1
|
Annear DJ, Vandeweyer G, Sanchis-Juan A, Raymond FL, Kooy RF. Non-Mendelian inheritance patterns and extreme deviation rates of CGG repeats in autism. Genome Res 2022; 32:1967-1980. [PMID: 36351771 PMCID: PMC9808627 DOI: 10.1101/gr.277011.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
As expansions of CGG short tandem repeats (STRs) are established as the genetic etiology of many neurodevelopmental disorders, we aimed to elucidate the inheritance patterns and role of CGG STRs in autism-spectrum disorder (ASD). By genotyping 6063 CGG STR loci in a large cohort of trios and quads with an ASD-affected proband, we determined an unprecedented rate of CGG repeat length deviation across a single generation. Although the concept of repeat length being linked to deviation rate was solidified, we show how shorter STRs display greater degrees of size variation. We observed that CGG STRs did not segregate by Mendelian principles but with a bias against longer repeats, which appeared to magnify as repeat length increased. Through logistic regression, we identified 19 genes that displayed significantly higher rates and degrees of CGG STR expansion within the ASD-affected probands (P < 1 × 10-5). This study not only highlights novel repeat expansions that may play a role in ASD but also reinforces the hypothesis that CGG STRs are specifically linked to human cognition.
Collapse
Affiliation(s)
- Dale J. Annear
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom;,Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, CB2 0PT, United Kingdom
| | - F. Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom;,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| |
Collapse
|
2
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
3
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2019; 295:743-756. [PMID: 31822563 DOI: 10.1074/jbc.ra119.010188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.
Collapse
Affiliation(s)
| | - Anthony Q Bui
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
4
|
Zagorskaitė E, Manakova E, Sasnauskas G. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC. FEBS Lett 2018; 592:3335-3345. [PMID: 30194838 DOI: 10.1002/1873-3468.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Abstract
Cytosine modifications expand the information content of genomic DNA in both eukaryotes and prokaryotes, providing means for epigenetic regulation and self versus nonself discrimination. For example, the methyl-directed restriction endonuclease, McrBC, recognizes and cuts invading bacteriophage DNA containing 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and N4-methylcytosine (4mC), leaving the unmodified host DNA intact. Here, we present cocrystal structures of McrB-N bound to DNA oligoduplexes containing 5hmC, 5-formylcytosine (5fC), and 4mC, and characterize the relative affinity of McrB-N to various cytosine variants. We find that McrB-N flips out modified bases into a protein pocket and binds cytosine derivatives in the order of descending affinity: 4mC > 5mC > 5hmC ≫ 5fC. We also show that pocket mutations alter the relative preference of McrB-N to 5mC, 5hmC, and 4mC.
Collapse
Affiliation(s)
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
5
|
Sun JH, Zhou L, Emerson DJ, Phyo SA, Titus KR, Gong W, Gilgenast TG, Beagan JA, Davidson BL, Tassone F, Phillips-Cremins JE. Disease-Associated Short Tandem Repeats Co-localize with Chromatin Domain Boundaries. Cell 2018; 175:224-238.e15. [PMID: 30173918 DOI: 10.1016/j.cell.2018.08.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 01/15/2023]
Abstract
More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.
