1
|
Hessel AL, Kuehn MN, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. Commun Biol 2024; 7:648. [PMID: 38802450 PMCID: PMC11130249 DOI: 10.1038/s42003-024-06265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | - Michel N Kuehn
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Brent A Momb
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
2
|
Hessel AL, Kuehn M, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563160. [PMID: 37961718 PMCID: PMC10634671 DOI: 10.1101/2023.10.19.563160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In striated muscle, some sarcomere proteins regulate crossbridge cycling by varying the propensity of myosin heads to interact with actin. Myosin-binding protein C (MyBP-C) is bound to the myosin thick filament and is predicted to interact and stabilize myosin heads in a docked position against the thick filament and limit crossbridge formation, the so-called OFF state. Via an unknown mechanism, MyBP-C is thought to release heads into the so-called ON state, where they are more likely to form crossbridges. To study this proposed mechanism, we used the C2-/- mouse line to knock down fast-isoform MyBP-C completely and total MyBP-C by ~24%, and conducted mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers presented deficits in force production and reduced calcium sensitivity. Structurally, passive C2-/- fibers presented altered SL-independent and SL-dependent regulation of myosin head ON/OFF states, with a shift of myosin heads towards the ON state. Unexpectedly, at shorter sarcomere lengths, the thin filament was axially extended in C2-/- vs. non-transgenic controls, which we postulate is due to increased low-level crossbridge formation arising from relatively more ON myosins in the passive muscle that elongates the thin filament. The downstream effect of increasing crossbridge formation in a passive muscle on contraction performance is not known. Such widespread structural changes to sarcomere proteins provide testable mechanisms to explain the etiology of debilitating MyBP-C-associated diseases.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA
| | - Brent A. Momb
- Department of Kinesiology, University of Massachusetts – Amherst; Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont; Burlington, VT, USA
| |
Collapse
|
3
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
4
|
Rosas PC, Solaro RJ. Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis. Front Cardiovasc Med 2023; 9:1060716. [PMID: 36762302 PMCID: PMC9902711 DOI: 10.3389/fcvm.2022.1060716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The discovery that cardiac sarcomere proteins are substrates for S-glutathionylation and that this post-translational modification correlates strongly with diastolic dysfunction led to new concepts regarding how levels of oxidative stress affect the heartbeat. Major sarcomere proteins for which there is evidence of S-glutathionylation include cardiac myosin binding protein C (cMyBP-C), actin, cardiac troponin I (cTnI) and titin. Our hypothesis is that these S-glutathionylated proteins are significant factors in acquired and familial disorders of the heart; and, when released into the serum, provide novel biomarkers. We consider the molecular mechanisms for these effects in the context of recent revelations of how these proteins control cardiac dynamics in close collaboration with Ca2+ fluxes. These revelations were made using powerful approaches and technologies that were focused on thin filaments, thick filaments, and titin filaments. Here we integrate their regulatory processes in the sarcomere as modulated mainly by neuro-humoral control of phosphorylation inasmuch evidence indicates that S-glutathionylation and protein phosphorylation, promoting increased dynamics and modifying the Frank-Starling relation, may be mutually exclusive. Earlier studies demonstrated that in addition to cTnI as a well-established biomarker for cardiac disorders, serum levels of cMyBP-C are also a biomarker for cardiac disorders. We describe recent studies approaching the question of whether serum levels of S-glutathionylated-cMyBP-C could be employed as an important clinical tool in patient stratification, early diagnosis in at risk patients before HFpEF, determination of progression, effectiveness of therapeutic approaches, and as a guide in developing future therapies.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of Pharmacy, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Hessel AL, Ma W, Mazara N, Rice PE, Nissen D, Gong H, Kuehn M, Irving T, Linke WA. Titin force in muscle cells alters lattice order, thick and thin filament protein formation. Proc Natl Acad Sci U S A 2022; 119:e2209441119. [PMID: 36409887 PMCID: PMC9860331 DOI: 10.1073/pnas.2209441119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C. We further show that these bridges can be forcibly ruptured via high-speed stretches. Our results advance a paradigm shift to the fundamental regulation of length-dependent priming, with titin as the key driver.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Nicole Mazara
- School of Kinesiology, University of British Columbia, Vancouver, CanadaV6T 1Z1
| | - Paige E. Rice
- Department of Biological Sciences, Northern Arizona University, FlagstaffAZ 86011
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| |
Collapse
|
6
|
Ma W, Irving TC. Small Angle X-ray Diffraction as a Tool for Structural Characterization of Muscle Disease. Int J Mol Sci 2022; 23:3052. [PMID: 35328477 PMCID: PMC8949570 DOI: 10.3390/ijms23063052] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Small angle X-ray fiber diffraction is the method of choice for obtaining molecular level structural information from striated muscle fibers under hydrated physiological conditions. For many decades this technique had been used primarily for investigating basic biophysical questions regarding muscle contraction and regulation and its use confined to a relatively small group of expert practitioners. Over the last 20 years, however, X-ray diffraction has emerged as an important tool for investigating the structural consequences of cardiac and skeletal myopathies. In this review we show how simple and straightforward measurements, accessible to non-experts, can be used to extract biophysical parameters that can help explain and characterize the physiology and pathology of a given experimental system. We provide a comprehensive guide to the range of the kinds of measurements that can be made and illustrate how they have been used to provide insights into the structural basis of pathology in a comprehensive review of the literature. We also show how these kinds of measurements can inform current controversies and indicate some future directions.
