting a novel variant in MYBPC1 (c.656 T > C, p.Leu219Pro). Among the unique features of affected family members is the persistence of tremor in sleep. We also present the first muscle magnetic resonance images for this disorder, and report muscle atrophy and fatty infiltration.
Collapse
Affiliation(s)
- Heather Leduc-Pessah
- Department of Pediatrics, Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| | - Ian C Smith
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kristin D Kernohan
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Marcos Sampaio
- Department of Radiology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Gerd Melkus
- Department of Radiology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Lauren Strasser
- Department of Pediatrics, Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Caitlin Chisholm
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Lijia Huang
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Ilana Hanes
- Department of Pediatrics, Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - My-An Tran
- Department of Pediatrics, Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Sunita Venkateswaran
- Department of Pediatrics, Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Katherine Muir
- Department of Pediatrics, Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Jodi Warman-Chardon
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Department of Medicine, Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
9
|
Hoh JFY. Mechanism of post-tetanic depression of slow muscle fibres. J Comp Physiol B 2024; 194:41-45. [PMID: 38347296 DOI: 10.1007/s00360-024-01536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 03/16/2024]
Abstract
A brief tetanic stimulation has a very different effect on the subsequent isometric twitch force of fast and slow skeletal muscles. Fast muscle responds with an enhanced twitch force which doubles that of the pre-tetanic value, whereas slow muscle depresses the post-tetanic twitch by about 20%. Twitch potentiation of fast muscle has long been known to be due to myosin light chain 2 phosphorylation. It is proposed that post-tetanic twitch depression in slow muscle is due to the dephosphorylation of the slow isoform of the thick filament protein, myosin-binding protein-C, by Ca2+/calmodulin-activated phosphatase calcineurin, whilst its phosphorylation underlies the force enhancement due to β-adrenergic stimulation in slow and fast muscle.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , A2 Garnet St, Killara, NSW, 2071, Australia.
| |
Collapse
|
10
|
Song T, McNamara JW, Baby A, Ma W, Landim-Vieira M, Natesan S, Pinto JR, Lorenz JN, Irving TC, Sadayappan S. Unlocking the Role of sMyBP-C: A Key Player in Skeletal Muscle Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563591. [PMID: 38076858 PMCID: PMC10705270 DOI: 10.1101/2023.10.23.563591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Skeletal muscle is the largest organ in the body, responsible for gross movement and metabolic regulation. Recently, variants in the MYBPC1 gene have been implicated in a variety of developmental muscle diseases, such as distal arthrogryposis. How MYBPC1 variants cause disease is not well understood. Here, through a collection of novel gene-edited mouse models, we define a critical role for slow myosin binding protein-C (sMyBP-C), encoded by MYBPC1, across muscle development, growth, and maintenance during prenatal, perinatal, postnatal and adult stages. Specifically, Mybpc1 knockout mice exhibited early postnatal lethality and impaired skeletal muscle formation and structure, skeletal deformity, and respiratory failure. Moreover, a conditional knockout of Mybpc1 in perinatal, postnatal and adult stages demonstrates impaired postnatal muscle growth and function secondary to disrupted actomyosin interaction and sarcomere structural integrity. These findings confirm the essential role of sMyBP-C in skeletal muscle and reveal specific functions in both prenatal embryonic musculoskeletal development and postnatal muscle growth and function.
