1
|
Magaña-Hernández L, Wagh AS, Fathi JG, Robles JE, Rubio B, Yusuf Y, Rose EE, Brown DE, Perry PE, Hamada E, Anastassov IA. Ultrastructural Characteristics and Synaptic Connectivity of Photoreceptors in the Simplex Retina of Little Skate ( Leucoraja erinacea). eNeuro 2023; 10:ENEURO.0226-23.2023. [PMID: 37827837 PMCID: PMC10614115 DOI: 10.1523/eneuro.0226-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
The retinas of the vast majority of vertebrate species are termed "duplex," that is, they contain both rod and cone photoreceptor neurons in different ratios. The retina of little skate (Leucoraja erinacea) is a rarity among vertebrates because it contains only a single photoreceptor cell type and is thus "simplex." This unique retina provides us with an important comparative model and an exciting opportunity to study retinal circuitry within the context of a visual system with a single photoreceptor cell type. What is perhaps even more intriguing is the fact that the Leucoraja retina is able use that single photoreceptor cell type to function under both scotopic and photopic ranges of illumination. Although some ultrastructural characteristics of skate photoreceptors have been examined previously, leading to a general description of them as "rods" largely based on outer segment (OS) morphology and rhodopsin expression, a detailed study of the fine anatomy of the entire cell and its synaptic connectivity is still lacking. To address this gap in knowledge, we performed serial block-face electron microscopy imaging and examined the structure of skate photoreceptors and their postsynaptic partners. We find that skate photoreceptors exhibit unusual ultrastructural characteristics that are either common to rods or cones in other vertebrates (e.g., outer segment architecture, synaptic ribbon number, terminal extensions), or are somewhere in between those of a typical vertebrate rod or cone (e.g., number of invaginating contacts, clustering of multiple ribbons over a single synaptic invagination). We suggest that some of the ultrastructural characteristics we observe may play a role in the ability of the skate retina to function across scotopic and photopic ranges of illumination. Our findings have the potential to reveal as yet undescribed principles of vertebrate retinal design.
Collapse
Affiliation(s)
| | - Abhiniti S Wagh
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Jessamyn G Fathi
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Julio E Robles
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Beatriz Rubio
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Yaqoub Yusuf
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Erin E Rose
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Daniel E Brown
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Priscilla E Perry
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Elizabeth Hamada
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Ivan A Anastassov
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
2
|
Mäthger LM, Bok MJ, Liebich J, Sicius L, Nilsson DE. Pupil dilation and constriction in the skate Leucoraja erinacea in a simulated natural light field. J Exp Biol 2022; 225:274366. [DOI: 10.1242/jeb.243221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The skate Leucoraja erinacea has an elaborately shaped pupil, whose characteristics and functions have received little attention. The goal of our study was to investigate the pupil response in relation to natural ambient light intensities. First, we took a recently developed sensory–ecological approach, which gave us a tool for creating a controlled light environment for behavioural work: during a field survey, we collected a series of calibrated natural habitat images from the perspective of the skates' eyes. From these images, we derived a vertical illumination profile using custom-written software for quantification of the environmental light field (ELF). After collecting and analysing these natural light field data, we created an illumination set-up in the laboratory, which closely simulated the natural vertical light gradient that skates experience in the wild and tested the light responsiveness – in particular the extent of dilation – of the skate pupil to controlled changes in this simulated light field. Additionally, we measured pupillary dilation and constriction speeds. Our results confirm that the skate pupil changes from nearly circular under low light to a series of small triangular apertures under bright light. A linear regression analysis showed a trend towards smaller skates having a smaller dynamic range of pupil area (dilation versus constriction ratio around 4-fold), and larger skates showing larger ranges (around 10- to 20-fold). Dilation took longer than constriction (between 30 and 45 min for dilation; less than 20 min for constriction), and there was considerable individual variation in dilation/constriction time. We discuss our findings in terms of the visual ecology of L. erinacea and consider the importance of accurately simulating natural light fields in the laboratory.
Collapse
Affiliation(s)
- Lydia M. Mäthger
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| | - Jan Liebich
- Westphalian Institute for Biomimetics, Westphalian University of Applied Sciences, Bocholt 43697, Germany
| | - Lucia Sicius
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA
- Florida State University, Tallahassee, FL 32306, USA
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| |
Collapse
|
3
|
Ryan LA, Slip DJ, Chapuis L, Collin SP, Gennari E, Hemmi JM, How MJ, Huveneers C, Peddemors VM, Tosetto L, Hart NS. A shark's eye view: testing the 'mistaken identity theory' behind shark bites on humans. J R Soc Interface 2021; 18:20210533. [PMID: 34699727 PMCID: PMC8548079 DOI: 10.1098/rsif.2021.0533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.
Collapse
Affiliation(s)
- Laura A Ryan
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - David J Slip
- Taronga Conservation Society Australia, Bradley's Head Road, Mosman, New South Wales 2088, Australia
| | - Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa.,South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa.,Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown 6140, South Africa
| | - Jan M Hemmi
- School of Biological Sciences and The UWA Oceans Institute, M092, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Louise Tosetto
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
4
|
Schluessel V, Rick IP, Seifert FD, Baumann C, Lee Davies WI. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). J Exp Biol 2021; 224:237826. [PMID: 33771913 DOI: 10.1242/jeb.226142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Collapse
Affiliation(s)
- Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Ingolf P Rick
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Friederike Donata Seifert
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Christina Baumann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Wayne Iwan Lee Davies
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| |
Collapse
|
5
|
Mäthger LM, Zhao K, Herbst L. Photoreceptors in skate are arranged to allow for a broad horizontal field of view. J Comp Neurol 2021; 529:1184-1197. [PMID: 32840869 DOI: 10.1002/cne.25014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
Studying retinal specializations offers insights into eye functionality and visual ecology. Using light microscopic techniques, including retinal whole-mounts, we investigated photoreceptor densities in the retina of the skate Leucoraja erinacea. We show that photoreceptors are not sized or oriented in the same way, and that they are not evenly distributed across the retina. There was a dorsally located horizontal visual streak with increased photoreceptor density, with additional local maxima in which densities were highest. Photoreceptors were longest and thinnest inside this visual streak, becoming shorter and thicker toward the periphery and toward the ventral retina. Furthermore, in the peripheral retinal parts, photoreceptors (particularly the outer segments) were noticeably tilted with respect to the retinal long axis. In order to understand how photoreceptors are tilted inside the eye, we used computerized tomography (CT) and micro-CT, to obtain geometrical dimensions of the whole skate eye. These CT/micro-CT data provided us with the outlines of the skate eye and the location of the retina and this enabled us to reconstruct how photoreceptors tilt in an intact eye. Findings were analyzed relative to previously published ganglion cell distributions in this species, showing a posteriorly located retinal area with photoreceptor: ganglion cell convergence as low as 39:1. Some peripheral areas showed ratios as high as 391:1. We frame our findings in terms of the animal's anatomy: body and eye shape, specifically the location of the tapetum, as well as the visual demands associated with lifestyle and habitat type. A speculative function in polarization sensitivity is discussed.