Collapse
Affiliation(s)
- James H Sun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linda Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomics and Computational Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Emerson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sai A Phyo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Beagan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Flora Tassone
- Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95616, USA; MIND Institute, UC Davis, Sacramento, CA 95616, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Townsend TA, Parrish MC, Engelward BP, Manjanatha MG. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:508-521. [PMID: 28755435 PMCID: PMC5839338 DOI: 10.1002/em.22101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/24/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 05/10/2023]
Abstract
DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation-dependent endonuclease, McrBC, to develop a modified alkaline comet assay, "EpiComet," which allows single platform evaluation of genotoxicity and global DNA methylation [5-methylcytosine (5-mC)] status of single-cell populations under user-defined conditions. Further, we leveraged the CometChip platform to create an EpiComet-Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet-Chip on 63 matched samples, we correctly identified single-sample hypermethylation (≥1.5-fold) at 87% (20/23), hypomethylation (≥1.25-fold) at 100% (9/9), with a 4% (2/54) false-negative rate (FNR), and 10% (4/40) false-positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75-fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA-regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508-521, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Todd A. Townsend
- United States Food & Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
- Correspondence to: Todd Townsend, United States Food & Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Road, Jefferson, AR, USA, ; Phone: +1 (870) 543-7155
| | - Marcus C. Parrish
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Bevin P. Engelward
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Mugimane G. Manjanatha
- United States Food & Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| |
Collapse
|
7
|
Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res 2015; 167:42-56. [PMID: 25432637 PMCID: PMC5301472 DOI: 10.1016/j.schres.2014.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 2010; 6:407-11. [PMID: 20452313 DOI: 10.1016/j.stem.2010.04.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2009] [Revised: 02/15/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Achia Urbach
- Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
9
|
Pietrobono R, Tabolacci E, Zalfa F, Zito I, Terracciano A, Moscato U, Bagni C, Oostra B, Chiurazzi P, Neri G. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum Mol Genet 2004; 14:267-77. [PMID: 15563507 DOI: 10.1093/hmg/ddi024] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
The analysis of a lymphoblastoid cell line (5106), derived from a rare individual of normal intelligence with an unmethylated full mutation of the FMR1 gene, allowed us to reconstruct the chain of molecular events leading to the FMR1 inactivation and to fragile X syndrome. We found that lack of DNA methylation of the entire promoter region, including the expanded CGG repeat, correlates with methylation of lysine 4 residue on the N-tail of histone H3 (H3-K4), as in normal controls. Normal levels of FMR1 mRNA were detected by real-time fluorescent RT-PCR (0.8-1.4 times compared with a control sample), but mRNA translation was less efficient (-40%), as judged by polysome profiling, resulting in reduced levels of FMRP protein (approximately 30% of a normal control). These results underline once more that CGG repeat amplification per se does not prevent FMR1 transcription and FMRP production in the absence of DNA methylation. Surprisingly, we found by chromatin immunoprecipitation that cell line 5106 has deacetylated histones H3 and H4 as well as methylated lysine 9 on histone H3 (H3-K9), like fragile X cell lines, in both the promoter and exon 1. This indicates that these two epigenetic marks (i.e. histone deacetylation and H3-K9 methylation) can be established in the absence of DNA methylation and do not interfere with active gene transcription, contrary to expectation. Our results also suggest that the molecular pathways regulating DNA and H3-K4 methylation are independent from those regulating histone acetylation and H3-K9 methylation.
Collapse
|
10
|
Tassone F, Hagerman PJ. Expression of the FMR1 gene. Cytogenet Genome Res 2004; 100:124-8. [PMID: 14526172 DOI: 10.1159/000072846] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2002] [Accepted: 11/27/2002] [Indexed: 11/19/2022] Open
Abstract
Fragile X syndrome is a trinucleotide repeat disorder in which a (CGG)n element located within the 5' untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene expands to more than 200 copies (full mutation) and becomes hypermethylated. Such expansions are accompanied by the failure to produce FMR1 protein (FMRP), resulting in the fragile X phenotype. For smaller (premutation) expansions (approximately 55-200 repeats), FMR1 mRNA and FMRP levels had been assumed to be normal; however, our group and others have recently demonstrated that FMR1 mRNA levels are elevated in cells harboring premutation alleles. Moreover, mRNA levels remain elevated in fragile X males with partially methylated full mutation alleles. Finally, some fragile X males with hypermethylated, full mutation alleles continue to produce FMR1 mRNA, despite the expectation that those genes should be silent. These observations all point to a complex mechanism of expression of the FMR1 gene, one that provides a more consistent foundation for the spectrum of clinical involvement. An FMRP deficit is observed in all categories of fragile X individuals, including carriers of the premutation and partially methylated full mutation alleles. These results demonstrate that lowered FMRP levels, in the absence of methylation-coupled silencing of the FMR1 gene, are not caused by reduced transcriptional activity, but rather by a reduced efficiency of translation.