Collapse
Affiliation(s)
- Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James W. McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - John N. Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Hessel AL, Engels NM, Kuehn M, Nissen D, Sadler RL, Ma W, Irving TC, Linke WA, Harris SP. Myosin-binding protein C forms C-links and stabilizes OFF states of myosin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.556972. [PMID: 37745361 PMCID: PMC10515747 DOI: 10.1101/2023.09.10.556972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Contraction force in muscle is produced by the interaction of myosin motors in the thick filaments and actin in the thin filaments and is fine-tuned by other proteins such as myosin-binding protein C (MyBP-C). One form of control is through the regulation of myosin heads between an ON and OFF state in passive sarcomeres, which leads to their ability or inability to interact with the thin filaments during contraction, respectively. MyBP-C is a flexible and long protein that is tightly bound to the thick filament at its C-terminal end but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7). Under considerable debate is whether the MyBP-CC1C7 domains directly regulate myosin head ON/OFF states, and/or link thin filaments ("C-links"). Here, we used a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. After cleavage, the thin filaments were significantly shorter, a result consistent with direct interactions of MyBP-C with thin filaments thus confirming C-links. Ca2+ sensitivity was reduced at shorter sarcomere lengths, and crossbridge kinetics were increased across sarcomere lengths at submaximal activation levels, demonstrating a role in crossbridge kinetics. Structural signatures of the thick filaments suggest that cleavage also shifted myosin heads towards the ON state - a marker that typically indicates increased Ca2+ sensitivity but that may account for increased crossbridge kinetics at submaximal Ca2+ and/or a change in the force transmission pathway. Taken together, we conclude that MyBP-CC1C7 domains play an important role in contractile performance which helps explain why mutations in these domains often lead to debilitating diseases.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Nichlas M Engels
- Department of Cellular and Molecular Medicine, University of Arizona; Tucson, AZ, USA
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, IL, USA
| | - Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, IL, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, IL, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | | |
Collapse
|
12
|
Hanft LM, Robinett JC, Kalogeris TJ, Campbell KS, Biesiadecki BJ, McDonald KS. Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts. J Gen Physiol 2023; 155:e202213290. [PMID: 37000170 PMCID: PMC10067705 DOI: 10.1085/jgp.202213290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The heart's pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Perazza LR, Wei G, Thompson LV. Fast and slow skeletal myosin binding protein-C and aging. GeroScience 2023; 45:915-929. [PMID: 36409445 PMCID: PMC9886727 DOI: 10.1007/s11357-022-00689-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with skeletal muscle strength decline and cardiac diastolic dysfunction. The structural arrangements of the sarcomeric proteins, such as myosin binding protein-C (MyBP-C) are shown to be pivotal in the pathogenesis of diastolic dysfunction. Yet, the role of fast (fMyBP-C) and slow (sMyBP-C) skeletal muscle MyBP-C remains to be elucidated. Herein, we aimed to characterize MyBP-C and its paralogs in the fast tibialis anterior (TA) muscle from adult and old mice. Immunoreactivity preparations showed that the relative abundance of the fMyBP-C paralog was greater in the TA of both adult and old, but no differences were noted between groups. We further found that the expression level of cardiac myosin binding protein-C (cMyBP-C), an important modulator of cardiac output, was lowered by age. Standard SDS-PAGE along with Pro-Q Diamond phosphoprotein staining did not identify age-related changes in phosphorylated MyBP-C proteins from TA and cardiac muscles; however, it revealed that MyBP-C paralogs in fast skeletal and cardiac muscle were highly phosphorylated. Mass spectrometry further identified glycogen phosphorylase, desmin, actin, troponin T, and myosin regulatory light chain 2 as phosphorylated myofilament proteins in both ages. MyBP-C protein-bound carbonyls were determined using anti-DNP immunostaining and found the carbonyl level of fMyBP-C, sMyBP-C, and cMyBP-C to be similar between old and adult animals. In summary, our data showed some differences regarding the MyBP-C paralog expression and identified an age-related reduction of cMyBP-C expression. Future studies are needed to elucidate which are the age-driven post-translational modifications in the MyBP-C paralogs.
Collapse
Affiliation(s)
- L. R. Perazza
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| | - G. Wei
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| | - L. V. Thompson
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| |
Collapse
|
14
|
Marcucci L. Muscle Mechanics and Thick Filament Activation: An Emerging Two-Way Interaction for the Vertebrate Striated Muscle Fine Regulation. Int J Mol Sci 2023; 24:ijms24076265. [PMID: 37047237 PMCID: PMC10094676 DOI: 10.3390/ijms24076265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new “dual-filament” activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Center for Biosystems Dynamics Research, RIKEN, Suita 565-0874, Japan
| |
Collapse
|
15
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
16
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
17
|
Ranu N, Laitila J, Dugdale HF, Mariano J, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Fiorillo C, Zanoteli E, Auranen M, Jokela M, Tasca G, Claeys KG, Voermans NC, Palmio J, Huovinen S, Moggio M, Beck TN, Kontrogianni-Konstantopoulos A, Granzier H, Ochala J. NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy. Acta Neuropathol Commun 2022; 10:185. [PMID: 36528760 PMCID: PMC9758823 DOI: 10.1186/s40478-022-01491-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.
