1
|
Vergara IH, Geber MA, Moeller DA, Eckhart VM. Population histories of variable reproductive success and low winter precipitation correlate with risk-averse seed germination in a mediterranean-climate winter annual. AMERICAN JOURNAL OF BOTANY 2024; 111:e16412. [PMID: 39328075 DOI: 10.1002/ajb2.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/28/2024]
Abstract
PREMISE Seed germination involves risk; post-germination conditions might not allow survival and reproduction. Variable, stressful environments favor seeds with germination that avoids risk (e.g., germination in conditions predicting success), spreads risk (e.g., dormancy), or escapes risk (e.g., rapid germination). Germination studies often investigate trait correlations with climate features linked to variation in post-germination reproductive success. Rarely are long-term records of population reproductive success available. METHODS Supported by demographic and climate monitoring, we analyzed germination in the California winter-annual Clarkia xantiana subsp. xantiana. Sowing seeds of 10 populations across controlled levels of water potential and temperature, we estimated temperature-specific base water potential for 20% germination, germination time weighted by water potential above base (hydrotime), and a dormancy index (frequency of viable, ungerminated seeds). Mixed-effects models analyzed responses to (1) temperature, (2) discrete variation in reproductive success (presence or absence of years with zero seed production by a population), and (3) climate covariates, mean winter precipitation and coefficient of variation (CV) of spring precipitation. For six populations, records enabled analysis with a continuous metric of variable reproduction, the CV of per-capita reproductive success. RESULTS Populations with more variable reproductive success had higher base water potential and dormancy. Higher base water potential and faster germination occurred at warmer experimental temperatures and in seeds of populations with wetter winters. CONCLUSIONS Geographic variation in seed germination in this species suggests local adaptation to demographic risk and rainfall. High base water potential and dormancy may concentrate germination in years likely to allow reproduction, while spreading risk among years.
Collapse
Affiliation(s)
- Isabella H Vergara
- Grinnell College, Grinnell, IA, USA
- Donald Danforth Plant Science Center, Olivette, MO, USA
| | | | | | | |
Collapse
|
2
|
Siegmund GF, Moeller DA, Eckhart VM, Geber MA. Bet Hedging Is Not Sufficient to Explain Germination Patterns of a Winter Annual Plant. Am Nat 2023; 202:767-784. [PMID: 38033178 DOI: 10.1086/726785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.
Collapse
|
3
|
Filipe JC, Ahrens CC, Byrne M, Hardy G, Rymer PD. Germination temperature sensitivity differs between co-occurring tree species and climate origins resulting in contrasting vulnerability to global warming. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:146-162. [PMID: 37362420 PMCID: PMC10290426 DOI: 10.1002/pei3.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
Climate change is shifting temperatures from historical patterns, globally impacting forest composition and resilience. Seed germination is temperature-sensitive, making the persistence of populations and colonization of available habitats vulnerable to warming. This study assessed germination response to temperature in foundation trees in south-western Australia's Mediterranean-type climate forests (Eucalyptus marginata (jarrah) and Corymbia calophylla (marri)) to estimate the thermal niche and vulnerability among populations. Seeds from the species' entire distribution were collected from 12 co-occurring populations. Germination thermal niche was investigated using a thermal gradient plate (5-40°C). Five constant temperatures between 9 and 33°C were used to test how the germination niche (1) differs between species, (2) varies among populations, and (3) relates to the climate of origin. Germination response differed among species; jarrah had a lower optimal temperature and thermal limit than marri (T o 15.3°C, 21.2°C; ED50 23.4°C, 31°C, respectively). The thermal limit for germination differed among populations within both species, yet only marri showed evidence for adaptation to thermal origins. While marri has the capacity for germination at higher thermal temperatures, jarrah is more vulnerable to global warming exceeding safety margins. This discrepancy is predicted to alter species distributions and forest composition in the future.
Collapse
Affiliation(s)
- João C. Filipe
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
- Centre for Terrestrial Ecosystem Science and SustainabilityHarry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Collin C. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Research Centre for Ecosystem ResilienceRoyal Botanic Gardens and Domain TrustSydneyNew South WalesAustralia
- Cesar AustraliaBrunswickVictoriaAustralia
| | - Margaret Byrne
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
| | - Giles Hardy
- Centre for Terrestrial Ecosystem Science and SustainabilityHarry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| |
Collapse
|
4
|
Law L, Xue B. Internal cues for optimizing reproduction in a varying environment. Proc Biol Sci 2023; 290:20230096. [PMID: 37072039 PMCID: PMC10113029 DOI: 10.1098/rspb.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
In varying environments, it is beneficial for organisms to utilize available cues to infer the conditions they may encounter and express potentially favourable traits. However, external cues can be unreliable or too costly to use. We consider an alternative strategy where organisms exploit internal sources of information. Even without sensing environmental cues, their internal states may become correlated with the environment as a result of selection, which then form a memory that helps predict future conditions. To demonstrate the adaptive value of such internal cues in varying environments, we revisit the classic example of seed dormancy in annual plants. Previous studies have considered the germination fraction of seeds and its dependence on environmental cues. In contrast, we consider a model of germination fraction that depends on the seed age, which is an internal state that can serve as a memory. We show that, if the environmental variation has temporal structure, then age-dependent germination fractions will allow the population to have an increased long-term growth rate. The more the organisms can remember through their internal states, the higher the growth rate a population can potentially achieve. Our results suggest experimental ways to infer internal memory and its benefit for adaptation in varying environments.
Collapse
Affiliation(s)
- Leo Law
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - BingKan Xue
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
- Institute for Fundamental Theory, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Usinowicz J, O'Connor MI. The fitness value of ecological information in a variable world. Ecol Lett 2023; 26:621-639. [PMID: 36849871 DOI: 10.1111/ele.14166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 03/01/2023]
Abstract
Information processing is increasingly recognized as a fundamental component of life in variable environments, including the evolved use of environmental cues, biomolecular networks, and social learning. Despite this, ecology lacks a quantitative framework for understanding how population, community, and ecosystem dynamics depend on information processing. Here, we review the rationale and evidence for 'fitness value of information' (FVOI), and synthesize theoretical work in ecology, information theory, and probability behind this general mathematical framework. The FVOI quantifies how species' per capita population growth rates can depend on the use of information in their environment. FVOI is a breakthrough approach to linking information processing and ecological and evolutionary outcomes in a changing environment, addressing longstanding questions about how information mediates the effects of environmental change and species interactions.
Collapse
Affiliation(s)
- Jacob Usinowicz
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Mary I O'Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Christie K, Pierson NR, Lowry DB, Holeski LM. Local adaptation of seed and seedling traits along a natural aridity gradient may both predict and constrain adaptive responses to climate change. AMERICAN JOURNAL OF BOTANY 2022; 109:1529-1544. [PMID: 36129014 PMCID: PMC9828382 DOI: 10.1002/ajb2.16070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Variation in seed and seedling traits underlies how plants interact with their environment during establishment, a crucial life history stage. We quantified genetic-based variation in seed and seedling traits in populations of the annual plant Plantago patagonica across a natural aridity gradient, leveraging natural intraspecific variation to predict how populations might evolve in response to increasing aridity associated with climate change in the Southwestern U.S. METHODS We quantified seed size, seed size variation, germination timing, and specific leaf area in a greenhouse common garden, and related these traits to the climates of source populations. We then conducted a terminal drought experiment to determine which traits were most predictive of survival under early-season drought. RESULTS All traits showed evidence of clinal variation-seed size decreased, germination timing accelerated, and specific leaf area increased with increasing aridity. Populations with more variable historical precipitation regimes showed greater variation in seed size, suggestive of past selection shaping a diversified bet-hedging strategy mediated by seed size. Seedling height, achieved via larger seeds or earlier germination, was a significant predictor of survival under drought. CONCLUSIONS We documented substantial interspecific trait variation as well as clinal variation in several important seed and seedling traits, yet these slopes were often opposite to predictions for how individual traits might confer drought tolerance. This work shows that plant populations may adapt to increasing aridity via correlated trait responses associated with alternative life history strategies, but that trade-offs might constrain adaptive responses in individual traits.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaff, Arizona86011USA
- Department of Plant BiologyMichigan State UniversityEast Lansing, Michigan48824USA
| | - Natalie R. Pierson
- Department of Biological SciencesNorthern Arizona UniversityFlagstaff, Arizona86011USA
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast Lansing, Michigan48824USA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaff, Arizona86011USA
| |
Collapse
|
7
|
Maleki K, Baskin CC, Baskin JM, Kiani M, Alahdadi I, Soltani E. Seed germination thermal niche differs among nine populations of an annual plant: A modeling approach. Ecol Evol 2022; 12:e9240. [PMID: 36052295 PMCID: PMC9412254 DOI: 10.1002/ece3.9240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Germination timing is an important determinant of survival and niche breadth of plants. The annual plant Nigella sativa occurs in diverse environments along a steep temperature gradient and thus is a suitable model for the study of germination behavior in response to temperature. We used a modeling approach to compare the germination thermal niche of seeds of nine populations of N. sativa produced in a common garden. Germination time courses were obtained by a newly developed process-based model, and thermal niche was visualized by plotting germination breadth as a function of after-ripening time. Seeds were sampled five times: immature (2 weeks before maturity), mature, and afterripened for 1, 2, and 5 months. Immature and mature seeds had a greater depth of dormancy than afterripened seeds, as estimated by lower values of high-limit temperatures (T h). Afterripening increased germination percentage, synchrony, and thermal niche breadth of all nine populations. The highest asynchrony was for immature and mature seeds, and afterripening enhanced synchrony. Based on the new graphical method, N. sativa has Type 1 nondeep physiological dormancy, and thus, the germination niche is narrow at seed maturity, leading to a delayed germination strategy that is highly dependent on thermal time accumulated during afterripening. Our findings show that there is considerable variation in the germination thermal niche among populations. Temperature regimes in the natural habitats of N. sativa have played a significant role in shaping variation in thermal niche breadth for seed germination of this annual species. The models used in our study precisely predict germination behavior and thermal niche under different environmental conditions. The germination synchrony model also can estimate germination pattern and degree of dormancy during the year, suggesting a useful method for quantification of germination strategies.
