1
|
Van Gils J, Karkar S, Barre A, Ley-Ngardigal S, Nothof S, Claverol S, Tokarski C, Trani JP, Chevalier R, Broucqsault N, El Yazidi C, Lacombe D, Fergelot P, Magdinier F. Transcriptome and acetylome profiling identify crucial steps of neuronal differentiation in Rubinstein-Taybi syndrome. Commun Biol 2024; 7:1331. [PMID: 39407026 PMCID: PMC11480426 DOI: 10.1038/s42003-024-06939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a rare and severe genetic developmental disorder characterized by multiple congenital anomalies and intellectual disability. CREBBP and EP300, the two genes known to cause RTS encode transcriptional coactivators with a catalytic lysine acetyltransferase (KAT) activity. Loss of CBP or p300 function results in a deficit in protein acetylation, in particular at histones. In RTS, nothing is known on the consequences of the loss of histone acetylation on the transcriptomic profiles during neuronal differentiation. To address this question, we differentiated induced pluripotent stem cells from RTS patients carrying a recurrent CREBBP mutation that inactivates the KAT domain into cortical and pyramidal neurons. By comparing their acetylome and their transcriptome at different neuronal differentiation time points, we identified 25 specific acetylated histone residues altered in RTS. We also identified the transition between neural progenitors and immature neurons as a critical step of the differentiation process, with a delayed neuronal maturation in RTS. Overall, this study opens new perspectives in the definition of epigenetic biomarkers for RTS, whose methodology could be extended to other chromatinopathies.
Collapse
Affiliation(s)
- Julien Van Gils
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France.
| | - Slim Karkar
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Seyta Ley-Ngardigal
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Sophie Nothof
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Stéphane Claverol
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | - Caroline Tokarski
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | | | - Raphael Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Claire El Yazidi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
2
|
Van Gils J, Magdinier F, Fergelot P, Lacombe D. Rubinstein-Taybi Syndrome: A Model of Epigenetic Disorder. Genes (Basel) 2021; 12:968. [PMID: 34202860 PMCID: PMC8303114 DOI: 10.3390/genes12070968] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
The Rubinstein-Taybi syndrome (RSTS) is a rare congenital developmental disorder characterized by a typical facial dysmorphism, distal limb abnormalities, intellectual disability, and many additional phenotypical features. It occurs at between 1/100,000 and 1/125,000 births. Two genes are currently known to cause RSTS, CREBBP and EP300, mutated in around 55% and 8% of clinically diagnosed cases, respectively. To date, 500 pathogenic variants have been reported for the CREBBP gene and 118 for EP300. These two genes encode paralogs acting as lysine acetyltransferase involved in transcriptional regulation and chromatin remodeling with a key role in neuronal plasticity and cognition. Because of the clinical heterogeneity of this syndrome ranging from the typical clinical diagnosis to features overlapping with other Mendelian disorders of the epigenetic machinery, phenotype/genotype correlations remain difficult to establish. In this context, the deciphering of the patho-physiological process underlying these diseases and the definition of a specific episignature will likely improve the diagnostic efficiency but also open novel therapeutic perspectives. This review summarizes the current clinical and molecular knowledge and highlights the epigenetic regulation of RSTS as a model of chromatinopathy.