Collapse
Affiliation(s)
- Natasha Ranu
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jenni Laitila
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannah F. Dugdale
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK ,grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jennifer Mariano
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Justin S. Kolb
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Carina Wallgren-Pettersson
- grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- grid.84393.350000 0001 0360 9602Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Chiara Fiorillo
- grid.5606.50000 0001 2151 3065Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Edmar Zanoteli
- grid.11899.380000 0004 1937 0722Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Mari Auranen
- grid.7737.40000 0004 0410 2071Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, NeurologyHelsinki, Finland
| | - Manu Jokela
- grid.1374.10000 0001 2097 1371Neurology, Clinical Medicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland ,grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Kristl G. Claeys
- grid.410569.f0000 0004 0626 3338Department of Neurology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nicol C. Voermans
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Palmio
- grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- grid.412330.70000 0004 0628 2985Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Maurizio Moggio
- grid.414818.00000 0004 1757 8749Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Nyegaard Beck
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henk Granzier
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Julien Ochala
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Robinett JC, Hanft LM, Biesiadecki B, McDonald KS. Molecular regulation of stretch activation. Am J Physiol Cell Physiol 2022; 323:C1728-C1739. [PMID: 36280392 PMCID: PMC9744651 DOI: 10.1152/ajpcell.00101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Stretch activation is defined as a delayed increase in force after rapid stretches. Although there is considerable evidence for stretch activation in isolated cardiac myofibrillar preparations, few studies have measured mechanisms of stretch activation in mammalian skeletal muscle fibers. We measured stretch activation following rapid step stretches [∼1%-4% sarcomere length (SL)] during submaximal Ca2+ activations of rat permeabilized slow-twitch skeletal muscle fibers before and after protein kinase A (PKA), which phosphorylates slow myosin binding protein-C. PKA significantly increased stretch activation during low (∼25%) Ca2+ activation and accelerated rates of delayed force development (kef) during both low and half-maximal Ca2+ activation. Following the step stretches and subsequent force development, fibers were rapidly shortened to original sarcomere length, which often elicited a shortening-induced transient force overshoot. After PKA, step shortening-induced transient force overshoot increased ∼10-fold following an ∼4% SL shortening during low Ca2+ activation levels. kdf following step shortening also increased after PKA during low and half-maximal Ca2+ activations. We next investigated thin filament regulation of stretch activation. We tested the interplay between cardiac troponin I (cTnI) phosphorylation at the canonical PKA and novel tyrosine kinase sites on stretch activation. Native slow-skeletal Tn complexes were exchanged with recombinant human cTn complex with different human cTnI N-terminal pseudo-phosphorylation molecules: 1) nonphosphorylated wild type (WT), 2) the canonical S22/23D PKA sites, 3) the tyrosine kinase Y26E site, and 4) the combinatorial S22/23D + Y26E cTnI. All three pseudo-phosphorylated cTnIs elicited greater stretch activation than WT. Following stretch activation, a new, elevated stretch-induced steady-state force was reached with pseudo-phosphorylated cTnI. Combinatorial S22/23D + Y26E pseudo-phosphorylated cTnI increased kdf. These results suggest that slow-skeletal myosin binding protein-C (sMyBP-C) phosphorylation modulates stretch activation by a combination of cross-bridge recruitment and faster cycling kinetics, whereas cTnI phosphorylation regulates stretch activation by both redundant and synergistic mechanisms; and, taken together, these sarcomere phosphoproteins offer precision targets for enhanced contractility.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Pilagov M, Heling LW, Walklate J, Geeves MA, Kad NM. Single-molecule imaging reveals how mavacamten and PKA modulate ATP turnover in skeletal muscle myofibrils. J Gen Physiol 2022; 155:213694. [PMID: 36394553 PMCID: PMC9674027 DOI: 10.1085/jgp.202213087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscle contraction is controlled at two levels: the thin and the thick filaments. The latter level of control involves three states of myosin heads: active, disordered relaxed (DRX), and super-relaxed (SRX), the distribution of which controls the number of myosins available to interact with actin. How these are controlled is still uncertain. Using fluorescently labeled ATP, we were able to spatially assign the activity of individual myosins within the sarcomere. We observed that SRX comprises 53% of all heads in the C-zone compared with 35% and 44% in the P- and D-zones, respectively. The recently FDA-approved hypertrophic cardiomyopathy drug, mavacamten (mava), significantly decreased DRX, favoring SRX in both the C- and D-zones at 60% and 63%, respectively. Since thick filament regulation is in part regulated by the myosin-binding protein-C (MyBP-C), we also studied PKA phosphorylation. This had the opposite effect as mava, specifically in the C-zone where it decreased SRX to 34%, favoring DRX. These results directly show that excess concentrations of mava do increase SRX, but the effect is limited across the sarcomere, suggesting mava is less effective on skeletal muscle. In addition, we show that PKA directly affects the contractile machinery of skeletal muscle leading to the liberation of repressed heads. Since the effect is focused on the C-zone, this suggests it is likely through MyBP-C phosphorylation, although our data suggest that a further reserve of myosins remain that are not accessible to PKA treatment.