Collapse
Affiliation(s)
- Keyvan Maleki
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| | - Carol C. Baskin
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Jerry M. Baskin
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Mohadeseh Kiani
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| | - Iraj Alahdadi
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| | - Elias Soltani
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| |
Collapse
|
8
|
Baughman OW, Kerby JD, Boyd CS, Madsen MD, Svejcar TJ. Can delaying germination reduce barriers to successful emergence for early‐germinating, fall‐sown native bunchgrass seeds in cold deserts? Restor Ecol 2022. [DOI: 10.1111/rec.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Chad S. Boyd
- US Department of Agriculture ‐ Agricultural Research Service Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 U.S.A
| | - Matthew D. Madsen
- Department of Plant and Wildlife Sciences Brigham Young University Provo UT 84602 U.S.A
| | - Tony J. Svejcar
- US Department of Agriculture ‐ Agricultural Research Service Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 U.S.A
| |
Collapse
|
9
|
Sánchez AM, Peralta AML, Luzuriaga AL, Prieto M, Escudero A. Climate change and biocrust disturbance synergistically decreased taxonomic, functional and phylogenetic diversity in annual communities on gypsiferous soils. OIKOS 2021. [DOI: 10.1111/oik.08809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana M. Sánchez
- Area of Biodiversity and Conservation, Rey Juan Carlos Univ. Madrid Spain
| | - Ana M. L. Peralta
- Area of Biodiversity and Conservation, Rey Juan Carlos Univ. Madrid Spain
| | | | - María Prieto
- Area of Biodiversity and Conservation, Rey Juan Carlos Univ. Madrid Spain
| | - Adrián Escudero
- Area of Biodiversity and Conservation, Rey Juan Carlos Univ. Madrid Spain
| |
Collapse
|
10
|
Faske TM, Agneray AC, Jahner JP, Sheta LM, Leger EA, Parchman TL. Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evol Appl 2021; 14:2881-2900. [PMID: 34950235 PMCID: PMC8674890 DOI: 10.1111/eva.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023] Open
Abstract
The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.
Collapse
Affiliation(s)
- Trevor M. Faske
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Alison C. Agneray
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | | | - Lana M. Sheta
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - Elizabeth A. Leger
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
11
|
Gomaa NH, Picó FX. Depicting the phenotypic space of the annual plant Diplotaxis acris in hyperarid deserts. Ecol Evol 2021; 11:15708-15719. [PMID: 34824784 PMCID: PMC8601918 DOI: 10.1002/ece3.8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
The phenotypic space encompasses the assemblage of trait combinations yielding well-suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among- and within-population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among-population divergence but high among-individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among-individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine-tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed-related traits advancing flowering time.
Collapse
Affiliation(s)
- Nasr H. Gomaa
- Department of Botany and MicrobiologyFaculty of ScienceBeni‐Suef UniversityBeni‐SuefEgypt
- Biology DepartmentCollege of ScienceJouf UniversitySakakaSaudi Arabia
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD)Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| |
Collapse
|
12
|
Zettlemoyer MA, Lau JA. Warming during maternal generations delays offspring germination in native and nonnative species. OIKOS 2021. [DOI: 10.1111/oik.08345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meredith A. Zettlemoyer
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Plant Biology, Michigan State Univ. East Lansing MI USA
- Dept of Plant Biology, Univ. of Georgia Athens GA USA
| | - Jennifer A. Lau
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Plant Biology, Michigan State Univ. East Lansing MI USA
- Dept of Biology&Environmental Resilience Inst., Indiana Univ. Bloomington IN USA
| |
Collapse
|
13
|
Li R, Jiang M, Song Y, Zhang H. Melatonin Alleviates Low-Temperature Stress via ABI5-Mediated Signals During Seed Germination in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:727596. [PMID: 34646287 PMCID: PMC8502935 DOI: 10.3389/fpls.2021.727596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/30/2021] [Indexed: 05/19/2023]
Abstract
With increasing areas of direct sowing, low-temperature (LT) stress drastically affects global rice production. Exogenous applications of melatonin (MT) serve as one of the effective ways to improve seed germination under various stress conditions. In this study, we found that MT treatment greatly improved the LT stress-induced loss of germination percentage and the weak performance of seedlings under LT of constant 20°C (LT20). This was largely dependent on the activated antioxidant system and enhanced activities of storage substance utilization-associated enzymes. Moreover, we also detected that exogenous feeding of MT significantly increased the biosynthesis of gibberellin (GA) and endogenous MT but simultaneously inhibited the accumulation of abscisic acid (ABA) and hydrogen peroxide (H2O2) under LT20 stress. These results suggested that MT had antagonistic effects on ABA and H2O2. In addition, MT treatment also significantly enhanced the expression of CATALYSE 2 (OsCAT2), which was directly regulated by ABA-INSENSITIVE 5 (OsABI5), a core module of ABA-stressed signals, and thus promoting the H2O2 scavenging to reach reactive oxygen species (ROS) homeostasis, which consequently increased GA biosynthesis. However, in abi5 mutants, OsCAT2 failed in response to LT20 stress irrespective of MT treatment, indicating that OsABI5 is essential for MT-mediated seed germination under LT20 stress. Collectively, we now demonstrated that MT showed a synergistic interaction with an ABI5-mediated signal to mediate seed germination, partially through the direct regulation of OsCAT2.
Collapse
Affiliation(s)
- Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Yue Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
14
|
Tanner KE, Moore‐O’Leary KA, Parker IM, Pavlik BM, Haji S, Hernandez RR. Microhabitats associated with solar energy development alter demography of two desert annuals. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02349. [PMID: 33817888 PMCID: PMC8459290 DOI: 10.1002/eap.2349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Political and economic initiatives intended to increase energy production while reducing carbon emissions are driving demand for solar energy. Consequently, desert regions are now targeted for development of large-scale photovoltaic solar energy facilities. Where vegetation communities are left intact or restored within facilities, ground-mounted infrastructure may have negative impacts on desert-adapted plants because it creates novel rainfall runoff and shade conditions. We used experimental solar arrays in the Mojave Desert to test how these altered conditions affect population dynamics for a closely related pair of native annual plants: rare Eriophyllum mohavense and common E. wallacei. We estimated aboveground demographic rates (seedling emergence, survivorship, and fecundity) over 7 yr and used seed bank survival rates from a concurrent study to build matrix models of population growth in three experimental microhabitats. In drier years, shade tended to reduce survival of the common species, but increase survival of the rare species. In a wet year, runoff from panels tended to increase seed output for both species. Population growth projections from microhabitat-specific matrix models showed stronger effects of microhabitat under wetter conditions, and relatively little effect under dry conditions (lack of rainfall was an overwhelming constraint). Performance patterns across microhabitats in the wettest year differed between rare and common species. Projected growth of E. mohavense was substantially reduced in shade, mediated by negative effects on aboveground demographic rates. Hence, the rare species were more susceptible to negative effects of panel infrastructure in wet years that are critical to seed bank replenishment. Our results suggest that altered shade and water runoff regimes associated with energy infrastructure will have differential effects on demographic transitions across annual species and drive population-level processes that determine local abundance, resilience, and persistence.
Collapse
Affiliation(s)
- Karen E. Tanner
- Ecology and Evolutionary Biology DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Kara A. Moore‐O’Leary
- Department of Evolution and EcologyUniversity of CaliforniaOne Shields AvenueDavisCalifornia95616USA
- Present address:
U.S. Fish and Wildlife ServicePacific Southwest Region3020 State University Drive EastSacramentoCalifornia95819USA
| | - Ingrid M. Parker
- Ecology and Evolutionary Biology DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Bruce M. Pavlik
- Conservation DepartmentRed Butte Garden and ArboretumUniversity of UtahSalt Lake CityUtah84108USA
| | - Sophia Haji
- Ecology and Evolutionary Biology DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Rebecca R. Hernandez
- Department of Land, Air & Water ResourcesUniversity of CaliforniaOne Shields AvenueDavisCalifornia95616USA
- Wild Energy InitiativeJohn Muir Institute of the EnvironmentUniversity of CaliforniaOne Shields AvenueDavisCalifornia95616USA
| |
Collapse
|
15
|
Wen T, Koonin EV, Cheong KH. An alternating active-dormitive strategy enables disadvantaged prey to outcompete the perennially active prey through Parrondo's paradox. BMC Biol 2021; 19:168. [PMID: 34425802 PMCID: PMC8383410 DOI: 10.1186/s12915-021-01097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dormancy is widespread in nature, but while it can be an effective adaptive strategy in fluctuating environments, the dormant forms are costly due to the inability to breed and the relatively high energy consumption. We explore mathematical models of predator-prey systems, in order to assess whether dormancy can be an effective adaptive strategy to outcompete perennially active (PA) prey, even when both forms of the dormitive prey (active and dormant) are individually disadvantaged. RESULTS We develop a dynamic population model by introducing an additional dormitive prey population to the existing predator-prey model which can be active (active form) and enter dormancy (dormant form). In this model, both forms of the dormitive prey are individually at a disadvantage compared to the PA prey and thus would go extinct due to their low growth rate, energy waste on the production of dormant prey, and the inability of the latter to grow autonomously. However, the dormitive prey can paradoxically outcompete the PA prey with superior traits and even cause its extinction by alternating between the two losing strategies. We observed higher fitness of the dormitive prey in rich environments because a large predator population in a rich environment cannot be supported by the prey without adopting an evasive strategy, that is, dormancy. In such environments, populations experience large-scale fluctuations, which can be survived by dormitive but not by PA prey. CONCLUSION We show that dormancy can be an effective adaptive strategy to outcompete superior prey, recapitulating the game-theoretic Parrondo's paradox, where two losing strategies combine to achieve a winning outcome. We suggest that the species with the ability to switch between the active and dormant forms can dominate communities via competitive exclusion.