Collapse
Affiliation(s)
- F Tassone
- Department of Biological Chemistry, University of California, Davis, School of Medicine, Davis CA, USA.
| | | |
Collapse
|
11
|
Greene E, Handa V, Kumari D, Usdin K. Transcription defects induced by repeat expansion: fragile X syndrome, FRAXE mental retardation, progressive myoclonus epilepsy type 1, and Friedreich ataxia. Cytogenet Genome Res 2003; 100:65-76. [PMID: 14526165 DOI: 10.1159/000072839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2002] [Accepted: 02/06/2003] [Indexed: 11/19/2022] Open
Abstract
Fragile X mental retardation syndrome, FRAXE mental retardation, Progressive myoclonus epilepsy Type I, and Friedreich ataxia are members of a larger group of genetic disorders known as the Repeat Expansion Diseases. Unlike other members of this group, these four disorders all result from a primary defect in the initiation or elongation of transcription. In this review, we discuss current models for the relationship between the expanded repeat and the disease symptoms.
Collapse
Affiliation(s)
- E Greene
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | |
Collapse
|
12
|
Pietrobono R, Pomponi MG, Tabolacci E, Oostra B, Chiurazzi P, Neri G. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res 2002; 30:3278-85. [PMID: 12136110 PMCID: PMC135754 DOI: 10.1093/nar/gkf434] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
In fragile X syndrome, hypermethylation of the expanded CGG repeat and of the upstream promoter leads to transcriptional silencing of the FMR1 gene. Absence of the FMR1 protein results in mental retardation. We previously proved that treatment with 5-azadeoxycytidine (5-azadC) of fragile X cell lines results in reactivation of the FMR1 gene. We now show that this treatment causes passive demethylation of the FMR1 gene promoter. We employed the bisulfite-sequencing technique to detect the methylation status of individual CpG sites in the entire promoter region, upstream of the CGG repeat. Lymphoblastoid cell lines of fragile X males with full mutations of different sizes were tested before and after treatment with 5-azadC at various time points. We observed that individual cells are either completely unmethylated or not, with few relevant exceptions. We also investigated the extent of methylation in the full mutation (CGG repeat) itself by Southern blot analysis after digestion with methylation-sensitive enzymes Fnu4HI and McrBC and found that the CGG repeat remains at least partially methylated in many cells with a demethylated promoter. This may explain the quantitative discrepancy between the large extent of promoter demethylation and the limited levels of FMR1 transcriptional reactivation estimated by quantitative real-time fluorescent RT-PCR analysis.
Collapse
Affiliation(s)
- Roberta Pietrobono
- Istituto di Genetica Medica, Università Cattolica, and Centro Ricerche per la Disabilità Mentale e Motoria, Associazione Anni Verdi, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Salat U, Bardoni B, Wöhrle D, Steinbach P. Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations? J Med Genet 2000; 37:842-50. [PMID: 11073538 PMCID: PMC1734474 DOI: 10.1136/jmg.37.11.842] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Fragile X syndrome is a triplet repeat disorder caused by expansions of a CGG repeat in the fragile X mental retardation gene (FMR1) to more than 220 triplets (full mutation) that usually coincide with hypermethylation and transcriptional silencing. The disease phenotype results from deficiency or loss of FMR1 protein (FMRP) and occurs in both sexes. The underlying full mutations arise exclusively on transmission from a mother who carries a premutation allele (60-200 CGGs). While the absolute requirement of female transmission could result from different mechanisms, current evidence favours selection or contraction processes acting at gametogenesis of pre- and full mutation males. To address these questions experimentally, we used a model system of cultured fibroblasts from a male who presented heterogeneous unmethylated expansions in the pre- and full mutation size range. On continual cell proliferation to 30 doublings we re-examined the behaviour of the expanded repeats on Southern blots and also determined the expression of the FMR1 gene by FMRP immunocytochemistry, western analysis, and RT-PCR. With increasing population doublings, expansion patterns changed and showed accumulation of shorter alleles. The FMRP levels were below normal but increased continuously while the cells that were immunoreactive for FMRP accumulated. The level of FMR1 mRNA was raised with even higher levels of mRNA measured at higher passages. Current results support the theory of a selection advantage of FMRP positive over FMRP deficient cells. During extensive proliferation of spermatogonia in fragile X males, this selection mechanism would eventually replace all full mutations by shorter alleles allowing more efficient FMRP translation. At the proliferation of oogonia of carrier females, the same mechanism would, in theory, favour transmission of any expanded FMR1 allele on inactive X chromosomes.