Collapse
Affiliation(s)
- Julien Van Gils
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| | - Frederique Magdinier
- Marseille Medical Genetics, INSERM U 1251, MMG, Aix Marseille University, 13385 Marseille, France;
| | - Patricia Fergelot
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| | - Didier Lacombe
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| |
Collapse
|
3
|
Lipinski M, Muñoz-Viana R, Del Blanco B, Marquez-Galera A, Medrano-Relinque J, Caramés JM, Szczepankiewicz AA, Fernandez-Albert J, Navarrón CM, Olivares R, Wilczyński GM, Canals S, Lopez-Atalaya JP, Barco A. KAT3-dependent acetylation of cell type-specific genes maintains neuronal identity in the adult mouse brain. Nat Commun 2020; 11:2588. [PMID: 32444594 PMCID: PMC7244750 DOI: 10.1038/s41467-020-16246-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes. The combined deletion of CBP and p300 in hippocampal neurons resulted in the rapid loss of neuronal molecular identity without de- or transdifferentiation. Restoring CBP expression or lysine acetylation rescued neuronal-specific transcription in cultured neurons. Together, these experiments show that KAT3 proteins maintain the excitatory neuron identity through the regulation of histone acetylation at cell type-specific promoter and enhancer regions. Neuronal identity maintenance is highly regulated. Here, the authors showed that CBP and p300 safeguard neuronal identity through histone acetylation at promoters and enhancers of neuronal specific genes. The loss of both CBP and p300 impairs gene expression, circuit activity, and behavior in mice.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Rafael Muñoz-Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Juan Medrano-Relinque
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - José M Caramés
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Andrzej A Szczepankiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Carmen M Navarrón
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Grzegorz M Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Santiago Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
4
|
Lipinski M, Del Blanco B, Barco A. CBP/p300 in brain development and plasticity: disentangling the KAT's cradle. Curr Opin Neurobiol 2019; 59:1-8. [PMID: 30856481 DOI: 10.1016/j.conb.2019.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
The paralogous transcriptional co-activators CBP and p300 (aka KAT3A and KAT3B, respectively) contain a characteristic and promiscuous lysine acetyltransferase (KAT) domain and multiple independent protein-binding domains that enable them to interact with hundreds of proteins, possibly promoting the acetylation of thousands of target lysine residues. Both proteins play critical roles during the development of the nervous system and may also regulate stimuli-driven transcription and plasticity in postmitotic neurons. The multiplicity of functions, substrates, and molecular partners, together with the redundancy and singularity of the two KAT3 paralogs, define a complex cat's cradle of relationships. In this review, we discuss the role of the KAT3 proteins in neurons and integrate recent information regarding their function and mode of action.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
5
|
Breen ME, Mapp AK. Modulating the masters: chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45:195-203. [PMID: 30025258 DOI: 10.1016/j.cbpa.2018.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Dysregulation of transcription is found in nearly every human disease, and as a result there has been intense interest in developing new therapeutics that target regulators of transcription. CREB binding protein (CBP) and its paralogue p300 are attractive targets due to their function as `master coactivators'. Although inhibitors of several CBP/p300 domains have been identified, the selectivity of many of these compounds has remained underexplored. Here, we review recent successes in the development of chemical tools targeting several CBP/p300 domains with selectivity acceptable for use as chemical probes. Additionally, we highlight recent studies which have used these probes to expand our understanding of interdomain interactions and differential coactivator usage.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
6
|
Leonhard WN, Happe H, Peters DJM. Variable Cyst Development in Autosomal Dominant Polycystic Kidney Disease: The Biologic Context. J Am Soc Nephrol 2016; 27:3530-3538. [PMID: 27493259 PMCID: PMC5118495 DOI: 10.1681/asn.2016040425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD) typically carry a mutation in either the PKD1 or PKD2 gene, which leads to massive cyst formation in both kidneys. However, the large intrafamilial variation in the progression rate of ADPKD suggests involvement of additional factors other than the type of mutation. The identification of these factors will increase our understanding of ADPKD and could ultimately help in the development of a clinically relevant therapy. Our review addresses the mechanisms by which various biologic processes influence cyst formation and cyst growth, thereby explaining an important part of the inter- and intrafamilial variability in ADPKD. Numerous studies from many laboratories provide compelling evidence for the influence on cyst formation by spatiotemporal gene inactivation, the genetic context, the metabolic status, the presence of existing cysts, and whether the kidneys were challenged by renal injury. Collectively, a solid basis is provided for the concept that the probability of cyst formation is determined by functional PKD protein levels and the biologic context. We model these findings in a graphic representation called the cystic probability landscape, providing a robust conceptual understanding of why cells sometimes do or do not form cysts.