Collapse
Affiliation(s)
- Lydia M Mäthger
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA
| | - Kevin Zhao
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA.,Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Lena Herbst
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Vision in sharks and rays: Opsin diversity and colour vision. Semin Cell Dev Biol 2020; 106:12-19. [PMID: 32331993 DOI: 10.1016/j.semcdb.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.
Collapse
|
7
|
Abstract
I was drawn into research in George Wald's laboratory at Harvard, where as an undergraduate and graduate student, I studied vitamin A deficiency and dark adaptation. A chance observation while an assistant professor at Harvard led to the major research of my career-to understand the functional organization of vertebrate retinas. I started with a retinal circuit analysis of the primate retina with Brian Boycott and intracellular retinal cell recordings in mudpuppies with Frank Werblin. Subsequent pharmacology studies with Berndt Ehinger primarily with fish focused on dopamine and neuromodulation. Using zebrafish, we studied retinal development, neuronal connectivity, and the effects of genetic mutations on retinal structure and function. Now semi-retired, I have returned to primate retinal circuitry, undertaking a connectomic analysis of the human fovea in Jeffrey Lichtman's laboratory.
Collapse
Affiliation(s)
- John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
8
|
Youn S, Okinaka C, Mäthger LM. Elaborate pupils in skates may help camouflage the eye. ACTA ACUST UNITED AC 2019; 222:jeb.195966. [PMID: 30665973 DOI: 10.1242/jeb.195966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022]
Abstract
The skate Leucoraja erinacea is a bottom-dweller that buries into the substrate with its eyes protruding, revealing elaborately shaped pupils. It has been suggested that such pupil shapes may camouflage the eye, yet this has never been tested. Here, we asked whether skate pupils dilate or constrict depending on background spatial frequency. In experiment 1, the skates' pupillary response to three artificial checkerboards of different spatial frequencies was recorded. Results showed that pupils did not change in response to spatial frequency. In experiment 2, in which skates buried into three natural substrates of different spatial frequencies, such that their eyes protruded, pupils showed a subtle but statistically significant response to changes in substrate spatial frequency. Although light intensity is the primary factor determining pupil dilation, our results show that pupils also change depending on the spatial frequency of natural substrates, which suggests that pupils may aid in camouflaging the eye.
Collapse
Affiliation(s)
- Sean Youn
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA.,Wiess School of Natural Sciences, Rice University, Houston, TX 77005, USA
| | - Corey Okinaka
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA.,Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lydia M Mäthger
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA
| |
Collapse
|
9
|
Jinson ST, Liebich J, Senft SL, Mäthger LM. Retinal specializations and visual ecology in an animal with an extremely elaborate pupil shape: the little skate Leucoraja (Raja) erinacea Mitchell, 1825. J Comp Neurol 2018; 526:1962-1977. [PMID: 29756297 DOI: 10.1002/cne.24465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/11/2022]
Abstract
Investigating retinal specializations offers insights into eye functionality. Using retinal wholemount techniques, we investigated the distribution of retinal ganglion cells in the Little skate Leucoraja erinacea by (a) dye-backfilling into the optic nerve prior to retinal wholemounting; (b) Nissl-staining of retinal wholemounts. Retinas were examined for regional specializations (higher numbers) of ganglion cells that would indicate higher visual acuity in those areas. Total ganglion cell number were low compared to other elasmobranchs (backfilled: average 49,713 total ganglion cells, average peak cell density 1,315 ganglion cells mm-2 ; Nissl-stained: average 47,791 total ganglion cells, average peak cell density 1,319 ganglion cells mm-2 ). Ganglion cells fit into three size categories: small (5-20 µm); medium (20-30 µm); large: (≥ 30 µm), and they were not homogeneously distributed across the retina. There was a dorsally located horizontal visual streak with increased ganglion cell density; additionally, there were approximately three local maxima in ganglion cell distribution (potential areae centrales) within this streak in which densities were highest. Using computerized tomography (CT) and micro-CT, geometrical dimensions of the eye were obtained. Combined with ganglion cell distributions, spatial resolving power was determined to be between 1.21 and 1.37 cycles per degree. Additionally, photoreceptor sizes across different retinal areas varied; photoreceptors were longest within the horizontal visual streak. Variations in the locations of retinal specializations appear to be related to the animal's anatomy: shape of the head and eyes, position of eyes, location of tapetum, and shape of pupil, as well as the visual demands associated with lifestyle and habitat type.
Collapse
Affiliation(s)
- S Terrell Jinson
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, Massachusetts
| | - Jan Liebich
- Westphalian Institute for Biomimetics, Westphalian University of Applied Sciences, Bocholt, Germany
| | - Stephen L Senft
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, Massachusetts
| | - Lydia M Mäthger
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, Massachusetts
| |
Collapse
|
10
|
Musser JM, Arendt D. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution. Dev Biol 2017; 431:26-35. [DOI: 10.1016/j.ydbio.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023]
|
11
|
Electrophysiological measures of temporal resolution, contrast sensitivity and spatial resolving power in sharks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:197-210. [DOI: 10.1007/s00359-017-1154-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
|
12
|
Abstract
1. The electroretinogram (e.r.g.) of the isolated rat retina has been investigated by recording potential differences developed between two micropipettes.2. In the uniformly illuminated receptor layer, voltage gradients at 90 degrees to the long axes of the receptors are negligible in comparison with the radial voltage gradients.3. When all transsynaptic neural activity has been abolished, the photoresponse recorded across the receptor layer is very different from the photoresponse recorded across the inner retinal layer.4. The photoresponse developed across the inner retinal layers, slow P III, develops slowly and the peak voltage is approximately proportional to log. flash energy.5. The photovoltage across the receptor layer rises rapidly to its peak, before a significant fraction of slow P III has developed.6. The faster photovoltage (receptor potential) increases with flash intensity according to the hyperbolic function characteristic of photo-receptors.7. The faster photovoltage can be split into two components. Between the tips of the outer limbs and the bases of the inner limbs, it has a simple wave form. In the region between the bases of the inner limbs and the receptor synapses, there is an additional peak (nose) to the photovoltage.8. In the scleral portion of the receptor layer, the photovoltage approximately equals the dark voltage. In the remaining, vitreal portion of the receptor layer the photovoltage exceeds the dark voltage.9. Photocurrent divergence has been measured and the results indicate that the source of photocurrent extends further vitreally than the base of the outer limb.10. The results suggest that the photoresponse generated in the outer limb is modified by an active process which occurs in portions of the rods which are nearer the synapse.