Collapse
Affiliation(s)
- Tao Wen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, S487372, Singapore, Singapore
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, S487372, Singapore, Singapore.
| |
Collapse
|
16
|
Eskelinen A, Elwood E, Harrison S, Beyen E, Gremer JR. Vulnerability of grassland seed banks to resource-enhancing global changes. Ecology 2021; 102:e03512. [PMID: 34358331 DOI: 10.1002/ecy.3512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Soil seed banks represent reservoirs of diversity in the soil that may increase resilience of communities to global changes. Two global change factors that can dramatically alter the composition and diversity of aboveground communities are nutrient enrichment and increased rainfall. In a full-factorial nutrient and rainfall addition experiment in an annual Californian grassland, we asked whether shifts in aboveground composition and diversity were reflected in belowground seed banks. Nutrient and rainfall additions increased exotic and decreased native abundances, while rainfall addition increased exotic richness, both in aboveground communities and seed banks. Under nutrient addition, forbs and short-statured plants were replaced by grasses and tall-statured species, both above and below ground, and whole-community responses to the treatments were similar. Structural equation models indicated that especially nutrient addition effects on seed banks were largely indirect via aboveground communities. However, rainfall addition also had a direct negative effect on native species richness and abundance of species with high specific leaf area (SLA) in seed banks, showing that seed banks are sensitive to the direct effects of temporary increases in rainfall. Our findings highlight the vulnerability of seed banks in annual, resource-poor grasslands to shifts in compositional and trait changes in aboveground communities and show how invasion of exotics and depletion of natives are critical for these above-belowground compositional shifts. Our findings suggest that seed banks have limited potential to buffer resource-poor annual grasslands from the community changes caused by resource enrichment.
Collapse
Affiliation(s)
- Anu Eskelinen
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig, 04318, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany.,Department of Ecology and Genetics, University of Oulu, P.O. Box 8000, Oulu, FI-90014, Finland
| | - Elise Elwood
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| | - Susan Harrison
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| | - Eva Beyen
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| |
Collapse
|
17
|
Fu LT. Effect of the local wind reduction zone on seed dispersal from a single shrub element on sparsely vegetated land. AOB PLANTS 2021; 13:plab025. [PMID: 34249307 PMCID: PMC8266638 DOI: 10.1093/aobpla/plab025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Accurate predictions of seed dispersal kernels are crucial for understanding both vegetation communities and landscape dynamics. The influences of many factors, including the physical properties of seeds, the time-averaged wind speed and the wind turbulence, on seed dispersal have been studied. However, the influence of local wind speed reduction around a single shrub element (e.g. a small patch of scrub) on seed dispersal is still not well understood. Here, the spatial distribution of the wind intensity (represented by the wind friction speed u *) around a single shrub element is described, with an emphasis on the variation in the streamwise direction, and assuming that the time-averaged lateral and vertical speeds are equal to zero. The trajectories of the seeds were numerically simulated using a Lagrangian stochastic model that includes the effects of wind turbulence and particle inertia. The patterns of seed deposition with and without the effect of local wind reduction were compared. The variation in seed deposition with changing wind intensity, release height and shrub porosity were also simulated. The simulation results revealed that the local wind reduction increased seed deposition in nearby regions and therefore decreased seed deposition in the regions farther away. Local wind reduction had a greater impact on short-distance dispersal than on long-distance dispersal. Moreover, the dispersal in the circumferential direction decreased once the motion of a seed moving in the streamwise direction was reduced due to the local wind reduction. As the wind intensity and release height increased, the effect of local wind reduction on seed dispersal weakened. Seed dispersal was both wider and farther as the shrub porosity increased. These results may help explain the disagreement between the mechanistic models and the fitting curves in real cases. In addition, the results of this study may improve the currently used mechanistic models by either increasing their flexibility in case studies or by helping explain the variations in the observed distributions.
Collapse
Affiliation(s)
- Lin-Tao Fu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| |
Collapse
|
18
|
Is There More to Within-plant Variation in Seed Size than Developmental Noise? Evol Biol 2021. [DOI: 10.1007/s11692-021-09544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWithin-plant variation in seed size may merely reflect developmental instability, or it may be adaptive in facilitating diversifying bet-hedging, that is, production of phenotypically diverse offspring when future environments are unpredictable. To test the latter hypothesis, we analyzed patterns of variation in seed size in 11 populations of the perennial vine Dalechampia scandens grown in a common greenhouse environment. We tested whether population differences in the mean and variation of seed size covaried with environmental predictability at two different timescales. We also tested whether within-plant variation in seed size was correlated with independent measures of floral developmental instability and increased under stressful conditions. Populations differed genetically in the amount of seed-size variation occurring among plants, among infructescences within plants, and among seeds within infructescences. Within-individual variation was not detectably correlated with measures of developmental instability and did not increase under stress, but it increased weakly with short-term environmental unpredictability of precipitation at the source-population site. These results support the hypothesis that greater variation in seed size is adaptive when environmental predictability is low.
Collapse
|
19
|
Rowiński PK, Sowersby W, Näslund J, Eckerström-Liedholm S, Gotthard K, Rogell B. Variation in developmental rates is not linked to environmental unpredictability in annual killifishes. Ecol Evol 2021; 11:8027-8037. [PMID: 34188869 PMCID: PMC8216982 DOI: 10.1002/ece3.7632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
Comparative evidence suggests that adaptive plasticity may evolve as a response to predictable environmental variation. However, less attention has been placed on unpredictable environmental variation, which is considered to affect evolutionary trajectories by increasing phenotypic variation (or bet hedging). Here, we examine the occurrence of bet hedging in egg developmental rates in seven species of annual killifish that originate from a gradient of variation in precipitation rates, under three treatment incubation temperatures (21, 23, and 25°C). In the wild, these species survive regular and seasonal habitat desiccation, as dormant eggs buried in the soil. At the onset of the rainy season, embryos must be sufficiently developed in order to hatch and complete their life cycle. We found substantial differences among species in both the mean and variation of egg development rates, as well as species-specific plastic responses to incubation temperature. Yet, there was no clear relationship between variation in egg development time and variation in precipitation rate (environmental predictability). The exact cause of these differences therefore remains enigmatic, possibly depending on differences in other natural environmental conditions in addition to precipitation predictability. Hence, if species-specific variances are adaptive, the relationship between development and variation in precipitation is complex and does not diverge in accordance with simple linear relationships.
Collapse
Affiliation(s)
| | - Will Sowersby
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Biology Faculty of Science Osaka City University Osaka Japan
| | - Joacim Näslund
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| | | | - Karl Gotthard
- Department of Zoology Stockholm University Stockholm Sweden
| | - Björn Rogell
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| |
Collapse
|
20
|
Haaland TR, Wright J, Ratikainen II. Individual reversible plasticity as a genotype-level bet-hedging strategy. J Evol Biol 2021; 34:1022-1033. [PMID: 33844340 DOI: 10.1111/jeb.13788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Reversible plasticity in phenotypic traits allows organisms to cope with environmental variation within lifetimes, but costs of plasticity may limit just how well the phenotype matches the environmental optimum. An additional adaptive advantage of plasticity might be to reduce fitness variance, in other words: bet-hedging to maximize geometric (rather than simply arithmetic) mean fitness. Here, we model the evolution of plasticity in the form of reaction norm slopes, with increasing costs as the slope or degree of plasticity increases. We find that greater investment in plasticity (i.e. a steeper reaction norm slope) is favoured in scenarios promoting bet-hedging as a response to multiplicative fitness accumulation (i.e. coarser environmental grains and fewer time steps prior to reproduction), because plasticity lowers fitness variance across environmental conditions. In contrast, in scenarios with finer environmental grain and many time steps prior to reproduction, bet-hedging plays less of a role and individual-level optimization favours evolution of shallower reaction norm slopes. However, the opposite pattern holds if plasticity costs themselves result in increased fitness variation, as might be the case for production costs of plasticity that depend on how much change is made to the phenotype each time step. We discuss these contrasting predictions from this partitioning of adaptive plasticity into short-term individual benefits versus long-term genotypic (bet-hedging) benefits, and how this approach enhances our understanding of the evolution of optimum levels of plasticity in examples from thermal physiology to advances in avian lay dates.