Collapse
Affiliation(s)
- Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Happe
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Quental R, Moleirinho A, Azevedo L, Amorim A. Evolutionary History and Functional Diversification of Phosphomannomutase Genes. J Mol Evol 2010; 71:119-27. [DOI: 10.1007/s00239-010-9368-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/12/2010] [Indexed: 11/29/2022]
|
9
|
Spiteri E, Babcock M, Kashork CD, Wakui K, Gogineni S, Lewis DA, Williams KM, Minoshima S, Sasaki T, Shimizu N, Potocki L, Pulijaal V, Shanske A, Shaffer LG, Morrow BE. Frequent translocations occur between low copy repeats on chromosome 22q11.2 (LCR22s) and telomeric bands of partner chromosomes. Hum Mol Genet 2003; 12:1823-37. [PMID: 12874103 DOI: 10.1093/hmg/ddg203] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The chromosome 22q11.2 region is susceptible to rearrangements, mediated by low copy repeats (LCR22s). Deletions and duplications are mediated by homologous recombination events between LCR22s. The recurrent balanced constitutional translocation t(11;22)(q23;q11) breakpoint occurs in an LCR22 and is mediated by double strand breaks in AT-rich palindromes on both chromosomes 11 and 22. Recently, two cases of a t(17;22)(q11;q11) were reported, mediated by a similar mechanism (21). Except for these constitutional translocations, the molecular basis for non-recurrent, reciprocal 22q11.2 translocations is not known. To determine whether there are specific mechanisms that could mediate translocations, we analyzed cell lines derived from 14 different individuals by genotyping and FISH mapping. Somatic cell hybrid analysis was carried out for four cell lines. In five cell lines, the translocation breakpoints occurred in the same LCR22 as for the t(11;22) translocation, suggesting that similar molecular mechanisms are responsible. An additional three occurred in other LCR22s, and six were in non-LCR22 regions, mostly in the proximal half of the 22q11.2 region. The translocation breakpoints on the partner chromosomes were all located in the telomeric bands, proximal to the most telomeric unique sequence probe, in eight cell lines and distal to those loci in six. Therefore, several of the breakpoints were found to occur in the vicinity of highly dynamic regions of the genome, 22q11.2 and telomeric bands. We hypothesize that these regions are more susceptible to breakage and repair, resulting in translocations.
Collapse
Affiliation(s)
- Elizabeth Spiteri
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Slepak TI, Webster KA, Zang J, Prentice H, O'Dowd A, Hicks MN, Bishopric NH. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J Biol Chem 2001; 276:7575-85. [PMID: 11096067 DOI: 10.1074/jbc.m004625200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional integrator p300 regulates gene expression by interaction with sequence-specific DNA-binding proteins and local remodeling of chromatin. p300 is required for cardiac-specific gene transcription, but the molecular basis of this requirement is unknown. Here we report that the MADS (MCM-1, agamous, deficiens, serum response factor) box transcription factor myocyte enhancer factor-2D (MEF-2D) acts as the principal conduit for cardiac transcriptional activation by p300. p300 activation of the native 2130-base pair human skeletal alpha-actin promoter required a single hybrid MEF-2/GATA-4 DNA motif centered at -1256 base pairs. Maximal expression of the promoter in cultured myocytes and in vivo correlated with binding of both MEF-2 and p300, but not GATA-4, to this AT-rich motif. p300 and MEF-2 were coprecipitated from cardiac nuclear extracts by an oligomer containing this element. p300 was found exclusively in a complex with MEF-2D at this and related sites in other cardiac-restricted promoters. MEF-2D, but not other MEFs, significantly potentiated cardiac-specific transcription by p300. No physical or functional interaction was observed between p300 and other factors implicated in skeletal actin transcription, including GATA-4, TEF-1, or SRF. These results show that, in the intact cell, p300 interactions with its protein targets are highly selective and that MEF-2D is the preferred channel for p300-mediated transcriptional control in the heart.