Collapse
Affiliation(s)
- G B Arden
- Department of Visual Science, Institute of Ophthalmology, Judd Street, London WC1H 9QS
| |
Collapse
|
13
|
Schluessel V, Rick IP, Plischke K. No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:939-47. [DOI: 10.1007/s00359-014-0940-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
14
|
Muguruma K, Stell WK, Yamamoto N. A morphological classification of retinal ganglion cells in the Japanese catshark Scyliorhinus torazame. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:199-215. [PMID: 24642951 DOI: 10.1159/000358285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
Abstract
Retinal ganglion cells (GCs) in the Japanese catshark Scyliorhinus torazame were labeled retrogradely with biotinylated dextran amine (BDA3000). First the labeled cells were classified into 5 morphological types (types I-III: small GCs; types IV and V: large GCs) according to the size of the soma and the dendritic arborization pattern as seen in retinal wholemounts. Type I cells were stellate, with dendrites radiating in different directions. Type II cells had bipolar dendritic trees, with 2 primary dendrites extending in opposite directions. Type III cells had a single thick primary dendrite. Type IV cells were stellate, with dendrites covering a large area centered on the cell body. Type V cells were asymmetric, with most dendrites extending opposite to the axon as a large, fan-shaped dendritic field. Subsequently a wholemount was cross-sectioned, and we classified cells further into multiple subtypes according to the level of dendritic arborization within the inner plexiform layer. The present results suggest the existence of many types of GCs in elasmobranchs in addition to the 3 types of large GCs that have been characterized previously. Some of the newly described GC subtypes in the catshark retina appear to be similar to some of those reported in actinopterygians.
Collapse
Affiliation(s)
- Kaori Muguruma
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | |
Collapse
|
15
|
Interacting linear and nonlinear characteristics produce population coding asymmetries between ON and OFF cells in the retina. J Neurosci 2013; 33:14958-73. [PMID: 24027295 DOI: 10.1523/jneurosci.1004-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The early visual system is a model for understanding the roles of cell populations in parallel processing. Cells in this system can be classified according to their responsiveness to different stimuli; a prominent example is the division between cells that respond to stimuli of opposite contrasts (ON vs OFF cells). These two cell classes display many asymmetries in their physiological characteristics (including temporal characteristics, spatial characteristics, and nonlinear characteristics) that, individually, are known to have important roles in population coding. Here we describe a novel distinction between the information that ON and OFF ganglion cell populations carry in mouse--that OFF cells are able to signal motion information about both light and dark objects, while ON cells have a selective deficit at signaling the motion of dark objects. We found that none of the previously reported asymmetries in physiological characteristics could account for this distinction. We therefore analyzed its basis via a recently developed linear-nonlinear-Poisson model that faithfully captures input/output relationships for a broad range of stimuli (Bomash et al., 2013). While the coding differences between ON and OFF cell populations could not be ascribed to the linear or nonlinear components of the model individually, they had a simple explanation in the way that these components interact. Sensory transformations in other systems can likewise be described by these models, and thus our findings suggest that similar interactions between component properties may help account for the roles of cell classes in population coding more generally.
Collapse
|
16
|
Newman AS, Marshall JN, Collin SP. Visual Eyes: A Quantitative Analysis of the Photoreceptor Layer in Deep-Sea Sharks. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:237-49. [DOI: 10.1159/000355370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022]
|
17
|
DAVIES WAYNEIL, COLLIN SHAUNP, HUNT DAVIDM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 2012; 21:3121-58. [DOI: 10.1111/j.1365-294x.2012.05617.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Van-Eyk SM, Siebeck UE, Champ CM, Marshall J, Hart NS. Behavioural evidence for colour vision in an elasmobranch. J Exp Biol 2011; 214:4186-92. [DOI: 10.1242/jeb.061853] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Little is known about the sensory abilities of elasmobranchs (sharks, skates and rays) compared with other fishes. Despite their role as apex predators in most marine and some freshwater habitats, interspecific variations in visual function are especially poorly studied. Of particular interest is whether they possess colour vision and, if so, the role(s) that colour may play in elasmobranch visual ecology. The recent discovery of three spectrally distinct cone types in three different species of ray suggests that at least some elasmobranchs have the potential for functional trichromatic colour vision. However, in order to confirm that these species possess colour vision, behavioural experiments are required. Here, we present evidence for the presence of colour vision in the giant shovelnose ray (Glaucostegus typus) through the use of a series of behavioural experiments based on visual discrimination tasks. Our results show that these rays are capable of discriminating coloured reward stimuli from other coloured (unrewarded) distracter stimuli of variable brightness with a success rate significantly different from chance. This study represents the first behavioural evidence for colour vision in any elasmobranch, using a paradigm that incorporates extensive controls for relative stimulus brightness. The ability to discriminate colours may have a strong selective advantage for animals living in an aquatic ecosystem, such as rays, as a means of filtering out surface-wave-induced flicker.
Collapse
Affiliation(s)
- Sarah M. Van-Eyk
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ulrike E. Siebeck
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Connor M. Champ
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan S. Hart
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
19
|
Reuter T. Fifty years of dark adaptation 1961–2011. Vision Res 2011; 51:2243-62. [DOI: 10.1016/j.visres.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
|
20
|
Ferreiro-Galve S, Rodríguez-Moldes I, Anadón R, Candal E. Patterns of cell proliferation and rod photoreceptor differentiation in shark retinas. J Chem Neuroanat 2010; 39:1-14. [PMID: 19822206 DOI: 10.1016/j.jchemneu.2009.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022]
Abstract
We studied the pattern of cell proliferation and its relation with photoreceptor differentiation in the embryonic and postembryonic retina of two elasmobranchs, the lesser spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus). Cell proliferation was studied with antibodies raised against proliferating cell nuclear antigen (PCNA) and phospho-histone-H3, and early photoreceptor differentiation with an antibody raised against rod opsin. As regards the spatiotemporal distribution of PCNA-immunoreactive cells, our results reveal a gradual loss of PCNA that coincides in a spatiotemporal sequence with the gradient of layer maturation. The presence of a peripheral growth zone containing pure-proliferating retinal progenitors (the ciliary marginal zone) in the adult retina matches with the general pattern observed in other groups of gnathostomous fishes. However, in the shark retina the generation of new cells is not restricted to the ciliary marginal zone but also occurs in retinal areas that contain differentiated cells: (1) in a transition zone that lies between the pure-proliferating ciliary marginal zone and the central (layered) retina; (2) in the differentiating central area up to prehatching embryos where large amounts of PCNA-positive cells were observed even in the inner and outer nuclear layers; (3) and in the retinal pigment epithelium of prehatching embryos. Rod opsin immunoreactivity was observed in both species when the outer plexiform layer begins to be recognized in the central retina and, as we previously observed in trout, coincided temporally with the weakening in PCNA labelling.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
21
|
Redenti S, Ripps H, Chappell RL. Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res 2007; 85:580-4. [PMID: 17825289 DOI: 10.1016/j.exer.2007.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
The presence of reactive zinc (Zn2+) within photoreceptor terminals, and evidence that exogenous zinc affects the electrophysiological activity of the distal retina, led to the suggestion that its co-release with glutamate could play an essential role in the modulation of information at the first synapse in the visual pathway. Although we had shown previously that zinc release could be visualized in the region of the outer synaptic layer of a retinal slice preparation, it could not be ascertained with certainty that the release sites were at the presynaptic terminal rather than from the mitochondria-rich inner segment or from zinc within the distal processes of photoreceptors and Müller cells. Using membrane permeant and membrane impermeant forms of a fluorescent zinc indicator (Newport green), we show both the intracellular distribution of Zn2+ and its depolarization-dependent discharge from the terminals of isolated zebrafish photoreceptors in culture. Zinc release could be detected in the dark-adapted preparation, and was further enhanced by brief exposures to black widow spider venom or high K+. Synaptically released zinc may significantly influence neural processing in the vertebrate retina by modulating the activity of excitatory and/or inhibitory receptors as well as intracellular signaling proteins.