Collapse
Affiliation(s)
- Thomas R Haaland
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Irja I Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Waterton J, Mazer SJ, Meyer JR, Cleland EE. Trade-off drives Pareto optimality of within- and among-year emergence timing in response to increasing aridity. Evol Appl 2021; 14:658-673. [PMID: 33767742 PMCID: PMC7980269 DOI: 10.1111/eva.13145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Adaptation to current and future climates can be constrained by trade-offs between fitness-related traits. Early seedling emergence often enhances plant fitness in seasonal environments, but if earlier emergence in response to seasonal cues is genetically correlated with lower potential to spread emergence among years (i.e., bet-hedging), then this functional trade-off could constrain adaptive evolution. Consequently, selection favoring both earlier within-year emergence and greater spread of emergence among years-as is expected in more arid environments-may constrain adaptive responses to trait value combinations at which a performance gain in either function (i.e., evolving earlier within- or greater among-year emergence) generates a performance loss in the other. All such trait value combinations that cannot be improved for both functions simultaneously are described as Pareto optimal and together constitute the Pareto front. To investigate how this potential emergence timing trade-off might constrain adaptation to increasing aridity, we sourced seeds of two grasses, Stipa pulchra and Bromus diandrus, from multiple maternal lines within populations across an aridity gradient in California and examined their performance in a greenhouse experiment. We monitored emergence and assayed ungerminated seeds for viability to determine seed persistence, a metric of potential among-year emergence spread. In both species, maternal lines with larger fractions of persistent seeds emerged later, indicating a trade-off between within-year emergence speed and potential among-year emergence spread. In both species, populations on the Pareto front for both earlier emergence and larger seed persistence fraction occupied significantly more arid sites than populations off the Pareto front, consistent with the hypothesis that more arid sites impose the strongest selection for earlier within-year emergence and greater among-year emergence spread. Our results provide an example of how evaluating genetically based correlations within populations and applying Pareto optimality among populations can be used to detect evolutionary constraints and adaptation across environmental gradients.
Collapse
Affiliation(s)
- Joseph Waterton
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Justin R. Meyer
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| | - Elsa E. Cleland
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
22
|
Wang J, Xu G, Chen W, Ma Y, Qi W, Zhang C, Cui X. Impacts of growth form and phylogenetic relatedness on seed germination: A large-scale analysis of a subtropical regional flora. Ecol Evol 2021; 11:1280-1293. [PMID: 33598130 PMCID: PMC7863672 DOI: 10.1002/ece3.7132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Plant regeneration strategy plays a critical role in species survival and can be used as a proxy for the evolutionary response of species to climate change. However, information on the effects of key plant traits and phylogenetic relatedness on seed germination is limited at large regional scales that vary in climate. To test the hypotheses that phylogenetic niche conservatism plays a critical force in shaping seed ecophysiological traits across species, and also drives their response to climatic fluctuation, we conducted a controlled experiment on seed germination and determined the percentage and rate of germination for 249 species in subtropical China under two temperature regimes (i.e., daily 25°C; daily alternating 25/15°C for each 12 hr). Germination was low with a skewed distribution (mean = 38.9% at 25°C, and 43.3% at 25/15°C). One fifth of the species had low (<10%) and slow (4-30 days) germination, and only a few (8%) species had a high (>80%) and rapid (1.2-6.6 days) germination. All studied plant traits (including germination responses) showed a significant phylogenetic signal, with an exception of seed germination percentage under the alternating temperature scenario. Generalized linear models (GLMs) and phylogenetic generalized estimation equations (GEEs) demonstrated that growth form and seed dispersal mode were strong drivers of germination. Our experimental study highlights that integrating plant key traits and phylogeny is critical to predicting seed germination response to future climate change.
Collapse
Affiliation(s)
- JuHong Wang
- College of Food Technology and Life ScienceHanshan Normal UniversityChaozhouChina
| | - GeXi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland AdministrationResearch Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
| | - Wen Chen
- College of Geography and Tourism ManagementHanshan Normal UniversityChaozhouChina
| | - YanBo Ma
- College of Mathematics and StatisticsHanshan Normal UniversityChaozhouChina
| | - Wei Qi
- State Key Laboratory of Grassland AgroecosystemsSchool of Life SciencesLanzhou UniversityLanzhouChina
| | - ChunHui Zhang
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningChina
| | - XianLiang Cui
- College of Biology and ChemistryPuer UniversityPuerChina
| |
Collapse
|
23
|
Shryock DF, Washburn LK, DeFalco LA, Esque TC. Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. Mol Ecol 2021; 30:698-717. [PMID: 33007116 DOI: 10.1111/mec.15672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Local adaptation features critically in shaping species responses to changing environments, complicating efforts to revegetate degraded areas. Rapid climate change poses an additional challenge that could reduce fitness of even locally sourced seeds in restoration. Predictive restoration strategies that apply seeds with favourable adaptations to future climate may promote long-term resilience. Landscape genomics is increasingly used to assess spatial patterns in local adaption and may represent a cost-efficient approach for identifying future-adapted genotypes. To demonstrate such an approach, we genotyped 760 plants from 64 Mojave Desert populations of the desert annual Plantago ovata. Genome scans on 5,960 SNPs identified 184 potentially adaptive loci related to climate and satellite vegetation metrics. Causal modelling indicated that variation in potentially adaptive loci was not confounded by isolation by distance or isolation by habitat resistance. A generalized dissimilarity model (GDM) attributed spatial turnover in potentially adaptive loci to temperature, precipitation and NDVI amplitude, a measure of vegetation green-up potential. By integrating a species distribution model (SDM), we find evidence that summer maximum temperature may both constrain the range of P. ovata and drive adaptive divergence in populations exposed to higher temperatures. Within the species' current range, warm-adapted genotypes are predicted to experience a fivefold expansion in climate niche by midcentury and could harbour key adaptations to cope with future climate. We recommend eight seed transfer zones and project each zone into its relative position in future climate. Prioritizing seed collection efforts on genotypes with expanding future habitat represents a promising strategy for restoration practitioners to address rapidly changing climates.
Collapse
Affiliation(s)
- Daniel F Shryock
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | | | - Lesley A DeFalco
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | - Todd C Esque
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| |
Collapse
|
24
|
Phenotypic plasticity in diaspore production of a amphi-basicarpic cold desert annual that produces polymorphic diaspores. Sci Rep 2020; 10:11142. [PMID: 32636397 PMCID: PMC7341796 DOI: 10.1038/s41598-020-67380-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
Phenotypic plasticity has been studied in diaspore-dimorphic species, but no such study has been done on a diaspore-polymorphic species. Our aim was to determine the effects of abiotic and biotic factors on phenotypic plasticity of the diaspore-polymorphic cold desert annual Ceratocarpus arenarius. Plants produced from dispersal units near the soil surface (a, basicarps) and at the middle (c) and upper (f) parts of the plant canopy were subjected to different levels of soil moisture, nutrient supply and intramorph and intermorph densities. Different levels of these biotic and abiotic factors resulted in significant variation in total plant mass, diaspore mass, mass allocation to stem and reproductive organs and total number and proportion of morphs a, c and f on an individual. The effect of stress on number and mass of a dispersal unit morph varied by treatment, with dispersal unit f having the highest CV and dispersal unit a the lowest. The success of this diaspore polymorphic species in its rainfall-unpredictable environment likely is enhanced by plasticity in production of the different types of diaspores.
Collapse
|
25
|
Renzi JP, Duchoslav M, Brus J, Hradilová I, Pechanec V, Václavek T, Machalová J, Hron K, Verdier J, Smýkal P. Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E503. [PMID: 32295289 PMCID: PMC7238229 DOI: 10.3390/plants9040503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4-100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.
Collapse
Affiliation(s)
- Juan Pablo Renzi
- Instituto Nacional de Tecnología Agropecuaria, Hilario Ascasubi 8142, Argentina;
| | - Martin Duchoslav
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Jan Brus
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Iveta Hradilová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Vilém Pechanec
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Tadeáš Václavek
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jitka Machalová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jerome Verdier
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d’Angers, SFR 4207 QUASAV, 49070 Beaucouzé, France;
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| |
Collapse
|
26
|
Tan Z, Koh JM, Koonin EV, Cheong KH. Predator Dormancy is a Stable Adaptive Strategy due to Parrondo's Paradox. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901559. [PMID: 32042555 PMCID: PMC7001654 DOI: 10.1002/advs.201901559] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Indexed: 05/20/2023]
Abstract
Many predators produce dormant offspring to escape harsh environmental conditions, but the evolutionary stability of this adaptation has not been fully explored. Like seed banks in plants, dormancy provides a stable competitive advantage when seasonal variations occur, because the persistence of dormant forms under harsh conditions compensates for the increased cost of producing dormant offspring. However, dormancy also exists in environments with minimal abiotic variation-an observation not accounted for by existing theory. Here it is demonstrated that dormancy can out-compete perennial activity under conditions of extensive prey density fluctuation caused by overpredation. It is shown that at a critical level of prey density fluctuations, dormancy becomes an evolutionarily stable strategy. This is interpreted as a manifestation of Parrondo's paradox: although neither the active nor dormant forms of a dormancy-capable predator can individually out-compete a perennially active predator, alternating between these two losing strategies can paradoxically result in a winning strategy. Parrondo's paradox may thus explain the widespread success of quiescent behavioral strategies such as dormancy, suggesting that dormancy emerges as a natural evolutionary response to the self-destructive tendencies of overpredation and related biological phenomena.