Collapse
Affiliation(s)
- Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C. Irving
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
7
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
8
|
Ma W, Gong H, Jani V, Lee KH, Landim-Vieira M, Papadaki M, Pinto JR, Aslam MI, Cammarato A, Irving T. Myofibril orientation as a metric for characterizing heart disease. Biophys J 2022; 121:565-574. [PMID: 35032456 PMCID: PMC8874025 DOI: 10.1016/j.bpj.2022.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois.
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Vivek Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - M Imran Aslam
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
9
|
Lewalle A, Campbell KS, Campbell SG, Milburn GN, Niederer SA. Functional and structural differences between skinned and intact muscle preparations. J Gen Physiol 2022; 154:e202112990. [PMID: 35045156 PMCID: PMC8929306 DOI: 10.1085/jgp.202112990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.
Collapse
Affiliation(s)
- Alex Lewalle
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Stuart G. Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Gregory N. Milburn
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Steven A. Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
10
|
Abstract
Super-relaxation is a state of muscle thick filaments in which ATP turnover by myosin is much slower than that of myosin II in solution. This inhibited state, in equilibrium with a faster (relaxed) state, is ubiquitous and thought to be fundamental to muscle function, acting as a mechanism for switching off energy-consuming myosin motors when they are not being used. The structural basis of super-relaxation is usually taken to be a motif formed by myosin in which the two heads interact with each other and with the proximal tail forming an interacting-heads motif, which switches the heads off. However, recent studies show that even isolated myosin heads can exhibit this slow rate. Here, we review the role of head interactions in creating the super-relaxed state and show how increased numbers of interactions in thick filaments underlie the high levels of super-relaxation found in intact muscle. We suggest how a third, even more inhibited, state of myosin (a hyper-relaxed state) seen in certain species results from additional interactions involving the heads. We speculate on the relationship between animal lifestyle and level of super-relaxation in different species and on the mechanism of formation of the super-relaxed state. We also review how super-relaxed thick filaments are activated and how the super-relaxed state is modulated in healthy and diseased muscles.
Collapse
Affiliation(s)
- Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA
| | | |
Collapse
|
11
|
Ma W, Henze M, Anderson RL, Gong H, Wong FL, Del Rio CL, Irving T. The Super-Relaxed State and Length Dependent Activation in Porcine Myocardium. Circ Res 2021; 129:617-630. [PMID: 34365814 DOI: 10.1161/circresaha.120.318647] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.G., T.I.)
| | - Marcus Henze
- MyoKardia Inc, Brisbane, CA (M.H., R.L.A., F.L.W., C.L.d.R.)
| | | | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.G., T.I.)
| | - Fiona L Wong
- MyoKardia Inc, Brisbane, CA (M.H., R.L.A., F.L.W., C.L.d.R.)
| | | | - Thomas Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.G., T.I.)