Collapse
Affiliation(s)
- U Salat
- Department of Human Genetics, University Hospital, 89070 Ulm, Germany.
| | | | | | | |
Collapse
|
14
|
Tassone F, Hagerman RJ, Loesch DZ, Lachiewicz A, Taylor AK, Hagerman PJ. Fragile X males with unmethylated, full mutation trinucleotide repeat expansions have elevated levels of FMR1 messenger RNA. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 94:232-6. [PMID: 10995510 DOI: 10.1002/1096-8628(20000918)94:3<232::aid-ajmg9>3.0.co;2-h] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Fragile X syndrome normally arises as a consequence of large expansions (n >200) of a (CGG)(n) trinucleotide repeat in the promoter region of the FMR1 gene. The clinical phenotype is thought to result from hypermethylation of the repeat and adjacent upstream elements, with consequent down-regulation of transcription (transcriptional silencing). However, the relationship between repeat expansion and transcription has not been defined in the full mutation range. Using the method of quantitative (fluorescence) reverse transcriptase polymerase chain reaction, we demonstrated previously that FMR1 mRNA levels are substantially elevated in premutation (55 </= n < 200) male carriers. In the current work, we report that in fragile X males with unmethylated alleles in the full mutation range (n > 200), FMR1 mRNA levels remain significantly elevated (mean 3.5-fold elevation; P = 6.7 x 10(-3)) relative to normal controls, even for alleles exceeding 300 repeats. This conclusion is independent of any assumption regarding the transcriptional activity of methylated alleles. However, if it were assumed that all methylated alleles were transcriptionally silent, the FMR1 mRNA levels for cells with unmethylated alleles would be even higher (mean 4.5-fold elevation; P = 2.1 x 10(-4)). These observations show that the full-mutation CGG expansion per se is not a strong impediment to transcription and that the apparent up-regulation of the FMR1 locus remains active in at least some cells with full-mutation alleles.
Collapse
Affiliation(s)
- F Tassone
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
15
|
Burman RW, Anoe KS, Popovich BW. Fragile X full mutations are more similar in siblings than in unrelated patients: further evidence for a familial factor in CGG repeat dynamics. Genet Med 2000; 2:242-8. [PMID: 11252709 DOI: 10.1097/00125817-200007000-00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We sought to compare patterns of full mutation repeat-length variability in the peripheral blood DNA of patients with fragile X syndrome to determine whether siblings possess mutation patterns more similar than those of unrelated patients. METHODS Mutation patterns were visualized by Southern blot analysis and captured digitally with a phosphor imager. Novel comparison strategies based on overlapping profile plots and calculation of weighted mean CGG repeat values were used to assess mutation pattern similarity. RESULTS Within the population that we analyzed of 56 patients with full mutation, mutation patterns were found to be more similar in siblings than in unrelated patients. CONCLUSION These results indicate that repeat-length variability may be generated in a nonrandom manner and that familial factors influence this process.
Collapse
Affiliation(s)
- R W Burman
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|