Collapse
Affiliation(s)
- Zhi‐Xuan Tan
- Science and Math ClusterSingapore University of Technology and Design (SUTD)SingaporeS487372Singapore
| | - Jin Ming Koh
- Science and Math ClusterSingapore University of Technology and Design (SUTD)SingaporeS487372Singapore
| | - Eugene V. Koonin
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of HealthBethesdaMD20894USA
| | - Kang Hao Cheong
- Science and Math ClusterSingapore University of Technology and Design (SUTD)SingaporeS487372Singapore
- SUTD‐Massachusetts Institute of Technology International Design CentreSingaporeS487372Singapore
| |
Collapse
|
27
|
Ibrahim So M, Bakka Z, Abd Allah A, Mohamed Es N. Genetic Characterization for Three Groups of Seed Heterospermy for Some Wild Plants. SINGAPORE JOURNAL OF SCIENTIFIC RESEARCH 2020; 10:105-122. [DOI: 10.3923/sjsres.2020.105.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Ten Brink H, Gremer JR, Kokko H. Optimal germination timing in unpredictable environments: the importance of dormancy for both among- and within-season variation. Ecol Lett 2020; 23:620-630. [PMID: 31994356 PMCID: PMC7079161 DOI: 10.1111/ele.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 12/22/2019] [Indexed: 01/19/2023]
Abstract
For organisms living in unpredictable environments, timing important life‐history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among‐ and within‐season uncertainty. We use a modelling approach that considers among‐season dormancy and within‐season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among‐season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter‐intuitively select for less risk‐spreading within the season. Furthermore, strong priority effects select for earlier within‐season germination phenology which in turn increases the need for bet hedging through among‐season dormancy.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
29
|
Liu S, Bradford KJ, Huang Z, Venable DL. Hydrothermal sensitivities of seed populations underlie fluctuations of dormancy states in an annual plant community. Ecology 2020; 101:e02958. [PMID: 31840254 DOI: 10.1002/ecy.2958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
Abstract
Plant germination ecology involves continuous interactions between changing environmental conditions and the sensitivity of seed populations to respond to those conditions at a given time. Ecologically meaningful parameters characterizing germination capacity (or dormancy) are needed to advance our understanding of the evolution of germination strategies within plant communities. The germination traits commonly examined (e.g., maximum germination percentage under optimal conditions) may not adequately reflect the critical ecological differences in germination behavior across species, communities, and seasons. In particular, most seeds exhibit primary dormancy at dispersal that is alleviated by exposure to dry after-ripening or to hydrated chilling to enable germination in a subsequent favorable season. Population-based threshold (PBT) models of seed germination enable quantification of patterns of germination timing using parameters based on mechanistic assumptions about the underlying germination physiology. We applied the hydrothermal time (HTT) model, a type of PBT model that integrates environmental temperature and water availability, to study germination physiology in a guild of coexisting desert annual species whose seeds were after-ripened by dry storage under different conditions. We show that HTT assumptions are valid for describing germination physiology in these species, including loss of dormancy during after-ripening. Key HTT parameters, the hydrothermal time constant (θHT ) and base water potential distribution among seeds (Ψb (g)), were effective in describing changes in dormancy states and in clustering species exhibiting similar germination syndromes. θHT is an inherent species-specific trait relating to timing of germination that correlates well with long-term field germination fraction, while Ψb (g) shifts with depth of dormancy in response to after-ripening and seasonal environmental variation. Predictions based on variation among coexisting species in θHT and Ψb (g) in laboratory germination tests matched well with 25-yr observations of germination dates and fractions for the same species in natural field conditions. Seed dormancy and germination strategies, which are significant contributors to long-term species demographics under natural conditions, can be represented by readily measurable functional traits underlying variation in germination phenologies.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecologic Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.,Department of Plant Sciences, Seed Biotechnology Center, University of California, Davis, California, 95616, USA
| | - Kent J Bradford
- Department of Plant Sciences, Seed Biotechnology Center, University of California, Davis, California, 95616, USA
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - D Lawrence Venable
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
30
|
Cochrane A. Temperature thresholds for germination in 20 short-range endemic plant species from a Greenstone Belt in southern Western Australia. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:103-112. [PMID: 30556244 DOI: 10.1111/plb.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The study of climate-driven effects on seed traits such as germination has gained momentum over the past decade as the impact of global warming becomes more apparent on the health and survival of plant diversity. Seed response to warming was evaluated in a suite of short-range endemic species from the biodiverse Greenstone Belt of southern Western Australia. The temperature dimensions for germination in 20 woody perennials were identified using small unreplicated samples over 6 weeks on a temperature gradient plate (constant and fluctuating temperatures between 5 and 40 °C). These data were subsequently modelled against current and forecast (2070) mean monthly minimum and maximum temperatures to illustrate seasonal changes to germination timing and final percentage germination. All but one species attained full germination in at least one cell on the gradient plate. Modelling of the data suggested only minimal changes to percentage germination despite a forecast rise in diurnal temperatures over the next 50 years. Nine species were predicted to experience declines of between <1% and 7%, whilst 11 species were predicted to increase their germination by <1% to 3%. Overall, the speed of germination is predicted to increase but the timing of germination for most species shifts seasonally (both advances and delays) as a result of changing diurnal temperatures. The capacity of this suite of species to cope with warmer temperatures during a critical early life stage shows a degree of adaptation to heterogeneous environments. Predicting the effects of global change on terrestrial plant communities is crucial to managing and conserving plant diversity.
Collapse
Affiliation(s)
- A Cochrane
- Biodiversity Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
- Ecology, Evolution and Genetics, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
31
|
Duncan C, Schultz NL, Good MK, Lewandrowski W, Cook S. The risk-takers and -avoiders: germination sensitivity to water stress in an arid zone with unpredictable rainfall. AOB PLANTS 2019; 11:plz066. [PMID: 31777652 PMCID: PMC6863470 DOI: 10.1093/aobpla/plz066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/03/2019] [Indexed: 05/28/2023]
Abstract
Water availability is a critical driver of population dynamics in arid zones, and plant recruitment is typically episodic in response to rainfall. Understanding species' germination thresholds is key for conservation and restoration initiatives. Thus, we investigated the role of water availability in the germination traits of keystone species in an arid ecosystem with stochastic rainfall. We measured seed germination responses of five arid species, along gradients of temperature and water potential under controlled laboratory conditions. We then identified the cardinal temperatures and base water potentials for seed germination, and applied the hydrotime model to assess germination responses to water stress. Optimum temperatures for germination ranged from 15 to 31 °C under saturated conditions (0 MPa), and three species had low minimum temperatures for germination (<3 °C). A small proportion of seeds of all species germinated under dry conditions (Ψ ≤ -1 MPa), although base water potential for germination (Ψ b50) ranged from -0.61 to -0.79 MPa. Species adhered to one of two germination traits: (i) the risk-takers which require less moisture availability for germination, and which can germinate over a wider range of temperatures irrespective of water availability (Casuarina pauper and Maireana pyramidata), and (ii) the risk-avoiders which have greater moisture requirements, a preference for cold climate germination, and narrower temperature ranges for germination when water availability is low (Atriplex rhagodioides, Maireana sedifolia and Hakea leucoptera). High seed longevity under physiological stress in H. leucoptera, combined with a risk-avoiding strategy, allows bet-hedging. The hydrotime model predicted lower base water potentials for germination than observed by the data, further supporting our assertion that these species have particular adaptations to avoid germination during drought. This study provides insights into the complex physiological responses of seeds to environmental stress, and relates seed germination traits to community dynamics and restoration in arid zones.
Collapse
Affiliation(s)
- Corrine Duncan
- School of Health and Life Sciences, Federation University, Mt Helen, VIC, Australia
| | - Nick L Schultz
- School of Health and Life Sciences, Federation University, Mt Helen, VIC, Australia
| | - Megan K Good
- BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Simon Cook
- School of Health and Life Sciences, Federation University, Mt Helen, VIC, Australia
| |
Collapse
|
32
|
Haaland TR, Wright J, Ratikainen II. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc Biol Sci 2019; 286:20192070. [PMID: 31771482 PMCID: PMC6939271 DOI: 10.1098/rspb.2019.2070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In order to understand how organisms cope with ongoing changes in environmental variability, it is necessary to consider multiple adaptations to environmental uncertainty on different time scales. Conservative bet-hedging (CBH) represents a long-term genotype-level strategy maximizing lineage geometric mean fitness in stochastic environments by decreasing individual fitness variance, despite also lowering arithmetic mean fitness. Meanwhile, variance-prone (aka risk-prone) strategies produce greater variance in short-term payoffs, because this increases expected arithmetic mean fitness if the relationship between payoffs and fitness is accelerating. Using evolutionary simulation models, we investigate whether selection for such variance-prone strategies is counteracted by selection for bet-hedging that works to adaptively reduce fitness variance. In our model, variance proneness evolves in fine-grained environments (lower correlations among individuals in energetic state and/or payoffs), and with larger numbers of independent decision events over which resources accumulate prior to selection. Conversely, multiplicative fitness accumulation, caused by coarser environmental grain and fewer decision events selection, favours CBH via greater variance aversion. We discuss examples of variance-sensitive strategies in optimal foraging, migration, life histories and cooperative breeding using this bet-hedging perspective. By linking disparate fields of research studying adaptations to variable environments, we should be better able to understand effects of human-induced rapid environmental change.
