1
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
2
|
Sato K, Liu Y, Yamashita T, Ohuchi H. The medaka mutant deficient in eyes shut homolog exhibits opsin transport defects and enhanced autophagy in retinal photoreceptors. Cell Tissue Res 2023; 391:249-267. [PMID: 36418571 DOI: 10.1007/s00441-022-03702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
Eyes shut homolog (EYS) encodes a proteoglycan and the human mutation causes retinitis pigmentosa type 25 (RP25) with progressive retinal degeneration. RP25 most frequently affects autosomal recessive RP patients with many ethnic backgrounds. Although studies using RP models have facilitated the development of therapeutic medications, Eys has been lost in rodent model animals. Here we examined the roles for Eys in the maintenance of photoreceptor structure and function by generating eys-null medaka fish using the CRISPR-Cas9 system. Medaka EYS protein was present near the connecting cilium of wild-type photoreceptors, while it was absent from the eys-/- retina. The mutant larvae exhibited a reduced visual motor response compared with wild-type. In contrast to reported eys-deficient zebrafish at the similar stage, no retinal cell death was detected in the 8-month post-hatching (8-mph) medaka eys mutant. Immunohistochemistry showed a significant reduction in the length of cone outer segments (OSs), retention of OS proteins in the inner segments of photoreceptors, and abnormal filamentous actin network at the base of cone OSs in the mutant retina by 8 mph. Electron microscopy revealed aberrant structure of calyceal processes, numerous vesiculation and lamellar interruptions, and autophagosomes in the eys-mutant cone photoreceptors. In situ hybridization showed an autophagy component gene, gabarap, was ectopically expressed in the eys-null retina. These results suggest eys is required for regeneration of OS, especially of cone photoreceptors, and transport of OS proteins by regulating actin filaments. Enhanced autophagy may delay the progression of retinal degeneration when lacking EYS in the medaka retina.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Yang Liu
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| |
Collapse
|
3
|
Sajovic J, Meglič A, Volk M, Maver A, Jarc-Vidmar M, Hawlina M, Fakin A. Stargardt-like Clinical Characteristics and Disease Course Associated with Variants in the WDR19 Gene. Genes (Basel) 2023; 14:genes14020291. [PMID: 36833218 PMCID: PMC9957452 DOI: 10.3390/genes14020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Variants in WDR19 (IFT144) have been implicated as another possible cause of Stargardt disease. The purpose of this study was to compare longitudinal multimodal imaging of a WDR19-Stargardt patient, harboring p.(Ser485Ile) and a novel c.(3183+1_3184-1)_(3261+1_3262-1)del variant, with 43 ABCA4-Stargardt patients. Age at onset, visual acuity, Ishihara color vision, color fundus, fundus autofluorescence (FAF), spectral-domain optical coherence tomography (OCT) images, microperimetry and electroretinography (ERG) were evaluated. First symptom of WDR19 patient was nyctalopia at the age of 5 years. After the age of 18 years, OCT showed hyper-reflectivity at the level of the external limiting membrane/outer nuclear layer. There was abnormal cone and rod photoreceptor function on ERG. Widespread fundus flecks appeared, followed by perifoveal photoreceptor atrophy. Fovea and peripapillary retina remained preserved until the latest exam at 25 years of age. ABCA4 patients had median age of onset at 16 (range 5-60) years and mostly displayed typical Stargardt triad. A total of 19% had foveal sparing. In comparison to ABCA4 patients, the WDR19 patient had a relatively large foveal preservation and severe rod photoreceptor impairment; however, it was still within the ABCA4 disease spectrum. Addition of WDR19 in the group of genes producing phenocopies of Stargardt disease underlines the importance of genetic testing and may help to understand its pathogenesis.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marija Volk
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Šlajmerjeva 4, 1000 Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Šlajmerjeva 4, 1000 Ljubljana, Slovenia
| | - Martina Jarc-Vidmar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
4
|
Kannabiran C, Parameswarappa D, Jalali S. Genetics of Inherited Retinal Diseases in Understudied Populations. Front Genet 2022; 13:858556. [PMID: 35295952 PMCID: PMC8919366 DOI: 10.3389/fgene.2022.858556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa is one of the major forms of inherited retinal dystrophy transmitted in all Mendelian and non-Mendelian forms of inheritance. It involves the loss of retinal photoreceptor cells with severe loss of vision or blindness within the first 2 decades of life. RP occurs at a relatively high prevalence in India and is often associated with consanguinity in certain South Asian communities where this practice is customary. This review describes the studies that have been published with regard to genetics of retinitis pigmentosa in India and neighboring South Asian countries. These populations have been understudied in these aspects although to a variable degree from one country to another. Genetic studies on RP in India have been carried out with a range of methods aimed at detecting specific mutations, to screening of candidate genes or selected genomic regions, homozygosity mapping to whole genome sequencing. These efforts have led to a molecular genetic characterization of RP in Indian families. Similar studies on large extended families from Pakistan have provided insight into several novel genes underlying the pathogenesis of these diseases. The extreme degree of clinical and genetic heterogeneity of RP renders it challenging to identify the associated genes in these populations, and to translate the research output towards better management of the disease, as there are no unifying genetic features that are characteristic of any population so far.
Collapse
Affiliation(s)
- Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, Hyderabad, India.,L. V. Prasad Eye Institute, Hyderabad, India
| | - Deepika Parameswarappa
- L. V. Prasad Eye Institute, Hyderabad, India.,Smt Kannuri Santhamma Centre for Retina Vitreous Services, Hyderabad, India
| | - Subhadra Jalali
- L. V. Prasad Eye Institute, Hyderabad, India.,Smt Kannuri Santhamma Centre for Retina Vitreous Services, Hyderabad, India
| |
Collapse
|
5
|
Cundy O, Broadgate S, Halford S, MacLaren RE, Shanks ME, Clouston P, Gilhooley MJ, Downes SM. "Genetic and clinical findings in an ethnically diverse retinitis pigmentosa cohort associated with pathogenic variants in EYS". Eye (Lond) 2020; 35:1440-1449. [PMID: 32728228 DOI: 10.1038/s41433-020-1105-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The EYS gene is an important cause of autosomal recessive retinitis pigmentosa (arRP). The objective of this study is to report on novel pathogenic variants in EYS and the range of associated phenotypes. SUBJECTS AND METHODS This retrospective case series at a tertiary referral centre for inherited retinal diseases describes patients with an IRD and at least two variants in the EYS gene. Phenotyping included multimodal retinal imaging; genotyping molecular genetic analysis using targeted next generation sequencing. Sanger sequencing verification and analysis of novel variants using in silico approaches to determine their predicted pathogenicity. RESULTS Eight male and four female patients were included. Age at onset ranged from 11 to 62 years with variable symptom presentation; ten patients showed classical features of retinitis pigmentosa, albeit with great variation in disease severity and extent. Two patients had atypical phenotypes: one with localised inferior sector pigmentation and a mild RP phenotype with changes predominantly at the posterior pole. Eighteen variants in EYS were identified, located across the gene: six were novel. Eight variants were missense, two altered splicing, one was a whole exon duplication and the remainder were predicted to result in premature truncation of the protein. CONCLUSION The marked variability in severity and age of onset in most patients in this ethnically diverse cohort adds to growing evidence that that mild phenotypes are associated with EYS variants. Similarly, the two atypical cases add to the growing diversity of EYS disease as do the six novel pathogenic variants described.