Collapse
Affiliation(s)
- Matvey Pilagov
- School of Biological Sciences, University of Kent, Canterbury, UK
| | | | | | | | - Neil M. Kad
- School of Biological Sciences, University of Kent, Canterbury, UK,Correspondence to Neil M. Kad:
| |
Collapse
|
20
|
Geist Hauserman J, Stavusis J, Joca HC, Robinett JC, Hanft L, Vandermeulen J, Zhao R, Stains JP, Konstantopoulos K, McDonald KS, Ward C, Kontrogianni-Konstantopoulos A. Sarcomeric deficits underlie MYBPC1-associated myopathy with myogenic tremor. JCI Insight 2021; 6:e147612. [PMID: 34437302 PMCID: PMC8525646 DOI: 10.1172/jci.insight.147612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Myosin binding protein-C slow (sMyBP-C) comprises a subfamily of cytoskeletal proteins encoded by MYBPC1 that is expressed in skeletal muscles where it contributes to myosin thick filament stabilization and actomyosin cross-bridge regulation. Recently, our group described the causal association of dominant missense pathogenic variants in MYBPC1 with an early-onset myopathy characterized by generalized muscle weakness, hypotonia, dysmorphia, skeletal deformities, and myogenic tremor, occurring in the absence of neuropathy. To mechanistically interrogate the etiologies of this MYBPC1-associated myopathy in vivo, we generated a knock-in mouse model carrying the E248K pathogenic variant. Using a battery of phenotypic, behavioral, and physiological measurements spanning neonatal to young adult life, we found that heterozygous E248K mice faithfully recapitulated the onset and progression of generalized myopathy, tremor occurrence, and skeletal deformities seen in human carriers. Moreover, using a combination of biochemical, ultrastructural, and contractile assessments at the level of the tissue, cell, and myofilaments, we show that the loss-of-function phenotype observed in mutant muscles is primarily driven by disordered and misaligned sarcomeres containing fragmented and out-of-register internal membranes that result in reduced force production and tremor initiation. Collectively, our findings provide mechanistic insights underscoring the E248K-disease pathogenesis and offer a relevant preclinical model for therapeutic discovery.
Collapse
Affiliation(s)
- Janelle Geist Hauserman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Humberto C. Joca
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Laurin Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Jack Vandermeulen
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Christopher Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
21
|
Bunch TA, Guhathakurta P, Lepak VC, Thompson AR, Kanassatega RS, Wilson A, Thomas DD, Colson BA. Cardiac myosin-binding protein C interaction with actin is inhibited by compounds identified in a high-throughput fluorescence lifetime screen. J Biol Chem 2021; 297:100840. [PMID: 34052227 PMCID: PMC8233204 DOI: 10.1016/j.jbc.2021.100840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac muscle contractility. These interactions are disfavored by cMyBP-C phosphorylation. Heart failure patients often display decreased cMyBP-C phosphorylation, and phosphorylation in model systems has been shown to be cardioprotective against heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation or perturb its interactions with actin/myosin. Here we have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites; when combined with the cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified three reproducible hit compounds (suramin, NF023, and aurintricarboxylic acid) that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by an actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that these compounds bind to cMyBP-C, but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C fluorescence lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C-actin binding. We now have, for the first time, a validated high-throughput screen focused on cMyBP-C, a regulator of cardiac muscle contractility and known key factor in heart failure.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Victoria C Lepak
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Anna Wilson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett A Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA.