Collapse
Affiliation(s)
- Thomas R Haaland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Irja I Ratikainen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
33
|
Friedman J, Middleton TE, Rubin MJ. Environmental heterogeneity generates intrapopulation variation in life-history traits in an annual plant. THE NEW PHYTOLOGIST 2019; 224:1171-1183. [PMID: 31400159 DOI: 10.1111/nph.16099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Environmental variation affects a plant's life cycle by influencing the timing of germination and flowering, and the duration of the growing season. Yet we know little information about how environmental heterogeneity generates variation in germination schedules and the consequences for growth and fecundity through genetic and plastic responses. We use an annual population of Mimulus guttatus in which, in nature, seeds germinate in both fall and spring. We investigate whether there is a genetic basis to the timing of germination, the effect of germination timing on fecundity, and if growth and flowering respond plastically to compensate for different season lengths. Using sibling families grown in simulated seasonal conditions, we find that families do not differ in their propensity to germinate between seasons. However, the germination season affects subsequent growth and flowering time, with significant genotype-by-environment interactions (G × E). Most G × E is due to unequal variance between seasons, because the spring cohort harbours little genetic variance. Despite their different season lengths, the cohorts do not differ in flower number (fecundity). Heterogeneous environments with unpredictable risks may maintain promiscuous germination, which then affects flowering time. Therefore, if selection at particular life stages changes with climate change, there may be consequences for the entire life cycle.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
34
|
Duarte M, Guerrero PC, Arroyo MTK, Bustamante RO. Niches and climate-change refugia in hundreds of species from one of the most arid places on Earth. PeerJ 2019; 7:e7409. [PMID: 31565547 PMCID: PMC6745186 DOI: 10.7717/peerj.7409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background and Aims Global climate change is a major threat to biodiversity worldwide. Several arid areas might expand in the future, but it is not clear if this change would be positive or negative for arid-adapted lineages. Here, we explore whether climatic niche properties are involved in the configuration of climate refugia and thus in future species trends. Methods To estimate putative climate refugia and potential expansion areas, we used maximum entropy models and four climate-change models to generate current and future potential distributions of 142 plant species endemic to the Atacama and mediterranean Chilean ecosystems. We assessed the relationship between the similarity and breadth of thermal and precipitation niches with the size of climate refugia and areas of potential expansions. Key Results We found a positive relationship between breadth and similarity for thermal niche with the size of climate refugia, but only niche similarity of the thermal niche was positively related with the size of expansion areas. Although all lineages would reduce their distributions in the future, few species are predicted to be at risk of extinction in their current distribution, and all of them presented potential expansion areas. Conclusion Species with a broad niche and niche dissimilarity will have larger refugia, and species with niche dissimilarity will have larger expansion areas. In addition, our prediction for arid lineages shows that these species will be moderately affected by climate change.
Collapse
Affiliation(s)
- Milen Duarte
- Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Pablo C Guerrero
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mary T K Arroyo
- Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Ramiro O Bustamante
- Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| |
Collapse
|
35
|
Leverett LD, Shaw AK. Facilitation and competition interact with seed dormancy to affect population dynamics in annual plants. POPUL ECOL 2019. [DOI: 10.1002/1438-390x.12021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lindsay D. Leverett
- Program in Ecology and Department of Biology Duke University Durham North Carolina
| | - Allison K. Shaw
- Department of Ecology, Evolution and Behavior University of Minnesota‐Twin Cities St. Paul Minnesota
| |
Collapse
|
36
|
Rajon E, Charlat S. (In)exhaustible Suppliers for Evolution? Epistatic Selection Tunes the Adaptive Potential of Nongenetic Inheritance. Am Nat 2019; 194:470-481. [PMID: 31490728 DOI: 10.1086/704772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nongenetic inheritance media-from methyl-accepting cytosines to culture-tend to mutate more frequently than DNA sequences. Whether this makes them inexhaustible suppliers for adaptive evolution will depend on the effect of nongenetic mutations (hereafter, epimutations) on fitness-related traits. Here we investigate how these effects might themselves evolve, specifically whether natural selection may set boundaries to the adaptive potential of nongenetic inheritance media because of their higher mutability. In our model, the genetic and epigenetic contributions to a nonneutral phenotype are controlled by an epistatic modifier locus, which evolves under the combined effects of drift and selection. We show that a pure genetic control evolves when the environment is stable-provided that the population is large-such that the phenotype becomes robust to frequent epimutations. When the environment fluctuates, however, selection on the modifier locus also fluctuates and can overall produce a large nongenetic contribution to the phenotype, especially when the epimutation rate matches the rate of environmental variation. We further show that selection on the modifier locus is generally insensitive to recombination, meaning it is mostly direct, that is, not relying on subsequent effects in future generations. These results suggest that unstable inheritance media might significantly contribute to fitness variation of traits subject to highly variable selective pressures but little to traits responding to scarcely variable aspects of the environment. More generally, our study demonstrates that the rate of mutation and the adaptive potential of any inheritance media should not be seen as independent properties.
Collapse
|
37
|
Nguyen V, Buckley YM, Salguero-Gómez R, Wardle GM. Consequences of neglecting cryptic life stages from demographic models. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Jooste M, Midgley GF, Oberlander KC, Dreyer LL. Oxalis seeds from the Cape Flora have a spectrum of germination strategies. AMERICAN JOURNAL OF BOTANY 2019; 106:879-893. [PMID: 31157415 DOI: 10.1002/ajb2.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Seed germination strategy has profound ecological and evolutionary consequences, with transitions between germination strategies receiving renewed recent attention. Oxalis from the Cape Flora, South Africa, has seeds with two contrasting germination strategies: orthodox and recalcitrant. The morphological gulf between these strategies (and potential intermediate morphologies) has been poorly quantified, with questions regarding their ecological function and evolution. We reconsidered this binary classification, emphasizing potential intermediate states. METHODS Seed physiological traits were used to assign strategies to 64 Oxalis species. We tested for morphological/phenological signal corresponding to defined strategies with cluster, principal component, K-means clustering and discriminant analyses. RESULTS We showed that an intermediate germination strategy does exist among Cape Oxalis, with two possible morphological groups within each strategy. These could reflect a continuum of germination states, where an ancestral orthodox strategy evolved toward a maximally recalcitrant peak, with a mosaic of intermediate states reflected in extant taxa. CONCLUSIONS Environmental factors may affect germination strategy and distribution throughout the Cape because recalcitrant and intermediate species are confined to the winter rainfall region. They occupy specialized niches and may face adverse impacts under predicted climate change (hotter and drier winters), meriting focused future conservation.
Collapse
Affiliation(s)
- Michelle Jooste
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Guy F Midgley
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Kenneth C Oberlander
- Department of Plant and Soil Sciences, Plant Sciences Complex, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
39
|
Martins AA, Opedal ØH, Armbruster WS, Pélabon C. Rainfall seasonality predicts the germination behavior of a tropical dry-forest vine. Ecol Evol 2019; 9:5196-5205. [PMID: 31110672 PMCID: PMC6509399 DOI: 10.1002/ece3.5108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022] Open
Abstract
Seed dormancy is considered to be an adaptive strategy in seasonal and/or unpredictable environments because it prevents germination during climatically favorable periods that are too short for seedling establishment. Tropical dry forests are seasonal environments where seed dormancy may play an important role in plant resilience and resistance to changing precipitation patterns. We studied the germination behavior of seeds from six populations of the Neotropical vine Dalechampia scandens (Euphorbiaceae) originating from environments of contrasting rainfall seasonality. Seeds produced by second greenhouse-generation plants were measured and exposed to a favorable wet environment at different time intervals after capsule dehiscence and seed dispersal. We recorded the success and the timing of germination. All populations produced at least some dormant seeds, but seeds of populations originating from more seasonal environments required longer periods of after-ripening before germinating. Within populations, larger seeds tended to require longer after-ripening periods than did smaller seeds. These results indicate among-population genetic differences in germination behavior and suggest that these populations are adapted to local environmental conditions. They also suggest that seed size may influence germination timing within populations. Ongoing changes in seasonality patterns in tropical dry forests may impose strong selection on these traits.
Collapse
Affiliation(s)
- Adriana A. Martins
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
| | - Øystein H. Opedal
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
- Faculty of Biological and Environmental Sciences, Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| | - William Scott Armbruster
- School of Biological SciencesUniversity of PortsmouthPortsmouthUK
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaska
| | - Christophe Pélabon
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
| |
Collapse
|
40
|
March-Salas M, Fitze PS. A multi-year experiment shows that lower precipitation predictability encourages plants' early life stages and enhances population viability. PeerJ 2019; 7:e6443. [PMID: 30867983 PMCID: PMC6410692 DOI: 10.7717/peerj.6443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 11/20/2022] Open
Abstract
Climate change is a key factor that may cause the extinction of species. The associated reduced weather predictability may alter the survival of plants, especially during their early life stages, when individuals are most fragile. While it is expected that extreme weather events will be highly detrimental for species, the effects of more subtle environmental changes have been little considered. In a four-year experiment on two herbaceous plants, Papaver rhoeas and Onobrychis viciifolia, we manipulated the predictability of precipitation by changing the temporal correlation of precipitation events while maintaining average precipitation constant, leading to more and less predictable treatments. We assessed the effect of predictability on plant viability in terms of seedling emergence, survival, seed production, and population growth rate. We found greater seedling emergence, survival, and population growth for plants experiencing lower intra-seasonal predictability, but more so during early compared to late life stages. Since predictability levels were maintained across four generations, we have also tested whether descendants exhibited transgenerational responses to previous predictability conditions. In P. rhoeas, descendants had increased the seedling emergence compared to ancestors under both treatments, but more so under lower precipitation predictability. However, higher predictability in the late treatment induced higher survival in descendants, showing that these conditions may benefit long-term survival. This experiment highlights the ability of some plants to rapidly exploit environmental resources and increase their survival under less predictable conditions, especially during early life stages. Therefore, this study provides relevant evidence of the survival capacity of some species under current and future short-term environmental alterations.