Collapse
Affiliation(s)
- Olivia Cundy
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Morag E Shanks
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, OX3 7LE, UK
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, OX3 7LE, UK
| | - Michael J Gilhooley
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK. .,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK. .,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
6
|
Lin HH, Lo YL, Wang WC, Huang KY, I KY, Chang GW. Overexpression of FAM46A, a Non-canonical Poly(A) Polymerase, Promotes Hemin-Induced Hemoglobinization in K562 Cells. Front Cell Dev Biol 2020; 8:414. [PMID: 32528962 PMCID: PMC7264091 DOI: 10.3389/fcell.2020.00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023] Open
Abstract
FAM46A belongs to the FAM46 subfamily of the nucleotidyltransferase-fold superfamily and is predicted to be a non-canonical poly(A) polymerase. FAM46A has been linked to several human disorders including retinitis pigmentosa, bone abnormality, cancer, and obesity. However, its molecular and functional characteristics are largely unknown. We herein report that FAM46A is expressed in cells of the hematopoietic system and plays a role in hemin-induced hemoglobinization. FAM46A is a nucleocytoplasmic shuttle protein modified by Tyr-phosphorylation only in the cytosol, where it is closely associated with ER. On the other hand, it is located proximal to the chromatin regions of active transcription in the nucleus. FAM46A is a cell cycle-dependent poly-ubiquitinated short-lived protein degraded mostly by proteasome and its overexpression inhibits cell growth and promotes hemin-induced hemoglobinization in K562 cell. Site-directed mutagenesis experiments confirm the non-canonical poly(A) polymerase activity of FAM46A is essential for enhanced hemin-induced hemoglobinization. In summary, FAM46A is a novel poly(A) polymerase that functions as a critical intracellular modulator of hemoglobinization.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Ling Lo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chih Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Retinitis Pigmentosa with EYS Mutations Is the Most Prevalent Inherited Retinal Dystrophy in Japanese Populations. J Ophthalmol 2015; 2015:819760. [PMID: 26161267 PMCID: PMC4487330 DOI: 10.1155/2015/819760] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to gain information about disease prevalence and to identify the responsible genes for inherited retinal dystrophies (IRD) in Japanese populations. Clinical and molecular evaluations were performed on 349 patients with IRD. For segregation analyses, 63 of their family members were employed. Bioinformatics data from 1,208 Japanese individuals were used as controls. Molecular diagnosis was obtained by direct sequencing in a stepwise fashion utilizing one or two panels of 15 and 27 genes for retinitis pigmentosa patients. If a specific clinical diagnosis was suspected, direct sequencing of disease-specific genes, that is, ABCA4 for Stargardt disease, was conducted. Limited availability of intrafamily information and decreasing family size hampered identifying inherited patterns. Differential disease profiles with lower prevalence of Stargardt disease from European and North American populations were obtained. We found 205 sequence variants in 159 of 349 probands with an identification rate of 45.6%. This study found 43 novel sequence variants. In silico analysis suggests that 20 of 25 novel missense variants are pathogenic. EYS mutations had the highest prevalence at 23.5%. c.4957_4958insA and c.8868C>A were the two major EYS mutations identified in this cohort. EYS mutations are the most prevalent among Japanese patients with IRD.
Collapse
|
8
|
Littink KW, den Hollander AI, Cremers FPM, Collin RWJ. The power of homozygosity mapping: discovery of new genetic defects in patients with retinal dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:345-51. [PMID: 22183352 DOI: 10.1007/978-1-4614-0631-0_45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karin W Littink
- The Rotterdam Eye Hospital, 70030, 3000 LM, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
9
|
Cook T, Zelhof A, Mishra M, Nie J. 800 facets of retinal degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:331-68. [PMID: 21377630 DOI: 10.1016/b978-0-12-384878-9.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In today's world of genomics and large computational analyses, rapid progress has been made in identifying genes associated with human retinal diseases. Nevertheless, before significant advances toward effective therapeutic intervention is made, a clearer understanding of the molecular and cellular role of these gene products in normal and diseased photoreceptor cell biology is required. Given the complexity of the vertebrate retina, these advancements are unlikely to be revealed in isolated human cell lines, but instead, will require the use of numerous model systems. Here, we describe several parallels between vertebrate and invertebrate photoreceptor cell biology that are beginning to emerge and advocate the use of Drosophila melanogaster as a powerful genetic model system for uncovering molecular mechanisms of human retinal pathologies, in particular photoreceptor neurodegeneration.
Collapse
Affiliation(s)
- T Cook
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
10
|
Barragán I, Borrego S, Pieras JI, González-del Pozo M, Santoyo J, Ayuso C, Baiget M, Millan JM, Mena M, Abd El-Aziz MM, Audo I, Zeitz C, Littink KW, Dopazo J, Bhattacharya SS, Antiñolo G. Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa. Hum Mutat 2010; 31:E1772-800. [PMID: 21069908 PMCID: PMC3045506 DOI: 10.1002/humu.21334] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. We have recently identified a new gene(EYS) encoding an ortholog of Drosophila space maker (spam) as a commonly mutated gene in autosomal recessive RP. In the present study, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28)are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. We are also presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature: a putative coiled-coil domain.Majority of the mutations in the arRP patients have been found within the domain structures of EYS. The minimum observed prevalence of distinct EYS mutations in our group of patients is of 15.9% (15/94), confirming a major involvement of EYS in the pathogenesis of arRP in the Spanish population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study.
Collapse
Affiliation(s)
- Isabel Barragán
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Khan MI, Collin RW, Arimadyo K, Micheal S, Azam M, Qureshi N, Faradz SM, den Hollander AI, Qamar R, Cremers FP. Missense mutations at homologous positions in the fourth and fifth laminin A G-like domains of eyes shut homolog cause autosomal recessive retinitis pigmentosa. Mol Vis 2010; 16:2753-9. [PMID: 21179430 PMCID: PMC3003713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 12/09/2010] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To describe two novel mutations in the eyes shut homolog (EYS) gene in two families with autosomal recessive retinitis pigmentosa (arRP) from Pakistan and Indonesia. METHODS Genome-wide linkage and homozygosity mapping were performed using single nucleotide polymorphism microarray analysis in affected members of the two arRP families. Sequence analysis was performed to identify genetic changes in protein coding exons of EYS. RESULTS In the Indonesian and Pakistani families, homozygous regions encompassing the EYS gene at 6q12 were identified, with maximum LOD scores of 1.8 and 3.6, respectively. Novel missense variants in the EYS gene (p.D2767Y and p.D3028Y) were found in the Pakistani and Indonesian families, respectively, that co-segregate with the disease phenotype. Interestingly, the missense variants are located at the same homologous position within the fourth and fifth laminin A G-like domains of EYS. CONCLUSIONS To date, mostly protein-truncating mutations have been described in EYS, while only few patients have been described with pathogenic compound heterozygous missense mutations. The mutations p.D2767Y and p.D3028Y described in this study affect highly conserved residues at homologous positions in laminin A G-like domains and support the notion that missense mutations in EYS can cause arRP.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kentar Arimadyo
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Division of Human Genetics, Center for Biomedical Research,
Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Shazia Micheal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Maleeha Azam
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nadeem Qureshi
- Vitreoretina Services, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | - Sultana M.H. Faradz
- Division of Human Genetics, Center for Biomedical Research,
Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Anneke I. den Hollander
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan,Shifa College of Medicine, Islamabad, Pakistan
| | - Frans P.M. Cremers
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Littink KW, van den Born LI, Koenekoop RK, Collin RWJ, Zonneveld MN, Blokland EAW, Khan H, Theelen T, Hoyng CB, Cremers FPM, den Hollander AI, Klevering BJ. Mutations in the EYS gene account for approximately 5% of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology 2010; 117:2026-33, 2033.e1-7. [PMID: 20537394 DOI: 10.1016/j.ophtha.2010.01.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE To determine the prevalence of mutations in the EYS gene in a cohort of patients affected by autosomal recessive retinitis pigmentosa (RP) and to describe the associated phenotype. DESIGN Case series. PARTICIPANTS Two hundred forty-five patients affected by autosomal recessive RP. METHODS All coding exons of EYS were screened for mutations by polymerase chain reaction amplification and sequence analysis. All 12 patients carrying mutations in EYS were re-examined, which included Goldmann kinetic perimetry, electroretinography, and high-resolution spectral-domain optical coherence tomography (OCT). MAIN OUTCOME MEASURES DNA sequence variants, best-corrected visual acuity, fundus appearance, visual field assessments using Goldmann kinetic perimetry, electroretinogram responses, and OCT images. RESULTS Nine novel truncating mutations and one previously described mutation in EYS were identified in 11 families. In addition, 18 missense changes of uncertain pathogenicity were found. Patients carrying mutations in EYS demonstrated classic RP with night blindness as the initial symptom, followed by gradual constriction of the visual field and a decline of visual acuity later in life. The onset of symptoms typically occurred between the second and fourth decade of life. The fundus displayed bone spicules increasing in density with age and generalized atrophy of the retinal pigment epithelium and choriocapillaris with relative sparing of the posterior pole until later in the disease process, when atrophic macular changes occurred. CONCLUSIONS Mutations in EYS account for approximately 5% of autosomal recessive RP patients in a cohort of patients consisting predominantly of patients of western European ancestry. The EYS-associated RP phenotype is typical and fairly homogeneous in most patients.