Collapse
|
22
|
Theiss SM, Lisney TJ, Collin SP, Hart NS. Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:67-79. [PMID: 17001493 DOI: 10.1007/s00359-006-0171-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 08/29/2006] [Accepted: 09/02/2006] [Indexed: 10/24/2022]
Abstract
Relatively little is known about the physical structure and ecological adaptations of elasmobranch sensory systems. In particular, elasmobranch vision has been poorly studied compared to the other senses. Virtually nothing is known about whether elasmobranchs possess multiple cone types, and therefore the potential for colour vision, or how the spectral tuning of their visual pigments is adapted to their different lifestyles. In this study, we measured the spectral absorption of the rod and cone visual pigments of the blue-spotted maskray, Dasyatis kuhlii, using microspectrophotometry. D. kuhlii possesses a rod visual pigment with a wavelength of maximum absorbance (lambda(max)) at 497 nm and three spectrally distinct cone types with lambda(max) values at 476, 498 and 552 nm. Measurements of the spectral transmittance of the ocular media reveal that wavelengths below 380 nm do not reach the retina, indicating that D. kuhlii is relatively insensitive to ultraviolet radiation. Topographic analysis of retinal ganglion cell distribution reveals an area of increased neuronal density in the dorsal retina. Based on peak cell densities and using measurements of lens focal length made using laser ray tracing and sections of frozen eyes, the estimated spatial resolving power of D. kuhlii is 4.10 cycles per degree.
Collapse
Affiliation(s)
- Susan M Theiss
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | | | | | | |
Collapse
|
23
|
Wong KY, Cohen ED, Dowling JE. Retinal Bipolar Cell Input Mechanisms in Giant Danio. II. Patch-Clamp Analysis of on Bipolar Cells. J Neurophysiol 2005; 93:94-107. [PMID: 15229214 DOI: 10.1152/jn.00270.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate receptors on giant danio retinal on bipolar cells were studied with whole cell patch clamping using a slice preparation. Cone-driven on bipolars (Cbs) and mixed-input on bipolars (Mbs) were identified morphologically. Most Cbs responded to the excitatory amino acid transporter (EAAT) substrate d-aspartate but not to the group III metabotropic glutamate receptor (mGluR) agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) or the AMPA/kainate receptor agonist kainate, suggesting EAATs are the primary glutamate receptors on Cbs. The EAAT inhibitor dl- threo-β-benzyloxyasparate (TBOA) blocked all light-evoked responses of Cbs, suggesting these responses are mediated exclusively by EAATs. Conversely, all Mbs responded to d-aspartate and l-AP4 but not to kainate, indicating they have both EAATs and group III mGluRs (presumably mGluR6). The light responses of Mbs involve both receptors because they could be blocked by TBOA plus (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III mGluR antagonist) but not by either alone. Under dark-adapted conditions, the responses of Mbs to green (rod-selective) stimuli were reduced by CPPG but enhanced by TBOA. In contrast, both antagonists reduced the responses to red (cone-selective) stimuli, although TBOA was more effective. Furthermore, under photopic conditions, TBOA failed to eliminate light-evoked responses of Mbs. Thus on Mbs, rod inputs are mediated predominantly by mGluR6, whereas cone inputs are mediated mainly by EAATs but also by mGluR6 to some extent. Finally, we explored the interactions between EAATs and mGluR6 in Mbs. Responses to d-aspartate were reduced by l-AP4 and vice versa. Therefore mGluR6 and EAATs suppress each other, and this might underlie mutual suppression between rod and cone signals in Mbs.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
24
|
Ren JQ, Li L. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish. Vision Res 2004; 44:2147-52. [PMID: 15183681 DOI: 10.1016/j.visres.2004.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 03/04/2004] [Indexed: 11/27/2022]
Abstract
In zebrafish, during dark adaptation following bright light adaptation, the dominance of electroretinogram (ERG) b- and d-waves switches. In the early dark adaptation, when visual sensitivity is cone-dominant, both the b- and d-waves are readily recorded. In the late dark adaptation, along with the increase of rod sensitivity, the b-wave becomes dominant whereas the d-wave is gradually lost. The time for the ERG b- and d-wave dominance transition varies between the day and night. The transition requires a longer amount of time in the night and early morning than in the afternoon. This pattern of timing for ERG b- and d-wave dominance transition persists in constant light and can be reversed after exposure to a reversed light-dark cycle. The data suggest that the transition of the dominance of ERG b- and d-waves is regulated by an endogenous circadian clock.
Collapse
Affiliation(s)
- Jason Q Ren
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
25
|
Abstract
"Bleaching desensitization" in rod photoreceptors refers to the prolonged depression of phototransduction sensitivity exhibited by rods after their exposure to bright light, i.e., after photolysis (bleaching) of a substantial fraction of rhodopsin in the outer segments. Rod recovery from bleaching desensitization depends critically on operation of the retinoid visual cycle: in particular, on the removal of all-trans retinal bleaching product from opsin and on the delivery of 11-cis retinal to opsin's chromophore binding site. The present paper summarizes representative findings that address the mechanism of bleaching desensitization.
