1
|
Hintz CL, Morris B, Witt S, Sojda N, Buse HY. Cu- and Ag-mediated inactivation of L. pneumophila in bench- and pilot-scale drinking water systems. Appl Environ Microbiol 2025; 91:e0107324. [PMID: 39692502 PMCID: PMC11784313 DOI: 10.1128/aem.01073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Legionella pneumophila (Lp) is an opportunistic drinking water pathogen that can cause infections through the inhalation of Lp-containing aerosols and can occur in premise plumbing systems. In this work, the use of copper (Cu) and silver (Ag) ions was evaluated at the bench and pilot scale to determine (i) the effective independent concentrations of copper and silver that are efficacious in inactivating Lp, (ii) the impact of various water quality parameters on the efficaciousness of copper and silver ions, and (iii) the effectiveness and practicality of using dissociation to produce ions at the pilot scale. At the bench scale, it was determined that 0.3 ppm and 0.03 ppm of Cu and Ag, respectively, achieved 6-log inactivation of Lp in 5 h in experimental buffer. But, in dechlorinated filter-sterilized tap water, the same concentrations of Cu were not effective, and the effectiveness of Ag was slower. pH and dissolved inorganic carbon content were found to be important parameters in determining if the use of Cu and Ag ions is appropriate. At the pilot scale, dissociation was successfully used to produce Cu and Ag ions. Target levels of ions were met at the pilot scale but were difficult to achieve, and no impact was observed on Lp concentrations. Results from this study suggest that there are important caveats in the application of this technology when applied in a drinking water matrix and prior understanding of a system's water chemistry may be important to determine the effectiveness of Lp disinfection using Cu and Ag.IMPORTANCEThis work sheds light on the effectiveness of using Cu and Ag ions to inactivate (or kill) Legionella pneumophila. Legionella is an opportunistic drinking water pathogen of public health concern. This work demonstrates that there are important caveats in the application of using Cu and Ag ions to inactivate Legionella pneumophila.
Collapse
Affiliation(s)
- Chelsea L. Hintz
- Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| | - Brian Morris
- Pegasus Technical Services, Inc., c/o U.S. EPA, Cincinnati, Ohio, USA
| | - Sue Witt
- Aptim Environmental Services, c/o U.S. EPA, Cincinnati, Ohio, USA
| | - Nicole Sojda
- Aptim Environmental Services, c/o U.S. EPA, Cincinnati, Ohio, USA
| | - Helen Y. Buse
- Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Genuardi MD, Wiegand M, Endres E, Opel O. Statistical analysis of parameters affecting Legionella and total cell growth in premise plumbing systems within buildings: A field study based on an empirical data set. Int J Hyg Environ Health 2025; 263:114456. [PMID: 39276424 DOI: 10.1016/j.ijheh.2024.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
During the storage and distribution of water in buildings, the excessive growth of pathogens can deteriorate the quality of drinking water. This study aims to investigate the factors influencing this growth and propose technical measures for prevention. The analysis is based on an empirical data set comprising 1361 samples from 204 domestic premise plumbing systems. In 14 systems, ultrafiltration plants were installed as microbiological barriers. Legionella cultivation and flow cytometry were used to determine microbiological properties. The study identified elevated total cell counts in tapping valves and pipe end lines in numerous premise plumbing systems, indicating prolonged water stagnation prior to sampling, which facilitates microbiological growth. Higher contamination rates were observed in these systems, with peripheral taps often being contaminated in lieu of the entire system. These systems were classified as microbiologically unstable due to the relevantly higher total cell numbers at hot water taps compared to the hot water tank (>25%). Furthermore, these systems exhibited a Legionella contamination rate that was 22.3% higher than in microbiologically stable systems. In some cases, peripheral contaminations may not accurately represent the entire premise plumbing system. Increasing the discard volume during sampling from 1 L to 3-5 L could provide more precise results during standard testing. Legionella species were primarily detected in the first 1 L of water after tap activation. Additionally, statistically significant relationships were observed between direct temperature and total cell number, as well as between the presence of ultrafiltration and total cell numbers at cold water taps.
Collapse
Affiliation(s)
- Marco Daniele Genuardi
- Institute for the Transformation of the Energy System, West Coast University of Applied Sciences, Markt 18, 25746, Heide, Germany.