Collapse
|
13
|
Huang Y, Zhang J, Li C, Yang G, Liu M, Wang QK, Tang Z. Identification of a novel homozygous nonsense mutation in EYS in a Chinese family with autosomal recessive retinitis pigmentosa. BMC MEDICAL GENETICS 2010; 11:121. [PMID: 20696082 PMCID: PMC2927534 DOI: 10.1186/1471-2350-11-121] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/10/2010] [Indexed: 11/25/2022]
Abstract
Background Retinitis pigmentosa is the most important hereditary retinal degenerative disease, which has a high degree of clinical and genetic heterogeneity. More than half of all cases of retinitis pigmentosa are autosomal recessive (arRP), but the gene(s) causing arRP in most families has yet to be identified. The purpose of this study is to identify the genetic basis of severe arRP in a consanguineous Chinese family. Methods Linkage and haplotype analyses were used to define the chromosomal location of the pathogenic gene in the Chinese arRP family. Direct DNA sequence analysis of the entire coding region and exon-intron boundaries of EYS was used to determine the disease-causing mutation, and to demonstrate that the mutation co-segregates with the disease in the family. Results A single nucleotide substitution of G to T at nucleotide 5506 of EYS was identified in the Chinese arRP family. This change caused a substitution of a glutamic acid residue at codon 1,836 by a stop codon TAA (p.E1836X), and resulted in a premature truncated EYS protein with 1,835 amino acids. Three affected siblings in the family were homozygous for the p.E1836X mutation, while the other unaffected family members carried one mutant allele and one normal EYS allele. The nonsense mutation p.E1836X was not detected in 200 unrelated normal controls. Conclusions The EYS gene is a recently identified disease-causing gene for retinitis pigmentosa, and encodes the orthologue of Drosophila spacemaker. To date, there are only eight mutations in EYS that have been identified to cause arRP. Here we report one novel homozygous nonsense mutation of EYS in a consanguineous Chinese arRP family. Our study represents the first independent confirmation that mutations in EYS cause arRP. Additionally, this is the first EYS mutation identified in the Chinese population.
Collapse
Affiliation(s)
- Yukan Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Abd El-Aziz MM, El-Ashry MF, Barragan I, Marcos I, Borrego S, Antiñolo G, Bhattacharya SS. Molecular Genetic Analysis of Two Functional Candidate Genes in the Autosomal Recessive Retinitis Pigmentosa, RP25, Locus. Curr Eye Res 2009; 30:1081-7. [PMID: 16354621 DOI: 10.1080/02713680500351039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To identify the disease gene in five Spanish families with autosomal recessive retinitis pigmentosa (arRP) linked to the RP25 locus. Two candidate genes, EEF1A1 and IMPG1, were selected from the region between D6S280 and D6S1644 markers where the families are linked. The genes were selected as good candidates on the basis of their function, tissue expression pattern, and/or genetic data. METHODS A molecular genetic study was performed on DNA extracted from one parent and one affected member of each studied family. The coding exons, splice sites, and the 5' UTR of the genes were amplified by polymerase chain reaction (PCR). For mutation detection, direct sequence analysis was performed using the ABI 3100 automated sequencer. Segregation of an IMPG1 single nucleotide polymorphism (SNP) in all the families studied was analyzed by restriction enzyme digest of the amplified gene fragments. RESULTS In total, 15 SNPs were identified of which 7 were novel. Of the identified SNPs, one was insertion, two were deletions, five were intronic, six were missense, and one was located in the 5' UTR. These changes, however, were also identified in unaffected members of the families and/or 50 control Caucasians. The examined known IMPG1 SNP was not segregating with the disease phenotype but was correlating with the genetic data in all families studied. CONCLUSIONS Our results indicate that neither EEF1A1 nor IMPG1 could be responsible for RP25 in the studied families due to absence of any pathogenic variants. However, it is important to notice that the methodology used in this study cannot detect larger deletions that lie outside the screened regions or primer site mutations that exist in the heterozygous state. A role of both genes in other inherited forms of RP and/or retinal degenerations needs to be elucidated.
Collapse
Affiliation(s)
- Mai M Abd El-Aziz
- Department of Ophthalmology, Tanta University Hospital, Tanta, Egypt.
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 2008; 83:594-603. [PMID: 18976725 DOI: 10.1016/j.ajhg.2008.10.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/10/2008] [Accepted: 10/15/2008] [Indexed: 11/24/2022] Open
Abstract
In patients with autosomal-recessive retinitis pigmentosa (arRP), homozygosity mapping was performed for detection of regions harboring genes that might be causative for RP. In one affected sib pair, a shared homozygous region of 5.0 Mb was identified on chromosome 6, within the RP25 locus. One of the genes residing in this interval was the retina-expressed gene EGFL11. Several genes resembling EGFL11 were predicted just centromeric of EGFL11. Extensive long-range RT-PCR, combined with 5'- and 3'- RACE analysis, resulted in the identification of a 10-kb transcript, starting with the annotated exons of EGFL11 and spanning 44 exons and 2 Mb of genomic DNA. The transcript is predicted to encode a 3165-aa extracellular protein containing 28 EGF-like and five laminin A G-like domains. Interestingly, the second part of the protein was found to be the human ortholog of Drosophila eyes shut (eys), also known as spacemaker, a protein essential for photoreceptor morphology. Mutation analysis in the sib pair homozygous at RP25 revealed a nonsense mutation (p.Tyr3156X) segregating with RP. The same mutation was identified homozygously in three arRP siblings of an unrelated family. A frame-shift mutation (pPro2238ProfsX16) was found in an isolated RP patient. In conclusion, we identified a gene, coined eyes shut homolog (EYS), consisting of EGFL11 and the human ortholog of Drosophila eys, which is mutated in patients with arRP. With a size of 2 Mb, it is one of the largest human genes, and it is by far the largest retinal dystrophy gene. The discovery of EYS might shed light on a critical component of photoreceptor morphogenesis.