Collapse
Affiliation(s)
- David R Pepperberg
- Department of Ophthalmology and Visual Sciences, Lions of Illinois Eye Research Institute, University of Illinois at Chicago, College of Medicine, 1855 W. Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Li C, Ding XQ, O’Brien J, Al-Ubaidi MR, Naash MI. Molecular characterization of the skate peripherin/rds gene: relationship to its orthologues and paralogues. Invest Ophthalmol Vis Sci 2003; 44:2433-41. [PMID: 12766040 PMCID: PMC2991160 DOI: 10.1167/iovs.02-1152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A great deal of information about functionally significant domains of a protein may be obtained by comparison of primary sequences of gene homologues over a broad phylogenetic base. This study was designed to identify evolutionarily conserved domains of the photoreceptor disc membrane protein peripherin/rds by analysis of the homologue in a primitive vertebrate, the skate. METHODS A skate retinal cDNA library was screened using a mouse peripherin/rds clone. The 5' and 3' untranslated regions of the skate peripherin/rds (srds) cDNA were isolated by the rapid amplification of cDNA ends (RACE) approach. The gene structure was characterized by PCR amplification and sequencing of genomic fragments. Northern and Western blot analyses were used to identify srds transcript and protein, respectively. RESULTS A new homologue of peripherin/rds was identified from the skate retinal cDNA library. SRDS is a glycoprotein with a predicted molecular mass of 40.2 kDa. The srds gene consists of two exons and one small intron and transcribes into a single 6-kb message. Phylogenetic analysis places SRDS at the base of peripherin/rds family and near the division of that group and the branch leading to rds-like and rom-1 genes. SRDS protein is 54.5% identical with peripherin/rds across species. Identity is significantly higher (73%) in the intradiscal domains. Sequence comparison revealed the conservation of all residues that have been shown, on mutation, to associate with retinitis pigmentosa and showed conservation of most residues associated with macular dystrophies. Comparison with ROM-1 and other rds-like proteins revealed the presence of a highly conserved domain in the large intradiscal loop. CONCLUSIONS Srds represents the skate orthologue of mammalian peripherin/rds genes. Conservation of most of the residues associated with human retinal diseases indicates that these residues serve important functional roles. The high degree of conservation of a short stretch within the large intradiscal loop also suggests an important function for this domain.
Collapse
Affiliation(s)
- Chibo Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John O’Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas
| | - Muayyad R. Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
27
|
Naash MI, Ding XQ, Li C, O'Brien J, Al-Ubaidi MR. Peripherin/Rds in Skate Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:377-83. [PMID: 15180288 DOI: 10.1007/978-1-4615-0067-4_48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Muna I Naash
- Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
28
|
Kang Derwent JJ, Qtaishat NM, Pepperberg DR. Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light. J Physiol 2002; 541:201-18. [PMID: 12015430 PMCID: PMC2290317 DOI: 10.1113/jphysiol.2001.013227] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Electroretinographic (ERG) methods were used to determine response properties of mouse rod photoreceptors in vivo following adapting illumination that produced a significant extent of rhodopsin bleaching. Bleaching levels prevailing at approximately 10 min and approximately 20 min after the adapting exposure were on average 14 % and 9 %, respectively, based on the analysis of visual cycle retinoids in the eye tissues. Recovery of the rod response to the adapting light was monitored by analysing the ERG a-wave response to a bright probe flash presented at varying times during dark adaptation. A paired-flash procedure, in which the probe flash was presented at defined times after a weak test flash of fixed strength, was used to determine sensitivity of the rod response to the test flash. Recovery of the response to the adapting light was 80 % complete at 13.5 +/- 3.0 min (mean +/- S.D.; n = 7) after adapting light offset. The adapting light caused prolonged desensitization of the weak-flash response derived from paired-flash data. By comparison with results obtained in the absence of the adapting exposure, desensitization determined with a test-probe interval of 80 ms was ~fourfold after 5 min of dark adaptation and approximately twofold after 20 min. The results indicate, for mouse rods in vivo, that the time scale for recovery of weak-flash sensitivity substantially exceeds that for the recovery of circulating current following significant rhodopsin bleaching. The lingering desensitization may reflect a reduced efficiency of signal transmission in the phototransduction cascade distinct from that due to residual excitation.
Collapse
Affiliation(s)
- Jennifer J Kang Derwent
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
29
|
Ren JQ, McCarthy WR, Zhang H, Adolph AR, Li L. Behavioral visual responses of wild-type and hypopigmented zebrafish. Vision Res 2002; 42:293-9. [PMID: 11809482 DOI: 10.1016/s0042-6989(01)00284-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zebrafish possess three classes of chromatophores that include iridophores, melanophores, and xanthophores. Mutations that lack one or two classes of chromatophores have been isolated or genetically constructed. Using a behavioral assay based on visually mediated escape responses, we measured the visual response of fully and partially pigmented zebrafish. In zebrafish that lack iridophores (roy mutants), the behavioral visual responses were similar to those of wild-type animals except at low contrast stimulation. In the absence of melanophores (albino mutants) or both melanophores and iridophores (ruby mutants), the behavioral visual responses were normal under moderate illumination but reduced when tested under dim or bright conditions or under low contrast stimulation. Together, the data suggest that screening pigments in the retina play a role in the regulation of behavioral visual responses and are necessary for avoiding "scatter" under bright light conditions.
Collapse
Affiliation(s)
- Jason Q Ren
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- D R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
31
|
Mangel SC. Circadian clock regulation of neuronal light responses in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:505-18. [PMID: 11420966 DOI: 10.1016/s0079-6123(01)31040-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S C Mangel
- Department of Neurobiology, University of Alabama School of Medicine, CIRC 425, 1719 6th Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
32
|
Malchow RP, Andersen KA. GABA transporter function in the horizontal cells of the skate. PROGRESS IN BRAIN RESEARCH 2001; 131:267-75. [PMID: 11420946 DOI: 10.1016/s0079-6123(01)31022-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- R P Malchow
- Department of Biological Sciences, University of Illinois at Chicago, 840 West Taylor Street, Chicago, IL 60607, USA.
| | | |
Collapse
|
33
|
Affiliation(s)
- G L Fain
- Departments of Physiological Science and Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90095-1527, USA.
| |
Collapse
|
34
|
Perlman I, Solessio E, Lasater EM. Potassium conductances and the glutamate transporter in Müller cells of the turtle retina and their role in potassium siphoning. PROGRESS IN BRAIN RESEARCH 2001; 131:451-63. [PMID: 11420962 DOI: 10.1016/s0079-6123(01)31036-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- I Perlman
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | |
Collapse
|
35
|
Qian H, Ripps H, Schuette E, Chappell RL. Responses of small- and large-field bipolar cells to GABA and glycine. Brain Res 2001; 893:273-7. [PMID: 11223017 DOI: 10.1016/s0006-8993(00)03282-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Morphologically distinct subtypes of retinal bipolar cells transmit information along parallel pathways to convey different aspects of the visual scene, but the synaptic mechanisms that regulate signal transmission are largely unknown. The all-rod retina of skate provides a comparatively simple system in which to correlate bipolar cell morphology with responses to the inhibitory neurotransmitters GABA and glycine. Two subtypes of bipolar cells can be identified when isolated in culture: large-field bipolar cells with extensive dendritic arbors, and small-field bipolar cells with one or two dendritic branches. Under voltage-clamp, glycine elicited significant current responses from small-field cells, but not from large-field bipolar cells. Although all bipolar cells displayed GABA-activated chloride currents mediated by both GABA(A) and GABA(C) receptors, the small-field bipolar cells showed a significantly greater contribution from GABA(A) receptors. The results of the present study reveal for the first time that the relative expression of the two classes of GABA receptor on each bipolar cell type correlates with cell morphology and the presence of the glycine receptor.