Collapse
Affiliation(s)
- Martí March-Salas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Patrick S Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| |
Collapse
|
41
|
El-Keblawy A, Soliman S, Al-Khoury R, Ghauri A, Al Rammah H, Hussain SE, Rashid S, Manzoor Z. Effect of maturation conditions on light and temperature requirements during seed germination of Citrullus colocynthis from the Arabian Desert. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:292-299. [PMID: 30311346 DOI: 10.1111/plb.12923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Seed germination of Citrullus colocynthis, as in many other species of Cucurbitaceae, is inhibited by light, particularly at low temperatures. Germination response to light and temperature has been attributed to day length and temperature during seed maturation. This study assessed the effects of these factors on the germination response of C. colocynthis to temperature and light quality. Ripe fruits were collected from natural habitats during December and February and germinated at three temperatures (15/25, 20/30 and 25/35 °C) in five light treatments (dark, white light and Red:Far Red (R:FR) ratios of 0.30, 0.87 and 1.19). Additionally, unripe fruits were also collected from natural habitats and completed their maturation in growth chambers under different day lengths (6, 16 and 24 h of darkness) at 10/20 °C, and in darkness at both 10/20 °C and 25/35 °C. Mature seeds of the different treatments were germinated in the same five light treatments at 15/25 °C. Germination was significantly higher in the dark than that in any light treatment. Seeds matured at higher temperatures (i.e. seeds from the December collection and those matured at 25/35 °C) had significantly higher germination than those matured at lower temperatures (i.e. seeds from the February collection and those matured at 10/20 °C). Dark germination was significantly higher for the December collection than for the February collection. Seeds of the two collections germinated in the dark only at 15/25 °C. However, seeds matured in a growth chamber at 10/20 °C in darkness germinated at 15/25 °C in all light treatments, except for the R:FR ratio 0.30. Seeds of the different treatments failed to germinate in FR-rich light. This study demonstrates that both temperature and day length during seed maturation play significant roles in the germination response of C. colocynthis. Additionally, the dark requirement for germination is likely beneficial for species with the larger seeds, such as C. colocynthis, which produce bigger seedlings that are able to emerge from deep soils and are competitively superior under dense vegetation and resource-limited conditions.
Collapse
Affiliation(s)
- A El-Keblawy
- Department of Biology, Faculty of Science, Al-Arish University, Al-Arish, Egypt
| | - S Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - R Al-Khoury
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, UAE
| | - A Ghauri
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, UAE
| | - H Al Rammah
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, UAE
| | - S E Hussain
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, UAE
| | - S Rashid
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, UAE
| | - Z Manzoor
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, UAE
| |
Collapse
|
42
|
Hradilová I, Duchoslav M, Brus J, Pechanec V, Hýbl M, Kopecký P, Smržová L, Štefelová N, Vaclávek T, Bariotakis M, Machalová J, Hron K, Pirintsos S, Smýkal P. Variation in wild pea ( Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ 2019; 7:e6263. [PMID: 30656074 PMCID: PMC6336014 DOI: 10.7717/peerj.6263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/11/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Seed germination is one of the earliest key events in the plant life cycle. The timing of transition from seed to seedling is an important developmental stage determining the survival of individuals that influences the status of populations and species. Because of wide geographical distribution and occurrence in diverse habitats, wild pea (Pisum sativum subsp. elatius) offers an excellent model to study physical type of seed dormancy in an ecological context. This study addresses the gap in knowledge of association between the seed dormancy, seed properties and environmental factors, experimentally testing oscillating temperature as dormancy release clue. METHODS Seeds of 97 pea accessions were subjected to two germination treatments (oscillating temperatures of 25/15 °C and 35/15 °C) over 28 days. Germination pattern was described using B-spline coefficients that aggregate both final germination and germination speed. Relationships between germination pattern and environmental conditions at the site of origin (soil and bioclimatic variables extracted from WorldClim 2.0 and SoilGrids databases) were studied using principal component analysis, redundancy analysis and ecological niche modelling. Seeds were analyzed for the seed coat thickness, seed morphology, weight and content of proanthocyanidins (PA). RESULTS Seed total germination ranged from 0% to 100%. Cluster analysis of germination patterns of seeds under two temperature treatments differentiated the accessions into three groups: (1) non-dormant (28 accessions, mean germination of 92%), (2) dormant at both treatments (29 acc., 15%) and (3) responsive to increasing temperature range (41 acc., with germination change from 15 to 80%). Seed coat thickness differed between groups with dormant and responsive accessions having thicker testa (median 138 and 140 µm) than non-dormant ones (median 84 mm). The total PA content showed to be higher in the seed coat of dormant (mean 2.18 mg g-1) than those of non-dormant (mean 1.77 mg g-1) and responsive accessions (mean 1.87 mg g-1). Each soil and bioclimatic variable and also germination responsivity (representing synthetic variable characterizing germination pattern of seeds) was spatially clustered. However, only one environmental variable (BIO7, i.e., annual temperature range) was significantly related to germination responsivity. Non-dormant and responsive accessions covered almost whole range of BIO7 while dormant accessions are found in the environment with higher annual temperature, smaller temperature variation, seasonality and milder winter. Ecological niche modelling showed a more localized potential distribution of dormant group. Seed dormancy in the wild pea might be part of a bet-hedging mechanism for areas of the Mediterranean basin with more unpredictable water availability in an otherwise seasonal environment. This study provides the framework for analysis of environmental aspects of physical seed dormancy.
Collapse
Affiliation(s)
- Iveta Hradilová
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Brus
- Department of Geoinformatics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Vilém Pechanec
- Department of Geoinformatics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslav Hýbl
- The Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Prague, Olomouc, Czech Republic
| | - Pavel Kopecký
- The Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Prague, Olomouc, Czech Republic
| | - Lucie Smržová
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| | - Nikola Štefelová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tadeáš Vaclávek
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Michael Bariotakis
- Department of Biology and Botanical Garden, University of Crete, Heraklion, Greece
| | - Jitka Machalová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Stergios Pirintsos
- Department of Biology and Botanical Garden, University of Crete, Heraklion, Greece
| | - Petr Smýkal
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
43
|
Hradilová I, Duchoslav M, Brus J, Pechanec V, Hýbl M, Kopecký P, Smržová L, Štefelová N, Vaclávek T, Bariotakis M, Machalová J, Hron K, Pirintsos S, Smýkal P. Variation in wild pea ( Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ 2019; 7:e6263. [PMID: 30656074 DOI: 10.7717/peerj6263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/11/2018] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Seed germination is one of the earliest key events in the plant life cycle. The timing of transition from seed to seedling is an important developmental stage determining the survival of individuals that influences the status of populations and species. Because of wide geographical distribution and occurrence in diverse habitats, wild pea (Pisum sativum subsp. elatius) offers an excellent model to study physical type of seed dormancy in an ecological context. This study addresses the gap in knowledge of association between the seed dormancy, seed properties and environmental factors, experimentally testing oscillating temperature as dormancy release clue. METHODS Seeds of 97 pea accessions were subjected to two germination treatments (oscillating temperatures of 25/15 °C and 35/15 °C) over 28 days. Germination pattern was described using B-spline coefficients that aggregate both final germination and germination speed. Relationships between germination pattern and environmental conditions at the site of origin (soil and bioclimatic variables extracted from WorldClim 2.0 and SoilGrids databases) were studied using principal component analysis, redundancy analysis and ecological niche modelling. Seeds were analyzed for the seed coat thickness, seed morphology, weight and content of proanthocyanidins (PA). RESULTS Seed total germination ranged from 0% to 100%. Cluster analysis of germination patterns of seeds under two temperature treatments differentiated the accessions into three groups: (1) non-dormant (28 accessions, mean germination of 92%), (2) dormant at both treatments (29 acc., 15%) and (3) responsive to increasing temperature range (41 acc., with germination change from 15 to 80%). Seed coat thickness differed between groups with dormant and responsive accessions having thicker testa (median 138 and 140 µm) than non-dormant ones (median 84 mm). The total PA content showed to be higher in the seed coat of dormant (mean 2.18 mg g-1) than those of non-dormant (mean 1.77 mg g-1) and responsive accessions (mean 1.87 mg g-1). Each soil and bioclimatic variable and also germination responsivity (representing synthetic variable characterizing germination pattern of seeds) was spatially clustered. However, only one environmental variable (BIO7, i.e., annual temperature range) was significantly related to germination responsivity. Non-dormant and responsive accessions covered almost whole range of BIO7 while dormant accessions are found in the environment with higher annual temperature, smaller temperature variation, seasonality and milder winter. Ecological niche modelling showed a more localized potential distribution of dormant group. Seed dormancy in the wild pea might be part of a bet-hedging mechanism for areas of the Mediterranean basin with more unpredictable water availability in an otherwise seasonal environment. This study provides the framework for analysis of environmental aspects of physical seed dormancy.