Collapse
|
17
|
EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 2008; 40:1285-7. [PMID: 18836446 PMCID: PMC2719291 DOI: 10.1038/ng.241] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/19/2008] [Indexed: 11/09/2022]
Abstract
Using a positional cloning approach supported by comparative genomics, we have identified a previously unreported gene, EYS, at the RP25 locus on chromosome 6q12 commonly mutated in autosomal recessive retinitis pigmentosa. Spanning over 2 Mb, this is the largest eye-specific gene identified so far. EYS is independently disrupted in four other mammalian lineages, including that of rodents, but is well conserved from Drosophila to man and is likely to have a role in the modeling of retinal architecture.
Collapse
|
18
|
Barragán I, Borrego S, Abd El-Aziz MM, El-Ashry MF, Abu-Safieh L, Bhattacharya SS, Antiñolo G. Genetic analysis of FAM46A in Spanish families with autosomal recessive retinitis pigmentosa: characterisation of novel VNTRs. Ann Hum Genet 2007; 72:26-34. [PMID: 17803723 DOI: 10.1111/j.1469-1809.2007.00393.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of retinal dystrophies characterised primarily by rod photoreceptor cell degeneration. Exhibiting great clinical and genetic heterogeneity, RP be inherited as an autosomal dominant (ad) and recessive (ar), X-linked (xl) and digenic disorder. RP25, a locus for arRP, was mapped to chromosome 6p12.1-q14.1 where several retinal dystrophy loci are located. A gene expressed in the retina, FAM46A, mapped within the RP25 locus, and computational data revealed its involvement in retinal signalling pathways. Therefore, we chose to perform molecular evaluation of this gene as a good candidate in arRP families linked to the RP25 interval. A comprehensive bioinformatic and retinal tissue expression characterisation of FAM46A was performed, together with mutation screening of seven RP25 families. Herein we present 4 novel sequence variants, of which one is a novel deletion within a low complexity region close to the initiation codon of FAM46A. Furthermore, we have characterised for the first time a coding tandem variation in the Caucasian population. This study reports on bioinformatic and moleculardata for the FAM46A gene that may give a wider insight into the putative function of this gene and its pathologic relevance to RP25 and other retinal diseases mapping within the 6q chromosomal interval.
Collapse
Affiliation(s)
- I Barragán
- Unidad Clínica de Genética y Reproducción, Hospitales Universitarios Virgen del Rocío, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Abd El-Aziz MM, Barragan I, O'Driscoll C, Borrego S, Abu-Safieh L, Pieras JI, El-Ashry MF, Prigmore E, Carter N, Antinolo G, Bhattacharya SS. Large-scale molecular analysis of a 34 Mb interval on chromosome 6q: major refinement of the RP25 interval. Ann Hum Genet 2007; 72:463-77. [PMID: 18510646 PMCID: PMC2689154 DOI: 10.1111/j.1469-1809.2008.00455.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A large scale bioinformatics and molecular analysis of a 34 Mb interval on chromosome 6q12 was undertaken as part of our ongoing study to identify the gene responsible for an autosomal recessive retinitis pigmentosa (arRP) locus, RP25. Extensive bioinformatics analysis indicated in excess of 110 genes within the region and we also noted unfinished sequence on chromosome 6q in the Human Genome Database, between 58 and 61.2 Mb. Forty three genes within the RP25 interval were considered as good candidates for mutation screening. Direct sequence analysis of the selected genes in 7 Spanish families with arRP revealed a total of 244 sequence variants, of which 67 were novel but none were pathogenic. This, together with previous reports, excludes 60 genes within the interval ( approximately 55%) as disease causing for RP. To investigate if copy number variation (CNV) exists within RP25, a comparative genomic hybridization (CGH) analysis was performed on a consanguineous family. A clone from the tiling path array, chr6tp-19C7, spanning approximately 100-Kb was found to be deleted in all affected members of the family, leading to a major refinement of the interval. This will eventually have a significant impact on cloning of the RP25 gene.
Collapse
Affiliation(s)
- M M Abd El-Aziz
- Department of Molecular Genetics, Institute of Ophthalmology, London EC1V 9EL, UK. Department of Ophthalmology, Tanta University Hospital, Tanta, Egypt
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barragán I, Abd El-Aziz MM, Borrego S, El-Ashry MF, O'Driscoll C, Bhattacharya SS, Antiñolo G. Linkage validation of RP25 Using the 10K genechip array and further refinement of the locus by new linked families. Ann Hum Genet 2007; 72:454-62. [PMID: 18510647 DOI: 10.1111/j.1469-1809.2008.00448.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of retinal dystrophies, characterised by rod photoreceptor cell degeneration with autosomal recessive RP (arRP) as the commonest form worldwide. To date, a total of 26 loci have been reported for arRP, each having a prevalence of 1-5%, except for the RP25 locus which was identified as the genetic cause of 14% of arRP cases in Spain. In order to validate the original linkage of RP25, we undertook a total genome scan using the 10K GeneChip mapping array on three of the previously linked families. The data obtained supported the initial findings of linkage. Additionally, linkage analysis in 18 newly ascertained arRP families was performed using microsatellite markers spanning the chromosome 6p12.1-q15 interval. Five out of the 18 families showed suggestive evidence of linkage to RP25, hence supporting the high prevalence of this locus in the Spanish population. Furthermore, the finding of a crossover in one of these families is likely to have refined the disease interval from the original 16 cM to only a 2.67 cM region between D6S257 and D6S1557.
Collapse
Affiliation(s)
- I Barragán
- Unidad Clínica de Genética y Reproducción, Hospitales Universitarios Virgen del Rocío, Seville, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Abd El-Aziz MM, El-Ashry MF, Chan WM, Chong KL, Barragan I, Antiñolo G, Pang CP, Bhattacharya SS. A novel genetic study of Chinese families with autosomal recessive retinitis pigmentosa. Ann Hum Genet 2006; 71:281-94. [PMID: 17156103 DOI: 10.1111/j.1469-1809.2006.00333.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Autosomal recessive retinitis pigmentosa (arRP) is the commonest form of RP worldwide. To date 22 loci have been implicated in the pathogenesis of this disease; however none of these loci independently account for a significant proportion of recessive RP. Linkage studies of arRP in consanguineous families have been mainly based on homozygosity mapping, but this strategy cannot be applied in the case of non-consanguineous families. Therefore, we implemented a systematic approach for identifying the disease locus in three non-consanguineous Chinese families with arRP. Initially, linkage analysis using SNPs/microsatellite markers or mutation screening of known arRP genes excluded all loci/genes except RP25 on chromosome 6. Subsequently a whole genome scan for the three families using the 10K GeneChip Mapping Array was performed, in order to identify the possible disease locus. To the best of our knowledge this is the first report on the utilisation of the 10K GeneChip to study linkage in non-consanguineous Chinese arRP. This analysis indicates that the studied families are probably linked to the RP25 locus, a well defined arRP locus in other populations. The identification of another ethnic group linked to RP25 is highly suggestive that this represents a major locus for arRP.