| |
Collapse
|
22
|
Singh RR, McNamara JW, Sadayappan S. Mutations in myosin S2 alter cardiac myosin-binding protein-C interaction in hypertrophic cardiomyopathy in a phosphorylation-dependent manner. J Biol Chem 2021; 297:100836. [PMID: 34051236 PMCID: PMC8239744 DOI: 10.1016/j.jbc.2021.100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.
Collapse
Affiliation(s)
- Rohit R Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
23
|
Harris SP. Making waves: A proposed new role for myosin-binding protein C in regulating oscillatory contractions in vertebrate striated muscle. J Gen Physiol 2021; 153:e202012729. [PMID: 33275758 PMCID: PMC7721898 DOI: 10.1085/jgp.202012729] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is a critical regulator of muscle performance that was first identified through its strong binding interactions with myosin, the force-generating protein of muscle. Almost simultaneously with its discovery, MyBP-C was soon found to bind to actin, the physiological catalyst for myosin's activity. However, the two observations posed an apparent paradox, in part because interactions of MyBP-C with myosin were on the thick filament, whereas MyBP-C interactions with actin were on the thin filament. Despite the intervening decades since these initial discoveries, it is only recently that the dual binding modes of MyBP-C are becoming reconciled in models that place MyBP-C at a central position between actin and myosin, where MyBP-C alternately stabilizes a newly discovered super-relaxed state (SRX) of myosin on thick filaments in resting muscle and then prolongs the "on" state of actin on thin filaments in active muscle. Recognition of these dual, alternating functions of MyBP-C reveals how it is central to the regulation of both muscle contraction and relaxation. The purpose of this Viewpoint is to briefly summarize the roles of MyBP-C in binding to myosin and actin and then to highlight a possible new role for MyBP-C in inducing and damping oscillatory waves of contraction and relaxation. Because the contractile waves bear similarity to cycles of contraction and relaxation in insect flight muscles, which evolved for fast, energetically efficient contraction, the ability of MyBP-C to damp so-called spontaneous oscillatory contractions (SPOCs) has broad implications for previously unrecognized regulatory mechanisms in vertebrate striated muscle. While the molecular mechanisms by which MyBP-C can function as a wave maker or a wave breaker are just beginning to be explored, it is likely that MyBP-C dual interactions with both myosin and actin will continue to be important for understanding the new functions of this enigmatic protein.
Collapse
|
24
|
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction. Int J Mol Sci 2020; 21:ijms21218399. [PMID: 33182367 PMCID: PMC7664901 DOI: 10.3390/ijms21218399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Muscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some with important roles in muscle contraction. In particular, these include thin filament proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization of the myofilament lattice may be important per se for contractile function. It is possible to model muscle contraction based on actin and myosin alone with properties derived in studies using single molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle contraction in experiments using only isolated actin and myosin, arguing against the importance of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule actomyosin properties account for the contractile properties of a half sarcomere during shortening and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence for and against this hypothesis is reviewed and new modeling results to support the arguments are presented. Finally, further experimental tests are proposed, which if they corroborate, at least approximately, the hypothesis, should significantly benefit future effective analysis of a range of experimental studies, as well as drug discovery efforts.
Collapse
|
25
|
Blair CA, Brundage EA, Thompson KL, Stromberg A, Guglin M, Biesiadecki BJ, Campbell KS. Heart Failure in Humans Reduces Contractile Force in Myocardium From Both Ventricles. JACC Basic Transl Sci 2020; 5:786-798. [PMID: 32875169 PMCID: PMC7452203 DOI: 10.1016/j.jacbts.2020.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Contractile assays were performed using multicellular preparations isolated from the left and right ventricles of organ donors and patients with heart failure. Heart failure reduced maximum force and power by approximately 30% in the myocardium from both ventricles. Heart failure increased the Ca2+ sensitivity of contraction, but the effect was bigger in right ventricular tissue than in left ventricular samples. The changes in Ca2+ sensitivity may reflect ventricle-specific post-translational modifications to sarcomeric proteins.