| |
Collapse
|
12
|
Wilson C, Naber N, Cooke R. The role of the super-relaxed state of myosin in human metabolism. Metabol Open 2020; 9:100068. [PMID: 33364594 PMCID: PMC7753139 DOI: 10.1016/j.metop.2020.100068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background The super-relaxed state of myosin (SRX) plays a fundamental role in maintaining the low resting metabolic rate of skeletal muscle. Our previous work on this state has been in animal models. Piperine is a small molecule that has been shown to destabilize the SRX in rabbit fast twitch fibers. Methods Here we extend this work to human muscle obtained from biopsies of the vastus lateralis of both lean and obese subjects. The slow release of nucleotides by myosin in the SRX was measured by incubating permeable fibers in a fluorescent analog of ATP and chasing with ATP. Results The fraction of myosin heads in the SRX was 0.48 ± 0.04 with a lifetime of 148 ± 5 s in lean subjects and a fraction of 0.41 ± 0.05 and a lifetime of 176 ± 7 s in obese subjects. Addition of 100 μM piperine decreased the SRX population by 43 ± 7% in lean subjects and 36 ± 7% in obese subjects, with little change in lifetimes. Addition of piperine to human cardiac cells had no effect on the SRX, a requirement for a drug to treat metabolic diseases. Conclusions In human muscle the SRX and its responses to piperine are similar to those seen previously, with no significant differences between muscles from lean and obese subjects. Thus analogs of piperine that have greater specificity could provide effective treatment for metabolic diseases. The SRX provides a potential mechanism contributing to the large dynamic range of metabolic rate.
Collapse
Affiliation(s)
- Clyde Wilson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Roger Cooke
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
13
|
Heling LWHJ, Geeves MA, Kad NM. MyBP-C: one protein to govern them all. J Muscle Res Cell Motil 2020; 41:91-101. [PMID: 31960266 PMCID: PMC7109175 DOI: 10.1007/s10974-019-09567-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
The heart is an extraordinarily versatile pump, finely tuned to respond to a multitude of demands. Given the heart pumps without rest for decades its efficiency is particularly relevant. Although many proteins in the heart are essential for viability, the non-essential components can attract numerous mutations which can cause disease, possibly through alterations in pumping efficiency. Of these, myosin binding protein C is strongly over-represented with ~ 40% of all known mutations in hypertrophic cardiomyopathy. Therefore, a complete understanding of its molecular function in the cardiac sarcomere is warranted. In this review, we revisit contemporary and classical literature to clarify both the current standing of this fast-moving field and frame future unresolved questions. To date, much effort has been directed at understanding MyBP-C function on either thick or thin filaments. Here we aim to focus questions on how MyBP-C functions at a molecular level in the context of both the thick and thin filaments together. A concept that emerges is MyBP-C acts to govern interactions on two levels; controlling myosin access to the thin filament by sequestration on the thick filament, and controlling the activation state and access of myosin to its binding sites on the thin filament. Such affects are achieved through directed interactions mediated by phosphorylation (of MyBP-C and other sarcomeric components) and calcium.
Collapse
Affiliation(s)
- L W H J Heling
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - M A Geeves
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - N M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
14
|
Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin. Proc Natl Acad Sci U S A 2019; 116:11731-11736. [PMID: 31142654 DOI: 10.1073/pnas.1821660116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) accelerates cardiac contractility. However, the mechanisms by which cMyBP-C phosphorylation increases contractile kinetics have not been fully elucidated. In this study, we tested the hypothesis that phosphorylation of cMyBP-C releases myosin heads from the inhibited super-relaxed state (SRX), thereby determining the fraction of myosin available for contraction. Mice with various alanine (A) or aspartic acid (D) substitutions of the three main phosphorylatable serines of cMyBP-C (serines 273, 282, and 302) were used to address the association between cMyBP-C phosphorylation and SRX. Single-nucleotide turnover in skinned ventricular preparations demonstrated that phosphomimetic cMyBP-C destabilized SRX, whereas phospho-ablated cMyBP-C had a stabilizing effect on SRX. Strikingly, phosphorylation at serine 282 site was found to play a critical role in regulating the SRX. Treatment of WT preparations with protein kinase A (PKA) reduced the SRX, whereas, in nonphosphorylatable cMyBP-C preparations, PKA had no detectable effect. Mice with stable SRX exhibited reduced force production. Phosphomimetic cMyBP-C with reduced SRX exhibited increased rates of tension redevelopment and reduced binding to myosin. We also used recombinant myosin subfragment-2 to disrupt the endogenous interaction between cMyBP-C and myosin and observed a significant reduction in the population of SRX myosin. This peptide also increased force generation and rate of tension redevelopment in skinned fibers. Taken together, this study demonstrates that the phosphorylation-dependent interaction between cMyBP-C and myosin is a determinant of the fraction of myosin available for contraction. Furthermore, the binding between cMyBP-C and myosin may be targeted to improve contractile function.
Collapse
|
15
|
Abstract
The second of two special issues on contractile systems charts further progress towards an understanding of myofilament regulation.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI
| |
Collapse
|