Collapse
Affiliation(s)
- M M Abd El-Aziz
- Department of Molecular Genetics, Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kinirons P, Cavalleri GL, Singh R, Shahwan A, Acheson JF, Wood NW, Goldstein DB, Sisodiya SM, Doherty CP, Delanty N. A pharmacogenetic exploration of vigabatrin-induced visual field constriction. Epilepsy Res 2006; 70:144-52. [PMID: 16675198 DOI: 10.1016/j.eplepsyres.2006.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Use of the antiepileptic drug (AED) vigabatrin is severely limited by irreversible visual field constriction, an adverse reaction to the drug reported in approximately 40% of patients. Given the evidence suggesting an idiosyncratic drug response, we set out to detect genetic variation of strong, clinically relevant effect that might guide clinicians in the safe, controlled prescribing of this otherwise usefuldrug. METHODS Patients with a history of at least 1-year exposure to vigabatrin were enrolled at two independent referral centers. Using Goldmann perimetry, visual fields and the extent of constriction were calculated for each patient. We examined the correlation between the extent of vigabatrin induced visual field constriction and genetic variation across six candidate genes (SLC6A1, SLC6A13, SCL6A11, ABAT, GABRR1 and GABRR2). We availed of HapMap data and used a tagging SNP technique in an effort to efficiently capture all common variation within these genes. We attempted to replicate any positive associations before drawing conclusions from our results. RESULTS The degree of visual field constriction correlated with three SNPs and one haplotype in a cohort of 73 patients. However we were unable to replicate these findings in a second independent cohort consisting of 58 patients, suggesting the initial results were possibly false positives, or variants of weak effect. CONCLUSION Common variants of strong, clinically relevant effect do not appear to reside in the candidate genes studied here. This does not rule out the presence of genetic variants of weak effect in these genes, nor of variants of strong effect in other genes.
Collapse
Affiliation(s)
- Peter Kinirons
- Department of Clinical Neurological Sciences, Royal College of Surgeons, Division of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
24
|
Abd El-Aziz MM, Patel RJ, El-Ashry MF, Barragan I, Marcos I, Borrego S, Antiñolo G, Bhattacharya SS. Exclusion of Four Candidate Genes, KHDRBS2, PTP4A1, KIAA1411 and OGFRL1, as Causative of Autosomal Recessive Retinitis Pigmentosa. Ophthalmic Res 2005; 38:19-23. [PMID: 16192744 DOI: 10.1159/000088493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/26/2005] [Indexed: 11/19/2022]
Abstract
To identify the disease gene in 6 Spanish families with autosomal recessive retinitis pigmentosa linked to the RP25 locus, mutation screening of 4 candidate genes, KHDRBS2, PTP4A1, KIAA1411 and OGFRL1, was undertaken based on their expression or functional relevance to the retina. Twenty-six single nucleotide polymorphisms were identified, of which 14 were novel. Even though no pathological mutations were detected, these genes however remain as good candidates for other retinal degenerations mapping to the same chromosomal region.
Collapse
Affiliation(s)
- Mai M Abd El-Aziz
- Department of Molecular Genetics, Institute of Ophthalmology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh KK, Ristau S, Dawson WW, Krawczak M, Schmidtke J. Mapping of a macular drusen susceptibility locus in rhesus macaques to the homologue of human chromosome 6q14-15. Exp Eye Res 2005; 81:401-6. [PMID: 16185951 DOI: 10.1016/j.exer.2005.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/31/2005] [Accepted: 02/14/2005] [Indexed: 11/25/2022]
Abstract
Rhesus macaques (Macaca mulatta) are a natural model for retinal drusen formation. The present study aimed at clarifying whether chromosomal regions homologous to candidate genes for drusen formation and progression in humans are also associated with a drusen phenotype in rhesus macaques. Some 42 genetic markers from seven chromosomal regions implicated in macular degeneration syndromes in humans were tested for whether they identified homologous, polymorphic sequences in rhesus DNA. This was found to be the case for seven markers, all of which were subsequently screened for the presence of potentially disease-predisposing alleles in 52 randomly chosen adult animals from the Cayo Santiago population of rhesus macaques (Caribbean Primate Research Center, PR, USA). The high drusen prevalence expected in the Cayo Santiago colony was confirmed in our sample in that 38 animals were found to have drusen (73%). Logistic regression analysis revealed that some alleles of the rhesus homologue of anonymous human marker D6S1036 were consistently over-represented among affected animals. Of two candidate genes located in the respective region, allelic variation in one (IMPG1) showed strong association with drusen formation. We conclude that one or more genes located at the rhesus homologue of human 6q14-15 are likely to play a role in retinal drusen formation, a finding that represents a first step towards the identification of genetic factors implicated in macular drusen formation in rhesus macaques. This is an important tool for the separation of genetic and environmental factors which must occur before satisfactory management methods can be developed.
Collapse
Affiliation(s)
- Krishna K Singh
- Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
26
|
Zhang Q, Zulfiqar F, Xiao X, Riazuddin SA, Ayyagari R, Sabar F, Caruso R, Sieving PA, Riazuddin S, Hejtmancik JF. Severe autosomal recessive retinitis pigmentosa maps to chromosome 1p13.3-p21.2 between D1S2896 and D1S457 but outside ABCA4. Hum Genet 2005; 118:356-65. [PMID: 16189710 DOI: 10.1007/s00439-005-0054-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/03/2005] [Indexed: 02/05/2023]
Abstract
A severe form of autosomal recessive retinitis pigmentosa (arRP) was identified in a large Pakistani family ascertained in the Punjab province of Pakistan. All affected individuals in the family had night blindness in early childhood, early complete loss of useful vision, and typical RP fundus changes plus macular degeneration. After exclusion of known arRP loci, a genome-wide scan was performed using microsatellite markers at about 10 cM intervals and calculating two-point lod scores. PCR cycle dideoxynucleotide sequencing was used to sequence candidate genes inside the linked region for mutations. RP in this family shows linkage to markers in a 10.5 cM (8.9 Mbp) region of chromosome 1p13.3-p21.2 between D1S2896 and D1S457. D1S485 yields the highest lod score of 6.54 at theta=0. Sequencing the exons and intron-exon boundaries of five candidate genes and six ESTs in this region, OLFM3, GNAI3, LOC126987, FLJ25070, DKFZp586G0123, AV729694, BU662869, BU656110, BU171991, BQ953690, and CA397743, did not identify any causative mutations. This novel locus lies approximately 4.9 cM (7.1 Mbp) from ABCA4, which is excluded from the linked region. Identification and study of this gene may help to elucidate the phenotypic diversity of arRP mapping to this region.
Collapse
Affiliation(s)
- Qingjiong Zhang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Building 10, Room 10B10, 10 center Drive, MSC 1860, Bethesda, MD, 20892-1860, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barragan I, Marcos I, Borrego S, Antiñolo G. Molecular analysis of RIM1 in autosomal recessive Retinitis pigmentosa. Ophthalmic Res 2005; 37:89-93. [PMID: 15746564 DOI: 10.1159/000084250] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 11/11/2004] [Indexed: 11/19/2022]
Abstract
Retinitis pigmentosa (RP) is a frequent retinal dystrophy characterized by a progressive loss of photoreceptors along with retinal degeneration. RIM1, encoding a presynaptic protein involved in the glutamate neurotransmission, is the responsible gene for autosomal dominant cone-rod dystrophy CORD7, whose locus overlaps partially with a locus of autosomal recessive RP (arRP), RP25. Given the genetic heterogeneity that features RP, it is plausible that mutations in RIM1 are also implicated in the disease in arRP families genetically linked to the CORD7 region. To test our hypothesis we analysed the complete RIM1 gene in 8 arRP families by DNA sequencing. Even though the absence of pathogenic mutations suggests that RIM1 is notinvolved in arRP, a role for this gene in other inherited forms of RP as well as other retinal dystrophies needs to be elucidated.