Collapse
Affiliation(s)
- H Qian
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The basis of the duplex theory of vision is examined in view of the dazzling array of data on visual pigment sequences and the pigments they form, on the microspectrophotometry measurements of single photoreceptor cells, on the kinds of photoreceptor cascade enzymes, and on the electrophysiological properties of photoreceptors. The implications of the existence of five distinct visual pigment families are explored, especially with regard to what pigments are in what types of photoreceptors, if there are different phototransduction enzymes associated with different types of photoreceptors, and if there are electrophysiological differences between different types of cones.
Collapse
Affiliation(s)
- T Ebrey
- University of Washington, Seattle 98195, USA
| | | |
Collapse
|
37
|
Shiells RA, Falk G. Activation of Ca2+--calmodulin kinase II induces desensitization by background light in dogfish retinal 'on' bipolar cells. J Physiol 2000; 528 Pt 2:327-38. [PMID: 11034622 PMCID: PMC2270140 DOI: 10.1111/j.1469-7793.2000.00327.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 07/26/2000] [Indexed: 11/28/2022] Open
Abstract
Retinal 'on' bipolar cells possess a metabotropic glutamate receptor (mGluR6) linked to the control of a G-protein and cGMP-activated channels which functions to generate high synaptic amplification of rod signals under dark-adapted conditions. Desensitization of 'on' bipolar cells is initiated by a rise in Ca2+ during background light too weak to adapt rod photoreceptors. Desensitization could also be elicited by raising intracellular Ca2+ above 1 microM. In order to investigate the mechanism of desensitization, whole-cell current responses to brief flashes and to steps of light were obtained from voltage-clamped 'on' bipolar cells in dark-adapted dogfish retinal slices. The inclusion of Ca2+-calmodulin kinase II (CaMKII) inhibitor peptides in the patch pipette solutions not only blocked desensitization of 'on' bipolar cells by dim background light and by 50 microM Ca2+, but also increased their flash sensitivity. The substrate of phosphorylation by CaMKII is the 'on' bipolar cell cGMP-activated channels. Desensitization probably results from a reduction in their sensitivity to cGMP and a voltage-dependent decrease in their conductance. A role for protein kinase C (PKC) in this process was excluded since activating PKC independently of Ca2+ with the phorbol ester PMA failed to induce desensitization of 'on' bipolar cells.
Collapse
Affiliation(s)
- R A Shiells
- Biophysics Unit, Physiology Department, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
38
|
Pugh E, Lamb T. Chapter 5 Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80008-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Abstract
An important recent advance in the understanding of vertebrate photoreceptor light adaptation has come from the discovery that as many as eight distinct molecular mechanisms may be involved, and the realization that one of the principal mechanisms is not dependent on calcium. Quantitative analysis of these mechanisms is providing new insights into the nature of rod photoreceptor light adaptation.
Collapse
Affiliation(s)
- E N Pugh
- FM Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, Institute of Neurological Sciences, Stellar-Chance Laboratories, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6069, USA.
| | | | | |
Collapse
|
40
|
Shiells RA, Falk G. A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal 'on' bipolar cells. J Physiol 1999; 514 ( Pt 2):343-50. [PMID: 9852318 PMCID: PMC2269065 DOI: 10.1111/j.1469-7793.1999.343ae.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 11/20/1998] [Indexed: 11/28/2022] Open
Abstract
1. This investigation was to determine the extent to which retinal 'on' bipolar cells contribute to the adaptive changes that occur with light, which enable the rod visual system to operate over a wide range of ambient light intensities, and to elucidate the underlying adaptive mechanism. 2. Whole-cell voltage clamp recordings were obtained from bipolar cells in dark-adapted dogfish retinal slices. Current responses to brief flashes and steps of light were analysed. 'On' bipolar cell inward current light responses are mediated by a metabotropic glutamate receptor linked to the control of a cGMP cascade, with cGMP opening cation channels. Outward current responses to light of 'off' bipolar cells are mediated by the closure of ionotropic glutamate receptor channels. 3. When Ca2+ buffer was omitted from the patch pipette solution, 'on' bipolar cells rapidly desensitized to steps of light as dim as one rhodopsin molecule bleached per rod per second (1 Rh* s-1), whereas 'off' bipolar cells did not desensitize. Responses of 'on' bipolar cells to flashes in the presence of dim backgrounds recovered after a delay, but with diminished sensitivity, i.e. the cells adapted. 4. With the Ca2+ chelator BAPTA in the patch pipette solution, step responses of 'on' bipolar cells were sustained and flash responses following steps showed rapid recovery. Buffering Ca2+ in the patch pipette solution to 1 microM prevented desensitization, whereas 50 microM free Ca2+ reduced the 'on' bipolar cell flash responses, suppressed inward dark current and decreased input conductance. 5. We conclude that a major component of adaptation of the visual system is due to a reduction in gain at the rod-'on' bipolar cell synapse as a result of Ca2+ loading of the dendrites when their cGMP-gated cation channels open with light.
Collapse
Affiliation(s)
- R A Shiells
- Biophysics Unit, Physiology Department, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
41
|
Abstract
Skates (Raja erinacea and R. ocellata) are among the few animals that have an exclusively rod retina. However, skate rods are unusual in that they are capable of adapting to extremely high levels of illumination that initially saturate the rod photocurrent. This adaptive process restores the ability of the visual cells to respond to incremental photic stimuli and enables them to function under ambient conditions that are subserved by the cone mechanism in mixed (rod/cone) retinae. As a first step towards exploring the molecular basis of visual adaptation in the skate retina, we have cloned and analyzed the opsin cDNA from a skate retina library. The cDNA codes for a protein 354 amino acids (aa) long and 39.7 kDa predicted molecular mass, and labels a single abundant transcript of 1.7 kb in retinal RNA. Amino acid alignments and a parsimony analysis of nucleotide alignments show the skate opsin to be homologous to other rod opsins. An analysis of the aa sequence reveals a high degree of conservation of those residues thought to be important for most aspects of rhodopsin function. However, a few critical aa replacements may indicate alterations in the interactions of skate rhodopsin with other proteins in the phototransduction cascade. In particular, replacements of Glu150 with serine and Cys323 with leucine are in cytoplasmic domains thought to interact with transducin and rhodopsin kinase. The latter change eliminates one of the conserved acylation sites in the carboxyl terminal tail. These substitutions increase the similarity of the cytoplasmic domains of skate opsin to those of blue-sensitive visual pigments.