Collapse
Affiliation(s)
- Iveta Hradilová
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Brus
- Department of Geoinformatics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Vilém Pechanec
- Department of Geoinformatics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslav Hýbl
- The Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Prague, Olomouc, Czech Republic
| | - Pavel Kopecký
- The Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Prague, Olomouc, Czech Republic
| | - Lucie Smržová
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| | - Nikola Štefelová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tadeáš Vaclávek
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Michael Bariotakis
- Department of Biology and Botanical Garden, University of Crete, Heraklion, Greece
| | - Jitka Machalová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Stergios Pirintsos
- Department of Biology and Botanical Garden, University of Crete, Heraklion, Greece
| | - Petr Smýkal
- Department of Botany, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
44
|
Xia K, Turkington R, Tan HY, Fan L. Factors limiting the recruitment of Quercus schottkyana, a dominant evergreen oak in SW China. PLANT DIVERSITY 2018; 40:277-283. [PMID: 30740574 PMCID: PMC6318200 DOI: 10.1016/j.pld.2018.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Quercus schottkyana is a dominant species of oak in the Asian evergreen broad-leaved forests in southwestern China but seedlings are uncommon and recruitment is rare. Annual acorn production by Q. schottkyana is variable and the acorns are exposed to a series of mortality risks. Understanding the factors that limit recruitment of the oak requires knowledge of the oak's life cycle from acorn production to germination and seedling establishment. In this study, we first tested the effects of acorn density on establishment of seedlings by placing batches of acorns at different densities throughout the study area. Second, we tested the effects of herbivores on seedling survival by erecting fences around both natural and transplanted seedling populations. Our results show that even though the rate of seedling establishment increases as acorn density increases (for 32-8000 acorns∙m-2), survival rates of seedlings in the field were generally low (0-0.6%). We show that seedling recruitment of Q. schottkyana is mainly limited to the acorn stage where 88% of the acorns died from the combined effects of desiccation and predation by weevils (Curculio) and bark beetles (Coccotrypes sp.). Herbivory results in the death of some seedlings and consequently also affects the recruitment of seedlings of Q. schottkyana.
Collapse
Affiliation(s)
- Ke Xia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Roy Turkington
- Botany Department, and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Hong-yu Tan
- Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lei Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
45
|
Wang CC, Rogers DC. Bet hedging in stochastic habitats: an approach through large branchiopods in a temporary wetland. Oecologia 2018; 188:1081-1093. [DOI: 10.1007/s00442-018-4272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/14/2018] [Indexed: 11/25/2022]
|
46
|
Hughes PW. Minimal-Risk Seed Heteromorphism: Proportions of Seed Morphs for Optimal Risk-Averse Heteromorphic Strategies. FRONTIERS IN PLANT SCIENCE 2018; 9:1412. [PMID: 30327659 PMCID: PMC6174283 DOI: 10.3389/fpls.2018.01412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/06/2018] [Indexed: 05/26/2023]
Abstract
Seed heteromorphism is the reproductive strategy characterized by the simultaneous production of multiple seed types. While comparing heteromorphic to monomorphic strategies is mathematically simple, there is no explicit test for assessing which ratio of seed morphs minimizes fitness variance, and hence offers a basis for comparing different heteromorphic strategies. Such a test may be particularly valuable when more than two distinct morphs are present, since many strategies may have equivalent geometric fitnesses. As noted by Gillespie (1974), in these cases avoiding rare but evolutionarily important instances of severe reductions in fitness involves the minimization of variation in fitness-i.e., risk. Here I compute the optimal proportions of two or more seed morphs for heteromorphic strategies that either: (1) minimize total fitness variance; or (2) maximize the fitness-risk ratio-i.e., the "extra" fitness accrued per unit of "extra" fitness variance. This work thereby provides a testable null hypothesis to estimate the optimal frequencies of seed morphs when multiple heteromorphic strategies have evolved in environments with severe fitness risks. Moreover, it also permits the calculation of expected seed morph frequencies when more than two seed morphs are produced.
Collapse
Affiliation(s)
- P. William Hughes
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Winkler DE, Gremer JR, Chapin KJ, Kao M, Huxman TE. Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). AMERICAN JOURNAL OF BOTANY 2018; 105:1188-1197. [PMID: 30011076 DOI: 10.1002/ajb2.1126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF STUDY Mechanisms by which invasive species succeed across multiple novel environmental contexts are poorly understood. Functional traits show promise for identifying such mechanisms, yet we lack knowledge of which functional traits are critical for success and how they vary across invaded ranges and with environmental features. We evaluated the widespread recent invasion of Sahara mustard (Brassica tournefortii) in the southwestern United States to understand the extent of functional trait variation across the invaded range and how such variation is related to spatial and climatic gradients. METHODS We used a common garden approach, growing two generations of plants in controlled conditions sourced from 10 locations across the invaded range. We measured variation within and among populations in phenological, morphological, and physiological traits, as well as performance. KEY RESULTS We found nine key traits that varied among populations. These traits were related to phenology and early growth strategies, such as the timing of germination and flowering, as well as relative allocation of biomass to reproduction and individual seed mass. Trait variation was related most strongly to variation in winter precipitation patterns across localities, though variations in temperature and latitude also had significant contributions. CONCLUSIONS Our results identify key functional traits of this invasive species that showed significant variation among introduced populations across a broad geographic and climatic range. Further, trait variation among populations was strongly related to key climatic variables, which suggests that population divergence in these traits may explain the successful colonization of Sahara mustard across its invaded US range.
Collapse
Affiliation(s)
- Daniel E Winkler
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, 84532, USA
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| | - Kenneth J Chapin
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, 95616, USA
| | - Melanie Kao
- Undergraduate Program in Public Health, University of California, Irvine, California, 92697, USA
| | - Travis E Huxman
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| |
Collapse
|
48
|
Verin M, Tellier A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 2018; 72:1362-1372. [PMID: 29676786 DOI: 10.1111/evo.13483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/23/2018] [Accepted: 03/11/2018] [Indexed: 01/17/2023]
Abstract
Seed (egg) banking is a common bet-hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene-for-gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching-allele interaction, both hosts' genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host-parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet-hedging strategy.
Collapse
Affiliation(s)
- Mélissa Verin
- Section of Population Genetics, Department of Plant Sciences, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Department of Plant Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
49
|
Lewandrowski W, Erickson TE, Dalziell EL, Stevens JC. Ecological niche and bet-hedging strategies for Triodia (R.Br.) seed germination. ANNALS OF BOTANY 2018; 121:367-375. [PMID: 29293867 PMCID: PMC5808810 DOI: 10.1093/aob/mcx158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/26/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Regeneration dynamics in many arid zone grass species are regulated by innate seed dormancy mechanisms and environmental cues (temperature, moisture and fire) that result in infrequent germination following rainfall. This study investigated bet-hedging strategies associated with dormancy and germination in arid zone Triodia species from north-west Australia, by assessing (1) the effects of the mechanical restriction imposed by the indehiscent floral bracts (i.e. floret) covering the seed and (2) the impact of dormancy alleviation on florets and cleaned seeds (i.e. florets removed) when germinated under water stress. METHODS The initial dormancy status and germination for six species were tested on intact florets and cleaned seeds, across temperatures (10-40 °C) with and without the fire-related stimulant karrikinolide (KAR1), and under alternating light or constant dark conditions. Physiological dormancy alleviation was assessed by wet/dry cycling florets over a period of 10 weeks, and germination was compared against untreated florets, and cleaned seeds across a water potential gradient between 0 and -1.5 MPa. KEY RESULTS Florets restricted germination (<45 %) at all temperatures and, despite partial alleviation of physiological dormancy (wet/dry cycling for 8 weeks), intact florets germinated only at high water potentials. Cleaned seeds showed the highest germination (40-90 %) across temperatures when treated with KAR1, and germinated at much lower water potentials (-0.4 and -0.9 MPa). Triodia pungens was the most responsive to KAR1, with both seeds and florets responding, while for the remaining five species, KAR1 had a positive effect for seeds only. CONCLUSIONS Only after seed dormancy was alleviated by removing florets and when KAR1 was applied did germination under water stress increase. This suggests that seeds of these Triodia species are cued to recruit following fire and during periods of high precipitation. Climate change, driven by large shifts in rainfall patterns, is likely to impact Triodia recruitment further in arid zone grasslands.
Collapse
Affiliation(s)
- Wolfgang Lewandrowski
- Kings Park and Botanic Garden, Kings Park, Western Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia
| | - Todd E Erickson
- Kings Park and Botanic Garden, Kings Park, Western Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia
| | - Emma L Dalziell
- Kings Park and Botanic Garden, Kings Park, Western Australia
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia
| | - Jason C Stevens
- Kings Park and Botanic Garden, Kings Park, Western Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia
| |
Collapse
|
50
|
Mejbel HS, Simons AM. Aberrant clones: Birth order generates life history diversity in Greater Duckweed, Spirodela polyrhiza. Ecol Evol 2018; 8:2021-2031. [PMID: 29468021 PMCID: PMC5817126 DOI: 10.1002/ece3.3822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental unpredictability is known to result in the evolution of bet-hedging traits. Variable dormancy enhances survival through harsh conditions, and is widely cited as a diversification bet-hedging trait. The floating aquatic plant, Spirodela polyrhiza (Greater Duckweed), provides an opportunity to study diversification because although partially reliable seasonal cues exist, its growing season is subject to an unpredictable and literally "hard" termination when the surface water freezes, and overwinter survival depends on a switch from production of normal daughter fronds to production of dense, sinking "turions" prior to freeze-over. The problem for S. polyrhiza is that diversified dormancy behavior must be generated among clonally produced, genetically identical offspring. Variation in phenology has been observed in the field, but its sources are unknown. Here, we investigate sources of phenological variation in turion production, and test the hypothesis that diversification in turion phenology is generated within genetic lineages through effects of parental birth order. As expected, phenotypic plasticity to temperature is expressed along a thermal gradient; more interestingly, parental birth order was found to have a significant and strong effect on turion phenology: Turions are produced earlier by late birth-order parents. These results hold regardless of whether turion phenology is measured as first turion birth order, time to first turion, or turion frequency. This study addresses a question of current interest on potential mechanisms generating diversification, and suggests that consistent phenotypic differences across birth orders generate life history variation.
Collapse
|