Collapse
Affiliation(s)
- Isabel Barragan
- Unidad Clínica de Genética y Reproducción, Hospitales Universitarios Virgen del Rocío, Avda. Manuel Sirot s/n, ES-41013 Seville, Spain
| | | | | | | |
Collapse
|
28
|
Khani SC, Karoukis AJ, Young JE, Ambasudhan R, Burch T, Stockton R, Lewis RA, Sullivan LS, Daiger SP, Reichel E, Ayyagari R. Late-onset autosomal dominant macular dystrophy with choroidal neovascularization and nonexudative maculopathy associated with mutation in the RDS gene. Invest Ophthalmol Vis Sci 2003; 44:3570-7. [PMID: 12882809 PMCID: PMC2581458 DOI: 10.1167/iovs.02-1287] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the molecular genetic basis and phenotypic characteristics of an unusual late-onset autosomal dominant macular dystrophy with features of age-related macular degeneration (AMD) in a large family (SUNY901), by using linkage and mutation analyses. METHODS Blood samples were collected from 17 affected members, 17 clinically unaffected members, and 5 unrelated spouses. Clinical analyses included a review of medical history and standard ophthalmic examination with fundus photography, fluorescein angiography, and electroretinography. Linkage and haplotype analyses were performed with microsatellite markers. Mutation analysis was performed by amplification of exons followed by sequencing. RESULTS A wide spectrum of clinical phenotypes including exudative and nonexudative maculopathy was observed, with onset in the late fifth decade. Linkage analysis excluded most of the previously known maculopathy loci. Markers D6S1604 (Z(max) of 3.18 at theta = 0), and D6S282 (Z(max) of 3.18 at theta = 0) gave significant positive LOD scores and haplotype analysis localized the disease gene to a 9-centimorgan (cM) interval between markers D6S1616 and D6S459. Mutation analysis excluded the GUCA1A and GUCA1B genes and revealed a missense mutation in the RDS/peripherin gene leading to a Tyr141Cys substitution. A phenotype and haplotype comparison between this and a separate family with the Tyr141Cys mutation suggested the presence of a common ancestral haplotype. CONCLUSIONS The RDS mutation in codon 141 is associated with an unusual AMD-like late-onset maculopathy. An apparent selective bias was noted favoring the transmission of the mutant allele. These observations broaden the spectrum of phenotypes associated with RDS gene mutations.
Collapse
Affiliation(s)
- Shahrokh C. Khani
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, New York
| | - Athanasios J. Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Joyce E. Young
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, New York
| | - Rajesh Ambasudhan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Tracy Burch
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Richard Stockton
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, New York
| | - Richard Alan Lewis
- Departments of Ophthalmology, Pediatrics, Medicine, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Lori S. Sullivan
- Human Genetics Center and the Department of Ophthalmology, University of Texas Health Science Center, San Antonio, Texas
| | - Stephen P. Daiger
- Human Genetics Center and the Department of Ophthalmology, University of Texas Health Science Center, San Antonio, Texas
| | - Elias Reichel
- Department of Ophthalmology, New England Eye Center, Tufts University, Boston, Massachusetts
| | - Radha Ayyagari
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
29
|
Francis PJ, Johnson S, Edmunds B, Kelsell RE, Sheridan E, Garrett C, Holder GE, Hunt DM, Moore AT. Genetic linkage analysis of a novel syndrome comprising North Carolina-like macular dystrophy and progressive sensorineural hearing loss. Br J Ophthalmol 2003; 87:893-8. [PMID: 12812894 PMCID: PMC1771750 DOI: 10.1136/bjo.87.7.893] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2002] [Indexed: 11/04/2022]
Abstract
AIM To characterise the phenotype and identify the underlying genetic defect in a family with deafness segregating with a North Carolina-like macular dystrophy (NCMD). METHODS Details of the family were obtained from the Moorfields Eye Hospital genetic clinic database and comprised eight affected, four unaffected members, and two spouses. Pedigree data were collated and leucocyte DNA extracted from venous blood. Positional candidate gene and genetic linkage strategies utilising polymerase chain reaction (PCR) based microsatellite marker genotyping were performed to identify the disease locus. RESULTS The non-progressive ocular phenotype shared similarities with North Carolina macular dystrophy. Electro-oculography and full field electroretinography were normal. Progressive sensorineural deafness was also present in all affected individuals over the age of 20 years. Hearing was normal in all unaffected relatives. Haplotype analysis indicated that this family is unrelated to previously reported families with NCMD. Genotyping excluded linkage to the MCDR1 locus and suggested a potential novel disease locus on chromosome 14q (Z=2.92 at theta=0 for marker D14S261). CONCLUSION The combination of anomalies segregating in this family represents a novel phenotype. This molecular analysis indicates the disease is genetically distinct from NCMD.
Collapse
Affiliation(s)
- P J Francis
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnson S, Halford S, Morris AG, Patel RJ, Wilkie SE, Hardcastle AJ, Moore AT, Zhang K, Hunt DM. Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 2003; 81:304-14. [PMID: 12659814 DOI: 10.1016/s0888-7543(03)00010-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A mutation has been identified in the Rab3A-interacting molecule (RIM1) gene in CORD7, an autosomal dominant cone-rod dystrophy that localises to chromosome 6q14. The G to A point mutation results in an Arg844His substitution in the C(2)A domain of the protein that segregates with disease. This mutation is absent in over 200 control chromosomes, indicating that it is not a common polymorphism, and the almost complete sequence conservation of the C(2)A domain between human and rat RIM1 is consistent with a disease role for the change. RIM1 is expressed in brain and photoreceptors of the retina where it is localised to the pre-synaptic ribbons in ribbon synapses. The RIM1 gene is composed of at least 35 exons, spans 577 kb of genomic DNA, and encodes a protein of up to 1693 residues. The transcript shows extensive alternative splicing involving exons 17, 21-26 and 28-30.
Collapse
Affiliation(s)
- Samantha Johnson
- Institute of Ophthalmology, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lagali PS, Kakuk LE, Griesinger IB, Wong PW, Ayyagari R. Identification and characterization of C6orf37, a novel candidate human retinal disease gene on chromosome 6q14. Biochem Biophys Res Commun 2002; 293:356-65. [PMID: 12054608 DOI: 10.1016/s0006-291x(02)00228-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified a novel human gene, chromosome 6 open reading frame 37 (C6orf37), that is expressed in the retina and maps to human chromosome 6q14, a genomic region that harbors multiple retinal disease loci. The cDNA sequence contains an open reading frame of 1314 bp that encodes a 437-amino acid protein with a predicted molecular mass of 49.2 kDa. Northern blot analysis indicates that this gene is widely expressed, with preferential expression observed in the retina compared to other ocular tissues. The C6orf37 protein shares homology with putative proteins in R. norvegicus, M. musculus, D. melanogaster, and C. elegans, suggesting evolutionary conservation of function. Additional sequence analysis predicts that the C6orf37 gene product is a soluble, globular cytoplasmic protein containing several conserved phosphorylation sites. Furthermore, we have defined the genomic structure of this gene, which will enable its analysis as a candidate gene for chromosome 6q-associated inherited retinal disorders.