Collapse
Affiliation(s)
- T I Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Homeobox genes encode important developmental control proteins. In vertebrates, those encoding the proteins of the HOX class and their most closely related families, including paraHOX and metaHOX classes, are clustered in paralogous regions (or paralogons). We show that the majority of the other homeobox genes (we called contraHOX) can also be clustered and belong to paralogons in humans. This suggests that they duplicated during vertebrate evolution along the same processes as the HOX genes. We tentatively assembled several paralogons in superparalogons. One of the superparalogons contains the contraHOX genes. These observations were extended to hundreds of genes, and allowed to describe a primary human genome paralogy map.
Collapse
Affiliation(s)
- C Popovici
- Laboratoire d'Oncologie Moléculaire, U119 Inserm, Marseille, France
| | | | | | | |
Collapse
|
12
|
Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pébusque MJ. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 2000; 28:138-44. [PMID: 10824998 DOI: 10.1002/(sici)1098-2264(200006)28:2<138::aid-gcc2>3.0.co;2-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report on the fusion of the monocytic leukemia zinc finger protein (MOZ) gene to the adenoviral E1A-associated protein p300 (p300) gene in acute monocytic leukemia M5 associated with a t(8;22)(p11;q13) translocation. We studied two patients with double-color fluorescence in situ hybridization (FISH) using the yeast artificial chromosome 176C9 and the bacterial artificial chromosome clone H59D10 specific to the MOZ and p300 genes, respectively. Both probes were split in the patients' chromosome metaphase cells, and the two derivative chromosomes were each labeled with both probes. We showed by Southern blot the rearrangement of the MOZ gene, and cloned the fusion transcripts in one patient carrying the t(8;22) by reverse transcription-polymerase chain reaction using MOZ- and p300-specific primers. Both fusion transcripts were expressed. This result defines a novel reciprocal translocation involving two acetyltransferases, MOZ and p300, resulting in an abnormal transcriptional co-activator that could play a critical role in leukemogenesis.
Collapse
MESH Headings
- Acetyltransferases/genetics
- Acetyltransferases/isolation & purification
- Amino Acid Sequence
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 8/genetics
- E1A-Associated p300 Protein
- Gene Rearrangement
- Histone Acetyltransferases
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Monocytic, Acute/enzymology
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/enzymology
- Leukemia, Myelomonocytic, Chronic/genetics
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/isolation & purification
- RNA, Messenger/isolation & purification
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Trans-Activators/genetics
- Trans-Activators/isolation & purification
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Chaffanet
- Laboratoire d'Oncologie Moléculaire, INSERM U119, Marseille, France
| | | | | | | | | | | |
Collapse
|
13
|
Burgess DL, Davis CF, Gefrides LA, Noebels JL. Identification of three novel Ca(2+) channel gamma subunit genes reveals molecular diversification by tandem and chromosome duplication. Genome Res 1999; 9:1204-13. [PMID: 10613843 PMCID: PMC311002 DOI: 10.1101/gr.9.12.1204] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene duplication is believed to be an important evolutionary mechanism for generating functional diversity within genomes. The accumulated products of ancient duplication events can be readily observed among the genes encoding voltage-dependent Ca(2+) ion channels. Ten paralogous genes have been identified that encode isoforms of the alpha(1) subunit, four that encode beta subunits, and three that encode alpha(2)delta subunits. Until recently, only a single gene encoding a muscle-specific isoform of the Ca(2+) channel gamma subunit (CACNG1) was known. Expression of a distantly related gene in the brain was subsequently demonstrated upon isolation of the Cacng2 gene, which is mutated in the mouse neurological mutant stargazer (stg). In this study, we sought to identify additional genes that encoded gamma subunits. Because gene duplication often generates paralogs that remain in close syntenic proximity (tandem duplication) or are copied onto related daughter chromosomes (chromosome or whole-genome duplication), we hypothesized that the known positions of CACNG1 and CACNG2 could be used to predict the likely locations of additional gamma subunit genes. Low-stringency genomic sequence analysis of targeted regions led to the identification of three novel Ca(2+) channel gamma subunit genes, CACNG3, CACNG4, and CACNG5, on chromosomes 16 and 17. These results demonstrate the value of genome evolution models for the identification of distantly related members of gene families.
Collapse
Affiliation(s)
- D L Burgess
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|