1
|
Sáez JC, Burrell JC, Cahill CM, Cullen DK, Devi LA, Gilbert RJ, Graham ZA, Gurvich VJ, Havton LA, Iyengar R, Khanna R, Palermo EF, Siddiq M, Toro CA, Vasquez W, Zhao W, Cardozo CP. Pharmacology of boldine: summary of the field and update on recent advances. Front Pharmacol 2024; 15:1427147. [PMID: 39346563 PMCID: PMC11427365 DOI: 10.3389/fphar.2024.1427147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Over the past decade, boldine, a naturally occurring alkaloid found in several plant species including the Chilean Boldo tree, has garnered attention for its efficacy in rodent models of human disease. Some of the properties that have been attributed to boldine include antioxidant activities, neuroprotective and analgesic actions, hepatoprotective effects, anti-inflammatory actions, cardioprotective effects and anticancer potential. Compelling data now indicates that boldine blocks connexin (Cx) hemichannels (HCs) and that many if not all of its effects in rodent models of injury and disease are due to CxHC blockade. Here we provide an overview of boldine's pharmacological properties, including its efficacy in rodent models of common human injuries and diseases, and of its absorption, distribution, pharmacokinetics, and metabolism.
Collapse
Affiliation(s)
- Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Justin C. Burrell
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, PA, United States
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Catherine M. Cahill
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, PA, United States
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lakshmi A. Devi
- Department of Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ryan J. Gilbert
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Albany Stratton VA Medical Center, New York, NY, United States
| | - Zachary A. Graham
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Gainesville, FL, United States
| | - Vadim J. Gurvich
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Leif A. Havton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Edmund F. Palermo
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Materials Science and Engineering, Rensselaer Polytechnic Institute, New York, NY, United States
| | - Mustafa Siddiq
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Walter Vasquez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Jiayu L, Xiaofeng L, Jinhong C, Fangjun D, Boya F, Xin Z, Zidong C, Rui T, Lu Y, Shule Q, Runying W, Wuxun D. Study on the mechanisms and Pharmacodynamic substances of Lian-Gui-Ning-Xin-Tang on Arrhythmia Therapy based on Pharmacodynamic-Pharmacokinetic associations. Heliyon 2024; 10:e36104. [PMID: 39253118 PMCID: PMC11381611 DOI: 10.1016/j.heliyon.2024.e36104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background The Chinese herbal compound Lian-Gui-Ning-Xin-Tang (LGNXT), composed of 9 herbs, has a significant antiarrhythmic effect. Previous studies have confirmed that preventing intracellular Ca2+ overload and maintaining intracellular Ca2+ homeostasis may be the important antiarrhythmic mechanisms of LGNXT. Recent studies are focused on elucidating the mechanisms and pharmacodynamic substances of LGNXT. Purpose 1) To investigate the antiarrhythmic mechanisms of LGNXT; 2) to explore the association of pharmacodynamics (PD) and pharmacokinetics (PK) of the potential pharmacodynamic substances in LGNXT to further verify the mechanisms of action. Methods First, pharmacodynamic studies were conducted to determine the effect of LGNXT in arrhythmia at the electrophysiological, molecular, and tissue levels, and the "effect-time" relationship of LGNXT was further proposed. Next, an HPLC-MS/MS method was established to identify the "dose-time" relationship of the 9 potential compounds. Combining the "effect-time" and "dose-time" curves, the active ingredients closely related to the inhibition of inflammation, oxidative stress, and energy metabolism were identified to further verify the mechanisms and pharmacodynamic substances of LGNXT. Results Pretreatment with LGNXT could delay the occurrence of arrhythmias and reduce their duration and severity. LGNXT exerted antiarrhythmic effects by inhibiting MDA, LPO, IL-6, and cAMP; restoring Cx43 coupling function; and upregulating SOD, Ca2+-ATPase, and Na+-K+-ATPase levels. PK-PD association showed that nobiletin, methylophiopogonanone A, trigonelline, cinnamic acid, liquiritin, dehydropolisic acid, berberine, and puerarin were the main pharmacodynamic substances responsible for inhibiting the inflammatory response in arrhythmia. Methylophiopogonanone A, dehydropalingic acid, nobiletin, trigonelline, berberine, and puerarin in LGNXT exerted antiarrhythmic effects by inhibiting oxidative stress. Dehydropalingic acid, berberine, cinnamic acid, liquiritin, puerarin, trigonelline, methylophiopogonanone A, nobiletin, and tetrahydropalmatine exerted antiarrhythmic effects by inhibiting the energy-metabolism process. Conclusions LGNXT had a positive intervention effect on arrhythmias, especially ventricular tachyarrhythmias, which could inhibit inflammation, oxidative stress, and energy metabolism; positively stabilize the structure, and remodify the function of myocardial cell membranes. Additionally, the PD-PK association study revealed that methylophiopogonanone A, berberine, trigonelline, liquiritin, puerarin, tetrahydropalmatine, nobiletin, dehydropachymic acid, and cinnamic acid directly targeted inflammation, oxidative stress, and energy metabolism, which could be considered the pharmacodynamic substances of LGNXT. Thus, the antiarrhythmic mechanisms of LGNXT were further elucidated.