Collapse
Affiliation(s)
- P S Lagali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
32
|
Comaish IF, Gorman C, Brimlow GM, Barber C, Orr GM, Galloway NR. The effects of vigabatrin on electrophysiology and visual fields in epileptics: a controlled study with a discussion of possible mechanisms. Doc Ophthalmol 2002; 104:195-212. [PMID: 11999627 DOI: 10.1023/a:1014603229383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To compare the visual electrophysiology and visual fields of patients taking vigabatrin to those of a control group of epileptics on other anti-epileptic drugs (AEDs). METHODS Fourteen epileptics treated with vigabatrin and 10 control patients treated with other AEDs underwent ERG and EOG. Goldmann visual fields were performed and analysed using standard software to measure areas contained within I4e isopters. RESULTS The cone and rod b-waves of the ERG, the oscillatory potential amplitudes and Arden indices were reduced in vigabatrin-treated subjects and the oscillatory potentials delayed. The Arden indices were reduced due to an increased dark trough. The areas contained within the I4e isopter of vigabatrin treated subjects were reduced compared to the control group and these areas correlated well with oscillatory potential amplitudes and b-wave amplitudes in the vigabatrin group only. CONCLUSIONS The use of vigabatrin is associated with a reduction of the ERG cone b-wave amplitude and oscillatory potentials which correlates with visual field loss. The Arden ratio is reduced in subjects taking vigabatrin but may recover after cessation. However, visual loss may persist in the presence of a recovered EOG. These findings suggest further effects of the drug than those mediated by GABA receptors, and support the contention that the cause of the field loss may be at least in part due to retinal effects. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- I F Comaish
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Donoso LA, Edwards AO, Frost A, Vrabec T, Stone EM, Hageman GS, Perski T. Autosomal dominant Stargardt-like macular dystrophy. Surv Ophthalmol 2001; 46:149-63. [PMID: 11578648 DOI: 10.1016/s0039-6257(01)00251-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autosomal dominant Stargardt-like macular dystrophy is one of the early onset macular dystrophies. It is characterized clinically in its early stages by visual loss and by the presence of atrophic macular changes with or without the presence of yellowish flecks. It is an important retinal dystrophy to study, not only because it has implications in the care and treatment of patients with the condition, but because it also provides important information regarding retinal function. Review of the literature suggests that many of the reported families are linked to chromosome 6q. Genetic and genealogical evidence suggests that these families have descended from a common ancestor or founder. The recent identification of a disease-causing gene that is involved in fatty acid metabolism may have implications in the study of the more common age-related macular degeneration. We review the recent clinical, genetic, and genealogical aspects of autosomal dominant Stargardt-like macular dystrophy.
Collapse
Affiliation(s)
- L A Donoso
- Henry and Corinne Bower Laboratory for Macular Degeneration, Eye Research Institute, Wills Eye Hospital, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang Q, Chen Q, Zhao K, Wang L, Wang L, Traboulsi EI. Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet 2001; 22:133-54. [PMID: 11559856 DOI: 10.1076/opge.22.3.133.2224] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of retinal dystrophies characterized by photoreceptor cell degeneration. RP causes night blindness, a gradual loss of peripheral visual fields, and eventual loss of central vision. Advances in molecular genetics have provided new insights into the genes responsible and the pathogenic mechanisms of RP. The genetics of RP is complex, and the disease can be inherited in autosomal dominant, recessive, X-linked, or digenic modes. Twenty-six causative genes have been identified or cloned for RP, and an additional fourteen genes have been mapped, but not yet identified. Eight autosomal dominant forms are due to mutations in RHO on chromosome 3q21-24, RDS on 6p21.1-cen, RP1 on 8p11-21, RGR on 10q23, ROM1 on 11q13, NRL on 14q11.1-11.2, CRX on 19q13.3, and PRKCG on 19q13.4. Autosomal recessive genes include RPE65 on chromosome 1p31, ABCA4 on 1p21-13, CRB1 on 1q31-32.1, USH2A on 1q41, MERTK on 2q14.1, SAG on 2q37.1, RHO on 3q21-24, PDE6B on 4p16.3, CNGA1 on 4p14-q13, PDE6A on 5q31.2-34, TULP1 on 6p21.3, RGR on 10q, NR2E3 on 15q23, and RLBP1 on 15q26. For X-linked RP, two genes, RP2 and RP3 (RPGR), have been cloned. Moreover, heterozygous mutations in ROM1 on 11q13, in combination with heterozygous mutations in RDS on 6p21.1-cen, cause digenic RP (the two-locus mechanism). These exciting molecular discoveries have defined the genetic pathways underlying the pathogenesis of retinitis pigmentosa, and have raised the hope of genetic testing for RP and the development of new avenues for therapy.
Collapse
Affiliation(s)
- Q Wang
- Center for Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Collapse
Affiliation(s)
- R Enz
- Emil-Fischer Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Marcos I, Ruiz A, Borrego S, Ayuso C, Baiget M, Antiñolo G. [Molecular analysis of the RPE65 gene in 72 Spanish families with autosomal recessive retinitis pigmentosa]. Med Clin (Barc) 2001; 117:121-3. [PMID: 11472682 DOI: 10.1016/s0025-7753(01)72038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Autosomal recessive retinitis pigmentosa (arRP) is the most common form of retinitis pigmentosa (RP). It is characterized by a high degree of allelic and non-allelic genetic heterogeneity. Previously,it has been demonstrated that the RPE65 gene is responsible for 2% recessive or isolated RP cases and 16% Leber's congenite amaurosis cases. Although the concrete function of RPE65 is unknown as yet, it has been found to be involved in vitamin A metabolism and rhodopsin regeneration. PATIENTS AND METHOD We studied the involvement of the RPE65 gene in 72 arRP Spanish families by means of indirect molecular and mutation analysis. RESULTS The results obtained using the intragenic microsatellite marker D1S2803 allowed us to exclude RPE65 as the causative gene of the disease in 80.5% of the families studied. Three new variants of the RPE65 gene have been identified: IVS6-43delA, IVS6-42delT and IVS6-33CG. We found that IVS6-33C-->G was a common polymorphism. The other variants, namely IVS6-43delA and IVS6-42delT, were not identified in 150 control chromosomes studied. The segregation analysis of IVS6-42delT variant seemed to exclude it as being involved in the disease. CONCLUSIONS Our results argue against the involvement of RPE65 gene in the families studied, indicating that the prevalence of RPE65 abnormalities in arRP Spanish families may be lower than that observed in other populations.
Collapse
Affiliation(s)
- I Marcos
- Unidad de Genética Médica y Diagnóstico Prenatal. Hospital Universitario Virgen del Rocío. Sevilla
| | | | | | | | | | | |
Collapse
|
37
|
Iannaccone A. Genotype-phenotype correlations and differential diagnosis in autosomal dominant macular disease. Doc Ophthalmol 2001; 102:197-236. [PMID: 11556486 DOI: 10.1023/a:1017566600871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past few years, great progress has been made in the understanding of macular diseases. A number of disease-causing genes have been cloned, and numerous loci for other conditions have been mapped. The purpose of this article is to provide an overview of the current understanding of the genotype-phenotype correlations in autosomal dominant macular diseases with an emphasis on differential diagnostic issues. Whenever possible, the molecular correlates have been reviewed and the implications for age-related macular degeneration have been discussed. The many similarities of these diseases to age-related macular degeneration of the atrophic or exudative type, which can be misleading in elderly subjects, have also been addressed. While some conditions yield disease truly confined to the macula, others show widespread retinal involvement on functional testing. Clear-cut genotype-phenotype correlations are possible only for some forms of macular diseases. To further complicate the diagnostic process, there is a considerable degree of clinical overlap between many of them, making the differential diagnostic process potentially challenging. Functional testing, careful assessment of family history and extensive family work-up are essential in differentiating at the clinical level most, but not all, of these disease entities. Awareness of all of these conditions is required to direct correctly diagnostic investigations, to formulate an accurate prognosis, and for proper genetic counseling.