Collapse
Affiliation(s)
- J O'Brien
- Department of Ophthalmology and Visual Sciences, Univeristy of Illinois College of Medicine, Chicago 60612, USA
| | | | | |
Collapse
|
42
|
Polygenic disease and retinitis pigmentosa: albinism exacerbates photoreceptor degeneration induced by the expression of a mutant opsin in transgenic mice. J Neurosci 1997. [PMID: 8987813 DOI: 10.1523/jneurosci.16-24-07853.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of a mouse opsin transgene containing three point mutations (V20G, P23H, and P27L; termed VPP) causes a progressive photoreceptor degeneration that resembles in many important respects that seen in patients with autosomal dominant retinitis pigmentosa caused by a P23H point mutation. We have attempted to determine whether the degree of degeneration induced by expression of the transgene is influenced by albinism, a genetically mediated recessive trait that results in a deficiency in melanin formation in pigmented tissues throughout the body. Litters of albino and pigmented mice (normal as well as transgenic) were reared in either darkness or cyclic light. Retinal structure and function were evaluated by light microscopy, electroretinography (ERG), and retinal densitometry. The data were consistent in demonstrating that at similar ages, the extent of photoreceptor degeneration was greater in transgenic albino animals than in their pigmented counterparts. The albino VPP mice had significantly fewer cell bodies in the outer nuclear layer of the retina, a larger reduction in ERG amplitude, and a lower rhodopsin content in the rod photoreceptors. These structural and functional differences could not be attributed to the greater level of retinal illumination experienced by the albino retina under normal ambient conditions, because they persisted when pigmented and albino mice were reared in darkness from birth. Although the explanation remains unclear, our findings indicate that the rate of photoreceptor degeneration in VPP mice is adversely affected by the existence of the albino phenotype, a factor that may have implications for the counseling of human patients with retinitis pigmentosa and a familial history of other genetic disorders.
Collapse
|
43
|
Naash MI, Ripps H, Li S, Goto Y, Peachey NS. Polygenic disease and retinitis pigmentosa: albinism exacerbates photoreceptor degeneration induced by the expression of a mutant opsin in transgenic mice. J Neurosci 1996; 16:7853-8. [PMID: 8987813 PMCID: PMC6579236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1996] [Revised: 09/24/1996] [Accepted: 09/27/1996] [Indexed: 02/03/2023] Open
Abstract
Expression of a mouse opsin transgene containing three point mutations (V20G, P23H, and P27L; termed VPP) causes a progressive photoreceptor degeneration that resembles in many important respects that seen in patients with autosomal dominant retinitis pigmentosa caused by a P23H point mutation. We have attempted to determine whether the degree of degeneration induced by expression of the transgene is influenced by albinism, a genetically mediated recessive trait that results in a deficiency in melanin formation in pigmented tissues throughout the body. Litters of albino and pigmented mice (normal as well as transgenic) were reared in either darkness or cyclic light. Retinal structure and function were evaluated by light microscopy, electroretinography (ERG), and retinal densitometry. The data were consistent in demonstrating that at similar ages, the extent of photoreceptor degeneration was greater in transgenic albino animals than in their pigmented counterparts. The albino VPP mice had significantly fewer cell bodies in the outer nuclear layer of the retina, a larger reduction in ERG amplitude, and a lower rhodopsin content in the rod photoreceptors. These structural and functional differences could not be attributed to the greater level of retinal illumination experienced by the albino retina under normal ambient conditions, because they persisted when pigmented and albino mice were reared in darkness from birth. Although the explanation remains unclear, our findings indicate that the rate of photoreceptor degeneration in VPP mice is adversely affected by the existence of the albino phenotype, a factor that may have implications for the counseling of human patients with retinitis pigmentosa and a familial history of other genetic disorders.
Collapse
Affiliation(s)
- M I Naash
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
44
|
van de Grind WA, Lankheet MJ, van Wezel RJ, Rowe MH, Hulleman J. Gain control and hyperpolarization level in cat horizontal cells as a function of light and dark adaptation. Vision Res 1996; 36:3969-85. [PMID: 9068850 DOI: 10.1016/s0042-6989(96)00150-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
First a model is presented that accurately summarizes the dynamic properties of cat horizontal (H-) cells under photopic conditions as measured in our previous work. The model predicts that asymmetries in response to dark as compared to light flashes are flash-duration dependent. This somewhat surprising prediction is tested and confirmed in intracellular recordings from the optically intact in vivo eye of the cat (Experiment 1). The model implies that the gain of H-cells should be related rather directly to the sustained (baseline) membrane potential. We performed three additional experiments to test this idea. Experiment 2 concerns response vs intensity (R-I-) curves for various flash-diameters and background-sizes with background luminance varying over a 4 log unit range. Results support the assumption of a rather strict coupling between flash sensitivity (gain) and the sustained level of hyperpolarization. In Experiment 3 we investigate this relation for both dark and light flashes given on each of four background light levels. The results suggest that there are fixed minimum and maximum hyperpolarization levels, and that the baseline hyperpolarization for a given illumination thus also sets the available range for dark and light flash-responses. The question then arises whether, or how this changes during dark adaptation, when the rod contribution to H-cell responses gradually increases. The fourth experiment therefore studies the relationship between gain and hyperpolarization level during prolonged dark-adaptation. The results show that the rod contribution increases the polarization range of H-cells, but that the gain and polarization level nevertheless remain directly coupled. H-cell models relying on a close coupling between polarization level and gain thus remain attractive options.
Collapse
Affiliation(s)
- W A van de Grind
- Helmholtz Institute and Comparative Physiology, Universiteit Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Schlemermeyer E, Chappell RL. Two classes of bipolar cell in the retina of the skate Raja erinacea. JOURNAL OF NEUROCYTOLOGY 1996; 25:625-35. [PMID: 9013424 DOI: 10.1007/bf02284829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used immunoreactions against serotonin and protein kinase C to visualize two distinct classes of bipolar cell in the all-rod retina of the skate, Raja erinacea. To enhance the immunoreaction in serotonin-accumulating bipolar cells, prior to fixation, some retinas were incubated in Ringer's solution containing serotonin and pargyline. We found the somata of serotonin-accumulating bipolar cells to be located slightly distal to the midline of the inner nuclear layer. With increasing eccentricity from the visual streak, the size of the perikarya increases, concomitant with a decline in density of their distribution. Dendrites emanate from stout primary stalks and branch out before reaching the outer plexiform layer. Axons are bistratified within the inner plexiform layer with ramifications at the border of strata 1 and 2 and in stratum 4. The overall morphology of serotonin-accumulating bipolar cells is similar to that of serotonin-accumulating OFF bipolar cells of other non-mammalian vertebrates. Protein kinase C immunoreactive cells display the typical appearance of rod bipolar cells. Somata of protein kinase C immunoreactive bipolar cells are spindle-shaped and located distal to the serotonin-accumulating bipolar cells. Dendrites of these bipolars do not ramify before reaching the outer plexiform layer. Thin axons of protein kinase C immunoreactive bipolar cells end in large, club-shaped terminals in stratum 5 of the inner plexiform layer, bearing a striking similarity to axon terminals of mammalian ON rod bipolar cells. Our findings suggest that the all-rod retina of the skate contains at least two distinct vertical pathways including an OFF bipolar cell pathway in addition to a classical rod ON bipolar pathway.