This study measured how heart failure affects the contractile properties of the human myocardium from the left and right ventricles. The data showed that maximum force and maximum power were reduced by approximately 30% in multicellular preparations from both ventricles, possibly because of ventricular remodeling (e.g., cellular disarray and/or excess fibrosis). Heart failure increased the calcium (Ca2+) sensitivity of contraction in both ventricles, but the effect was bigger in right ventricular samples. The changes in Ca2+ sensitivity were associated with ventricle-specific changes in the phosphorylation of troponin I, which indicated that adrenergic stimulation might induce different effects in the left and right ventricles.
Collapse
Key Words
- Ca2+ sensitivity
- Ca2+, calcium
- Fact, maximum Ca2+-activated force
- Fpas, passive force
- LV, left ventricle
- MyBP-C, myosin binding protein-C
- PKA, protein kinase A
- Pmax, maximum power output
- RLC, regulatory light chain
- RV, right ventricle
- TnI, troponin I
- Vmax, maximum shortening velocity
- heart failure
- human myocardium
- ktr, rate of force recovery
- myofilament proteins
- nH, Hill coefficient
- ventricular function
Collapse
Affiliation(s)
- Cheavar A Blair
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | | | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - Maya Guglin
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
26
|
Teigen LE, Sundberg CW, Kelly LJ, Hunter SK, Fitts RH. Ca 2+ dependency of limb muscle fiber contractile mechanics in young and older adults. Am J Physiol Cell Physiol 2020; 318:C1238-C1251. [PMID: 32348175 DOI: 10.1152/ajpcell.00575.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-induced declines in skeletal muscle contractile function have been attributed to multiple cellular factors, including lower peak force (Po), decreased Ca2+ sensitivity, and reduced shortening velocity (Vo). However, changes in these cellular properties with aging remain unresolved, especially in older women, and the effect of submaximal Ca2+ on contractile function is unknown. Thus, we compared contractile properties of muscle fibers from 19 young (24 ± 3 yr; 8 women) and 21 older adults (77 ± 7 yr; 7 women) under maximal and submaximal Ca2+ and assessed the abundance of three proteins thought to influence Ca2+ sensitivity. Fast fiber cross-sectional area was ~44% larger in young (6,479 ± 2,487 µm2) compared with older adults (4,503 ± 2,071 µm2, P < 0.001), which corresponded with a greater absolute Po (young = 1.12 ± 0.43 mN; old = 0.79 ± 0.33 mN, P < 0.001). There were no differences in fast fiber size-specific Po, indicating the age-related decline in force was explained by differences in fiber size. Except for fast fiber size and absolute Po, no age or sex differences were observed in Ca2+ sensitivity, rate of force development (ktr), or Vo in either slow or fast fibers. Submaximal Ca2+ depressed ktr and Vo, but the effects were not altered by age in either sex. Contrary to rodent studies, regulatory light chain (RLC) and myosin binding protein-C abundance and RLC phosphorylation were unaltered by age or sex. These data suggest the age-associated reductions in contractile function are primarily due to the atrophy of fast fibers and that caution is warranted when extending results from rodent studies to humans.