Collapse
Affiliation(s)
- A Iannaccone
- Retinal Degeneration Research Center, Department of Ophthalmology, University of Tennessee, Memphis, USA.
| |
Collapse
|
38
|
Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 2001; 22:121-32. [PMID: 11239575 DOI: 10.1016/s0165-6147(00)01625-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In less than a decade our knowledge of the GABA(C) receptor, a new type of Cl(-)-permeable ionotropic GABA receptor, has greatly increased based on studies of both native and recombinant receptors. Careful comparison of properties of native and recombinant receptors has provided compelling evidence that GABA receptor rho-subunits are the major molecular components of GABA(C) receptors. Three distinct rho-subunits from various species have been cloned and the pattern of their expression in the retina, as well as in various brain regions, has been established. The pharmacological profile of GABA(C) receptors has been refined and more specific drugs have been developed. Molecular determinants that underlie functional properties of the receptors have been assigned to specific amino acid residues in rho-subunits. This information has helped determine the subunit composition of native receptors, as well as the molecular basis underlying subtle variations among GABA(C) receptors in different species. Finally, GABA(C) receptors play a unique functional role in retinal signal processing via three mechanisms: (1) slow activation; (2) segregation from other inhibitory receptors; and (3) contribution to multi-neuronal pathways.
Collapse
Affiliation(s)
- D Zhang
- Center for Neuroscience and Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Lagali PS, MacDonald IM, Griesinger IB, Chambers ML, Ayyagari R, Wong PW. Autosomal dominant Stargardt-like macular dystrophy segregating in a large Canadian family. CANADIAN JOURNAL OF OPHTHALMOLOGY 2000; 35:315-24. [PMID: 11091913 DOI: 10.1016/s0008-4182(00)80059-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Inherited macular dystrophies account for a major fraction of the cases of retinal degenerative disease that lead to permanent blindness. We describe the clinical and genetic findings in a Canadian family with a form of macular dystrophy resembling autosomal dominant Stargardt-like macular dystrophy. METHODS Standard ophthalmologic examinations were performed in members of a single five-generation Alberta family. Tests of visual acuity and colour vision, fundus photography, fluorescein angiography and electroretinography were performed in 15 affected people. Blood was collected from 24 family members, and DNA was extracted for genotyping. Genetic linkage analysis was performed using polymorphic short tandem repeat microsatellite markers located on chromosome 6q, a region containing loci for several macular disorders. RESULTS Affected family members display clinical characteristics resembling autosomal dominant Stargardt-like macular dystrophy, previously assigned to chromosome 6q (STGD3). Linkage analysis generated a peak lod score of 5.50 at an estimated recombination fraction of 0.00 for marker locus D6S300. INTERPRETATION The family described has an autosomal dominant macular dystrophy that resembles Stargardt-like macular dystrophy. The disease locus for this family maps to an interval on chromosome 6q that overlaps that for STGD3 and other retinal dystrophy loci. These findings provide further evidence that human chromosome 6q represents a "hot spot" for retinal disorders.
Collapse
Affiliation(s)
- P S Lagali
- Department of Biological Sciences, University of Alberta, Edmonton
| | | | | | | | | | | |
Collapse
|
40
|
Dharmaraj S, Li Y, Robitaille JM, Silva E, Zhu D, Mitchell TN, Maltby LP, Baffoe-Bonnie AB, Maumenee IH. A novel locus for Leber congenital amaurosis maps to chromosome 6q. Am J Hum Genet 2000; 66:319-26. [PMID: 10631161 PMCID: PMC1288337 DOI: 10.1086/302719] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Sharola Dharmaraj
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Yingying Li
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Johane M. Robitaille
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Eduardo Silva
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Danping Zhu
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Thomas N. Mitchell
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Lara P. Maltby
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Agnes B. Baffoe-Bonnie
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Irene H. Maumenee
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| |
Collapse
|
41
|
Edgar PF, Douglas JE, Cooper GJ, Dean B, Kydd R, Faull RL. Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 2000; 5:85-90. [PMID: 10673773 DOI: 10.1038/sj.mp.4000580] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comparative brain proteome analysis is a new strategy to discover proteins and therefore genes whose altered expression may underlie schizophrenia. This strategy does not require an a priori theory of the pathogenesis or the mode of inheritance of schizophrenia. Using proteome analysis we previously compared the hippocampal proteome, that is, those proteins expressed by the hippocampal genome, of seven schizophrenic individuals with the hippocampal proteome of seven control individuals, matched for age and post mortem delay.1 We found 18 proteins that were significantly altered in concentration in the schizophrenic hippocampus (P < 0.05), when compared to control tissue. One of these proteins was characterised, by N-terminal sequencing, as diazepam binding inhibitor whose gene maps to 6q12-q21. Here we characterise a further three of the 18 proteins as: manganese superoxide dismutase, 6q25.3, T-complex protein 1, 6q25.3-q26 and collapsin response mediator protein 2, 8p21. That three of these four characterised proteins should map to the long arm of the same chromosome is significant (P < 0.002) and suggests the importance of chromosome 6q in schizophrenia. These results indicate that antioxidant defence is altered in the schizophrenic hippocampus and suggest that segregation distortion, of schizophrenia susceptibility genes, may be a possible causative factor in the high incidence of schizophrenia. Molecular Psychiatry (2000) 5, 85-90.
Collapse
Affiliation(s)
- P F Edgar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
42
|
Bailey ME, Albrecht BE, Johnson KJ, Darlison MG. Genetic linkage and radiation hybrid mapping of the three human GABA(C) receptor rho subunit genes: GABRR1, GABRR2 and GABRR3. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:307-12. [PMID: 10542332 DOI: 10.1016/s0167-4781(99)00167-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
GABA(C) receptors mediate rapid inhibitory neurotransmission in retina. We have mapped, in detail, the human genes which encode the three polypeptides that comprise this receptor: rho1 (GABRR1), rho2 (GABRR2) and rho3 (GABRR3). We show that GABRR1 and GABRR2 are located close together, in a region of chromosome 6q that contains loci for inherited disorders of the eye, but that GABRR3 maps to chromosome 3q11-q13.3. Our mapping data suggest that the rho polypeptide genes, which are thought to share a common ancestor with GABA(A) receptor subunit genes, diverged at an early stage in the evolution of this gene family.
Collapse
Affiliation(s)
- M E Bailey
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow, UK.
| | | | | | | |
Collapse
|
43
|
Khaliq S, Hameed A, Ismail M, Mehdi SQ, Bessant DA, Payne AM, Bhattacharya SS. Refinement of the locus for autosomal recessive Retinitis pigmentosa (RP25) linked to chromosome 6q in a family of Pakistani origin. Am J Hum Genet 1999; 65:571-4. [PMID: 10417302 PMCID: PMC1377958 DOI: 10.1086/302493] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|