Collapse
|
46
|
Stabell U, Stabell B. Long-term rod dark adaptation in man. Threshold measurements, rhodopsin regeneration and allosteric sensitivity regulation. An evaluation. Scand J Psychol 1996; 37:259-68. [PMID: 8856998 DOI: 10.1111/j.1467-9450.1996.tb00658.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent evidence strongly suggests that the relationship between threshold elevation (T) and fraction of bleached rhodopsin (B), obtained during a major, middle period of long-term rod dark adaptation in man, is well described by a power function, i.e., T = k.Bn, where k is a multiplicative constant and n is the exponent. Due primarily to the low reliability of measurements of rhodopsin regeneration, however, the exponent n of the power function cannot, at present, be given an exact value. Available information indicates that the value of the exponent ranges between 2.4 and 4. Implications of this uncertainty are discussed within the framework of the allosteric, tetrameric model of rod dark adaptation. It is concluded that this model in its simplest form may only offer a first approximation of the real system implicated in the process.
Collapse
Affiliation(s)
- U Stabell
- Department of Psychology, University of Oslo, Norway
| | | |
Collapse
|
47
|
Chappell RL, Rosenstein FJ. Pharmacology of the skate electroretinogram indicates independent ON and OFF bipolar cell pathways. J Gen Physiol 1996; 107:535-44. [PMID: 8722565 PMCID: PMC2217008 DOI: 10.1085/jgp.107.4.535] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Organization of afferent information into parallel ON and OFF pathways is a critical feature of the vertebrate visual system. All afferent visual information in the vertebrate retina reaches the inner plexiform layer (IPL) via bipolar cells. It is at the bipolar cell level that separation of ON and OFF information first appears for afferent information from cones. This may also hold true for the rod pathway of cold-blooded vertebrates, but not for mammals. The all-rod retina of the skate presents an opportunity to examine such pathways in a retina having but a single class of photoreceptor. Immunocytochemical evidence suggests that both ON and OFF bipolar cells are present in the skate retina. We examined the pharmacology of the skate electroretinogram (ERG) to test the hypothesis that independent ON and OFF bipolar cell pathways are functional as rod afferent pathways from outer to inner plexiform layer in the skate. 100 microM 2-amino-4-phosphonobutyric acid (APB) reversibly blocked the skate ERG b-wave. A small d-wave-like OFF component of the ERG revealed by DC recording of response to a prolonged (10 s) flash of light was reduced or blocked by 5 mM kynurenic acid (KYN). We found that addition of 200 microM picrotoxin to the Ringer's solution revealed prominent ON and OFF components of the skate ERG while reducing the c-wave. These ON and OFF components were reversibly blocked by 100 microM APB and 5 mM KYN, respectively. Reversible block of the OFF component by KYN was also accomplished in the presence of 500 microM N-methyl-DL-aspartate. From these findings, we conclude that ON and OFF bipolar cells are likely to be functional as parallel afferent interplexiform pathways in the all-rod retina of the skate.
Collapse
Affiliation(s)
- R L Chappell
- Department of Biological Sciences, Hunter College, City University of New York, New York 10021, USA
| | | |
Collapse
|
48
|
Abstract
We present a model of the chemotactic mechanism of Escherichia coli that exhibits both initial excitation and eventual complete adaptation to any and all levels of stimulus ("exact" adaptation). In setting up the reaction network, we use only known interactions and experimentally determined cytosolic concentrations. Whenever possible, rate coefficients are first assigned experimentally measured values; second, we permit some variation in these rate coefficients by using a multiple-well optimization technique and incremental adjustment to obtain values that are sufficient to engender initial response to stimuli (excitation) and an eventual return of behavior to baseline (adaptation). The predictions of the model are similar to the observed behavior of wild-type bacteria in regard to the time scale of excitation in the presence of both attractant and repellent. The model predicts a weaker response to attractant than that observed experimentally, and the time scale of adaptation does not depend as strongly upon stimulant concentration as does that for wild-type bacteria. The mechanism responsible for long-term adaptation is local rather than global: on addition of a repellent or attractant, the receptor types not sensitive to that attractant or repellent do not change their average methylation level in the long term, although transient changes do occur. By carrying out a phenomenological simulation of bacterial chemotaxis, we find that the model is insufficiently sensitive to effect taxis in a gradient of attractant. However, by arbitrarily increasing the sensitivity of the motor to the tumble effector (phosphorylated CheY), we can obtain chemotactic behavior.
Collapse
Affiliation(s)
- D C Hauri
- Department of Chemistry, Stanford University, California 94305
| | | |
Collapse
|
49
|
Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 1993; 7:61-85. [PMID: 8318167 DOI: 10.1007/bf02780609] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retina pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.
Collapse
Affiliation(s)
- D R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The bleaching and regeneration of rhodopsin in the skate retina was studied by means of fundus reflectometry, both in the normal eyecup preparation and after the retina had been detached and then replaced on the surface of the pigment epithelium (RPE). After bleaching virtually all the rhodopsin in the retinal test area of the normal eyecup, more than 90% of the photopigment was reformed after about 2 hr in darkness; over most of this time course, rhodopsin density rose linearly at a rate of 0.875% min-1 with a half-time of 55 min. Detaching the retina from its pigment epithelium resulted in a number of abnormalities, both structural and functional. Histological examination of the detached/replaced (D/R) retina showed striking alterations in the structural integrity of the RPE cells at their interface with the neural retina. The cells appeared vacuolated and misshapen, and the apical processes of the RPE, which normally ensheath the receptor outer segments, were shredded and free of their association with the visual cells. These morphological changes, as well as dilution of the IRBP content of the subretinal space caused by separation of the tissues, appear to be the main factors contributing to the functional abnormalities in rhodopsin kinetics. But despite these abnormalities and the persistent detachment, the rate of regeneration and the amount of rhodopsin reformed after bleaching were reduced by less than 50% of their normal values. The fact that a significant fraction of the bleached rhodopsin was regenerated under these conditions indicates that 11-cis retinal formed in the RPE was able to traverse a much greater than normal subretinal space to reach the opsin-bearing photoreceptor membranes.
Collapse
Affiliation(s)
- Y Sun
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Chicago
| | | |
Collapse
|