Collapse
Affiliation(s)
- Laura E Teigen
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin.,Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Lauren J Kelly
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Napierski NC, Granger K, Langlais PR, Moran HR, Strom J, Touma K, Harris SP. A Novel "Cut and Paste" Method for In Situ Replacement of cMyBP-C Reveals a New Role for cMyBP-C in the Regulation of Contractile Oscillations. Circ Res 2020; 126:737-749. [PMID: 32078438 DOI: 10.1161/circresaha.119.315760] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE cMyBP-C (cardiac myosin-binding protein-C) is a critical regulator of heart contraction, but the mechanisms by which cMyBP-C affects actin and myosin are only partly understood. A primary obstacle is that cMyBP-C localization on thick filaments may be a key factor defining its interactions, but most in vitro studies cannot duplicate the unique spatial arrangement of cMyBP-C within the sarcomere. OBJECTIVE The goal of this study was to validate a novel hybrid genetic/protein engineering approach for rapid manipulation of cMyBP-C in sarcomeres in situ. METHODS AND RESULTS We designed a novel cut and paste approach for removal and replacement of cMyBP-C N'-terminal domains (C0-C7) in detergent-permeabilized cardiomyocytes from gene-edited Spy-C mice. Spy-C mice express a TEVp (tobacco etch virus protease) cleavage site and a SpyTag (st) between cMyBP-C domains C7 and C8. A cut is achieved using TEVp which cleaves cMyBP-C to create a soluble N'-terminal γC0C7 (endogenous [genetically encoded] N'-terminal domains C0 to C7 of cardiac myosin binding protein-C) fragment and an insoluble C'-terminal SpyTag-C8-C10 fragment that remains associated with thick filaments. Paste of new recombinant (r)C0C7 domains is achieved by a covalent bond formed between SpyCatcher (-sc; encoded at the C'-termini of recombinant proteins) and SpyTag. Results show that loss of γC0C7 reduced myofilament Ca2+ sensitivity and increased cross-bridge cycling (ktr) at submaximal [Ca2+]. Acute loss of γC0C7 also induced auto-oscillatory contractions at submaximal [Ca2+]. Ligation of rC0C7 (exogenous [recombinant] N'-terminal domains C0 to C7 of cardiac myosin binding protein-C)-sc returned pCa50 and ktr to control values and abolished oscillations, but phosphorylated (p)-rC0C7-sc did not completely rescue these effects. CONCLUSIONS We describe a robust new approach for acute removal and replacement of cMyBP-C in situ. The method revealed a novel role for cMyBP-C N'-terminal domains to damp sarcomere-driven contractile waves (so-called spontaneous oscillatory contractions). Because phosphorylated (p)-rC0C7-sc was less effective at damping contractile oscillations, results suggest that spontaneous oscillatory contractions may contribute to enhanced contractility in response to inotropic stimuli.
Collapse
Affiliation(s)
- Nathaniel C Napierski
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | - Kevin Granger
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine (P.R.L.), University of Arizona College of Medicine, Tucson
| | - Hannah R Moran
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | - Joshua Strom
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | | | - Samantha P Harris
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| |
Collapse
|
28
|
Ma W, Lee KH, Yang S, Irving TC, Craig R. Lattice arrangement of myosin filaments correlates with fiber type in rat skeletal muscle. J Gen Physiol 2019; 151:1404-1412. [PMID: 31699797 PMCID: PMC6888752 DOI: 10.1085/jgp.201912460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The thick (myosin-containing) filaments of vertebrate skeletal muscle are arranged in a hexagonal lattice, interleaved with an array of thin (actin-containing) filaments with which they interact to produce contraction. X-ray diffraction and EM have shown that there are two types of thick filament lattice. In the simple lattice, all filaments have the same orientation about their long axis, while in the superlattice, nearest neighbors have rotations differing by 0° or 60°. Tetrapods (amphibians, reptiles, birds, and mammals) typically have only a superlattice, while the simple lattice is confined to fish. We have performed x-ray diffraction and electron microscopy of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat and found that while the EDL has a superlattice as expected, the SOL has a simple lattice. The EDL and SOL of the rat are unusual in being essentially pure fast and slow muscles, respectively. The mixed fiber content of most tetrapod muscles and/or lattice disorder may explain why the simple lattice has not been apparent in these vertebrates before. This is supported by only weak simple lattice diffraction in the x-ray pattern of mouse SOL, which has a greater mix of fiber types than rat SOL. We conclude that the simple lattice might be common in tetrapods. The correlation between fiber type and filament lattice arrangement suggests that the lattice arrangement may contribute to the functional properties of a muscle.