Collapse
Affiliation(s)
- Liang Jiayu
- Department of TCM, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Hangzhou 310003, China
| | - Li Xiaofeng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Chen Jinhong
- School of Rehabilitation Medicine, Shandong Second Medical University, Shandong Weifang, 261053, China
| | - Deng Fangjun
- Department of Cardiology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300091, China
| | - Fan Boya
- Department of Medical qualification examination, National Administration of Traditional Chinese Medicine TCM Qualification Certification Center, Beijing 100120, China
| | - Zhen Xin
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Cong Zidong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Tao Rui
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Yu Lu
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Qian Shule
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Wang Runying
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Du Wuxun
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| |
Collapse
|
3
|
Burboa PC, Gaete PS, Shu P, Araujo PA, Beuve AV, Durán WN, Contreras JE, Lillo MA. Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604930. [PMID: 39091840 PMCID: PMC11291137 DOI: 10.1101/2024.07.25.604930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using β-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Priscila A. Araujo
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Annie V. Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| |
Collapse
|
4
|
Chauhdri AF, Bruss P, Tran A. Brugada Phenotype Following a Cocaine Overdose. Cureus 2024; 16:e63861. [PMID: 39099899 PMCID: PMC11297651 DOI: 10.7759/cureus.63861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Brugada syndrome is a rare cardiac condition characterized by distinctive electrocardiogram patterns, predisposing individuals to fatal arrhythmias. While primarily linked to a loss-of-function mutation in the SCN5A gene, acquired forms of the syndrome have been associated with various factors, including drug use. We present a case of a 31-year-old female who presented to the emergency department unresponsive following cocaine use and developed type 1 Brugada ECG patterns alongside an incomplete right bundle branch block in V1-V3, ST elevations with biphasic waves, and diffuse repolarization abnormalities with J point deviations while in the intensive care unit. This study aimed to discuss the complexity of managing drug-induced Brugada-like findings and highlights the need for further research into the mechanisms underlying cocaine-induced cardiac effects. We aimed to discuss potential mechanisms for the impact of cocaine as its role as a sodium channel blocker and its potential effects on connexin 43 in the context of Brugada syndrome. This study also reinforced the importance of differentiating between true Brugada syndrome and other similar ECG changes for appropriate care management.
Collapse
Affiliation(s)
- Ammar F Chauhdri
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
- Medicine, University of Michigan, Ann Arbor, USA
| | - Patrick Bruss
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| | - Alvin Tran
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| |
Collapse
|
5
|
Chi J, Wu N, Li P, Hu J, Cai H, Lin C, Lai Y, Yang H, Huang J, Li M, Xu L. Hygrothermal stress increases malignant arrhythmias susceptibility by inhibiting the LKB1-AMPK-Cx43 pathway. Sci Rep 2024; 14:5010. [PMID: 38424223 PMCID: PMC10904738 DOI: 10.1038/s41598-024-55804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
High mortality due to hygrothermal stress during heat waves is mostly linked to cardiovascular malfunction, the most serious of which are malignant arrhythmias. However, the mechanism associated with hygrothermal stress leading to malignant arrhythmias remains unclear. The energy metabolism regulated by liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and the electrical signaling based on gap junction protein, connexin43 (Cx43), plays important roles in the development of cardiac arrhythmias. In order to investigate whether hygrothermal stress induces arrhythmias via the LKB1-AMPK-Cx43 pathway, Sprague-Dawley rats were exposed to high temperature and humidity for constructing the hygrothermal stress model. A final choice of 40 °C and 85% humidity was made by pre-exploration based on different gradient environmental conditions with reference to arrhythmia event-inducing stability and risk of sudden death. Then, the incidence of arrhythmic events, as well as the expression, phosphorylation at Ser368, and distribution of Cx43 in the myocardium, were examined. Meanwhile, the adenosine monophosphate-activated protein kinase activator, Acadesine, was also administered to investigate the role played by AMPK in the process. Our results showed that hygrothermal stress induced malignant arrhythmias such as ventricular tachycardia, ventricular fibrillation, and severe atrioventricular block. Besides, hygrothermal stress decreased the phosphorylation of Cx43 at Ser368, induced proarrhythmic redistribution of Cx43 from polar to lateral sides of the cardiomyocytes, and also caused LKB1 and phosphorylated-AMPK expression to be less abundant. While, pretreatment with Acadesine significantly actived the LKB1-AMPK-Cx43 pathway and thus ameliorated malignant arrhythmias, indicating that the hygrothermal stress-induced arrhythmias is associated with the redistribution of gap junctions in cardiomyocytes and the organism's energy metabolism.
Collapse
Affiliation(s)
- Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
| | - Ningxia Wu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jiaman Hu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailong Lin
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Lai
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Lin Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China.
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China.
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China.
| |
Collapse
|
6
|
León-Fuentes IM, Salgado-Gil MG, Novoa MS, Retamal MA. Connexins in Cancer, the Possible Role of Connexin46 as a Cancer Stem Cell-Determining Protein. Biomolecules 2023; 13:1460. [PMID: 37892142 PMCID: PMC10604234 DOI: 10.3390/biom13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, República de Honduras 12740, Las Condes, Santiago 7610496, Chile; (I.M.L.-F.); (M.G.S.-G.); (M.S.N.)
| |
Collapse
|