Collapse
Affiliation(s)
- Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Shixin Yang
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
29
|
Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview. Int J Mol Sci 2019; 20:ijms20225715. [PMID: 31739584 PMCID: PMC6887992 DOI: 10.3390/ijms20225715] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Muscular contraction is a fundamental phenomenon in all animals; without it life as we know it would be impossible. The basic mechanism in muscle, including heart muscle, involves the interaction of the protein filaments myosin and actin. Motility in all cells is also partly based on similar interactions of actin filaments with non-muscle myosins. Early studies of muscle contraction have informed later studies of these cellular actin-myosin systems. In muscles, projections on the myosin filaments, the so-called myosin heads or cross-bridges, interact with the nearby actin filaments and, in a mechanism powered by ATP-hydrolysis, they move the actin filaments past them in a kind of cyclic rowing action to produce the macroscopic muscular movements of which we are all aware. In this special issue the papers and reviews address different aspects of the actin-myosin interaction in muscle as studied by a plethora of complementary techniques. The present overview provides a brief and elementary introduction to muscle structure and function and the techniques used to study it. It goes on to give more detailed descriptions of what is known about muscle components and the cross-bridge cycle using structural biology techniques, particularly protein crystallography, electron microscopy and X-ray diffraction. It then has a quick look at muscle mechanics and it summarises what can be learnt about how muscle works based on the other studies covered in the different papers in the special issue. A picture emerges of the main molecular steps involved in the force-producing process; steps that are also likely to be seen in non-muscle myosin interactions with cellular actin filaments. Finally, the remarkable advances made in studying the effects of mutations in the contractile assembly in causing specific muscle diseases, particularly those in heart muscle, are outlined and discussed.
Collapse
|
30
|
Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems. Proc Natl Acad Sci U S A 2019; 116:21882-21892. [PMID: 31591218 DOI: 10.1073/pnas.1910549116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle myosin-binding protein C (MyBP-C) is a myosin thick filament-associated protein, localized through its C terminus to distinct regions (C-zones) of the sarcomere. MyBP-C modulates muscle contractility, presumably through its N terminus extending from the thick filament and interacting with either the myosin head region and/or the actin thin filament. Two isoforms of MyBP-C (fast- and slow-type) are expressed in a muscle type-specific manner. Are the expression, localization, and Ca2+-dependent modulatory capacities of these isoforms different in fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles derived from Sprague-Dawley rats? By mass spectrometry, 4 MyBP-C isoforms (1 fast-type MyBP-C and 3 N-terminally spliced slow-type MyBP-C) were expressed in EDL, but only the 3 slow-type MyBP-C isoforms in SOL. Using EDL and SOL native thick filaments in which the MyBP-C stoichiometry and localization are preserved, native thin filament sliding over these thick filaments showed that, only in the C-zone, MyBP-C Ca2+ sensitizes the thin filament and slows thin filament velocity. These modulatory properties depended on MyBP-C's N terminus as N-terminal proteolysis attenuated MyBP-C's functional capacities. To determine each MyBP-C isoform's contribution to thin filament Ca2+ sensitization and slowing in the C-zone, we used a combination of in vitro motility assays using expressed recombinant N-terminal fragments and in silico mechanistic modeling. Our results suggest that each skeletal MyBP-C isoform's N terminus is functionally distinct and has modulatory capacities that depend on the muscle type in which they are expressed, providing the potential for molecular tuning of skeletal muscle performance through differential MyBP-C expression.
Collapse
|
31
|
Abstract
Colson discusses a recent investigation of the functional effect of slow myosin binding protein-C in slow-twitch skeletal muscle fibers.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
32
|
Abstract
The second of two special issues on contractile systems charts further progress towards an understanding of myofilament regulation.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI
| |
Collapse
|
33
|
Rassier DE, Kashina A. Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function. Am J Physiol Cell Physiol 2019; 316:C668-C677. [PMID: 30789755 PMCID: PMC6580163 DOI: 10.1152/ajpcell.00500.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The cytoskeleton drives many essential processes in normal physiology, and its impairments underlie many diseases, including skeletal myopathies, cancer, and heart failure, that broadly affect developed countries worldwide. Cytoskeleton regulation is a field of investigation of rapidly emerging global importance and a new venue for the development of potential therapies. This review overviews our present understanding of the posttranslational regulation of the muscle cytoskeleton through arginylation, a tRNA-dependent addition of arginine to proteins mediated by arginyltransferase 1. We focus largely on arginylation-dependent regulation of striated muscles, shown to play critical roles in facilitating muscle integrity, contractility, regulation, and strength.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University , Montreal, Quebec , Canada
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|