| | - Marlies Wiegand
- Institute for the Transformation of the Energy System, West Coast University of Applied Sciences, Markt 18, 25746, Heide, Germany
| | - Elisabeth Endres
- Institute for Building Climatology and Energy of Architecture, Technische Universität Braunschweig, Mühlenpfordstraße 23, 38106, Braunschweig, Germany
| | - Oliver Opel
- Institute for the Transformation of the Energy System, West Coast University of Applied Sciences, Markt 18, 25746, Heide, Germany
| |
Collapse
|
3
|
Pitell S, Spencer-Williams I, Huffman D, Moncure P, Millstone J, Stout J, Gilbertson L, Haig SJ. Not the Silver Bullet: Uncovering the Unexpected Limited Impacts of Silver-Containing Showerheads on the Drinking Water Microbiome. ACS ES&T WATER 2024; 4:5364-5376. [PMID: 39698548 PMCID: PMC11650587 DOI: 10.1021/acsestwater.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
The incidence of waterborne disease outbreaks in the United States attributed to drinking water-associated pathogens that can cause infections in the immunocompromised DWPIs (e.g., Legionella pneumophila, nontuberculous mycobacteria (NTM), and Pseudomonas aeruginosa, among others) appears to be increasing. An emerging technology adopted to reduce DWPIs are point-of-use devices, such as showerheads that contain silver, a known antimicrobial material. In this study, we evaluate the effect of silver-containing showerheads on DWPI density and the broader microbiome in shower water under real-use conditions in a full-scale shower system, considering three different silver-modified showerhead designs: (i) silver mesh within the showerhead, (ii) silver-coated copper mesh in the head and hose, and (iii) silver-embedded polymer composite compared to conventional plastic and metal showerheads. We found no significant difference in targeted DWPI transcriptional activity in collected water across silver and nonsilver shower head designs. Yet, the presence of silver and how it was incorporated in the showerhead influenced the metal concentrations, microbial rare taxa, and microbiome functionality. Microbial dynamics were also influenced by the showerhead age (i.e., time after installation). The results of this study provide valuable information for consumers and building managers to consider when choosing a showerhead meant to reduce microorganisms in shower water.
Collapse
Affiliation(s)
- Sarah Pitell
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Isaiah Spencer-Williams
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Daniel Huffman
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paige Moncure
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jill Millstone
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Janet Stout
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Special
Pathogens Laboratory, Pittsburgh, Pennsylvania 15219, United States
| | - Leanne Gilbertson
- Department
of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sarah-Jane Haig
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Causes, Factors, and Control Measures of Opportunistic Premise Plumbing Pathogens—A Critical Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review critically analyses the chemical and physical parameters that influence the occurrence of opportunistic pathogens in the drinking water distribution system, specifically in premise plumbing. A comprehensive literature review reveals significant impacts of water age, disinfectant residual (type and concentration), temperature, pH, and pipe materials. Evidence suggests that there is substantial interplay between these parameters; however, the dynamics of such relationships is yet to be elucidated. There is a correlation between premise plumbing system characteristics, including those featuring water and energy conservation measures, and increased water quality issues and public health concerns. Other interconnected issues exacerbated by high water age, such as disinfectant decay and reduced corrosion control efficiency, deserve closer attention. Some common features and trends in the occurrence of opportunistic pathogens have been identified through a thorough analysis of the available literature. It is proposed that the efforts to reduce or eliminate their incidence might best focus on these common features.
Collapse
|
5
|
Sciuto EL, Laganà P, Filice S, Scalese S, Libertino S, Corso D, Faro G, Coniglio MA. Environmental Management of Legionella in Domestic Water Systems: Consolidated and Innovative Approaches for Disinfection Methods and Risk Assessment. Microorganisms 2021; 9:577. [PMID: 33799845 PMCID: PMC8001549 DOI: 10.3390/microorganisms9030577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Legionella is able to remain in water as free-living planktonic bacteria or to grow within biofilms that adhere to the pipes. It is also able to enter amoebas or to switch into a viable but not culturable (VBNC) state, which contributes to its resistance to harsh conditions and hinders its detection in water. Factors regulating Legionella growth, such as environmental conditions, type and concentration of available organic and inorganic nutrients, presence of protozoa, spatial location of microorganisms, metal plumbing components, and associated corrosion products are important for Legionella survival and growth. Finally, water treatment and distribution conditions may affect each of these factors. A deeper comprehension of Legionella interactions in water distribution systems with the environmental conditions is needed for better control of the colonization. To this purpose, the implementation of water management plans is the main prevention measure against Legionella. A water management program requires coordination among building managers, health care providers, and Public Health professionals. The review reports a comprehensive view of the state of the art and the promising perspectives of both monitoring and disinfection methods against Legionella in water, focusing on the main current challenges concerning the Public Health sector.
Collapse
Affiliation(s)
- Emanuele Luigi Sciuto
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
| | - Pasqualina Laganà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Messina, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica 3p, AOU ‘G. Martino, Via C. Valeria, s.n.c., 98125 Messina, Italy;
| | - Simona Filice
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Silvia Scalese
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Sebania Libertino
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Domenico Corso
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Giuseppina Faro
- Azienda Sanitaria Provinciale di Catania, Via S. Maria La Grande 5, 95124 Catania, Italy;
| | - Maria Anna Coniglio
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Catania, Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Sofia 87, 95123 Catania, Italy
| |
Collapse
|
6
|
Song Y, Pruden A, Edwards MA, Rhoads WJ. Natural Organic Matter, Orthophosphate, pH, and Growth Phase Can Limit Copper Antimicrobial Efficacy for Legionella in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1759-1768. [PMID: 33428375 DOI: 10.1021/acs.est.0c06804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is a promising antimicrobial for premise plumbing, where ions can be dosed directly via copper silver ionization or released naturally via corrosion of Cu pipes, but Cu sometimes inhibits and other times stimulates Legionella growth. Our overarching hypothesis was that water chemistry and growth phase control the net effect of Cu on Legionella. The combined effects of pH, phosphate concentration, and natural organic matter (NOM) were comprehensively examined over a range of conditions relevant to drinking water in bench-scale pure culture experiments, illuminating the effects of Cu speciation and precipitation. It was found that cupric ions (Cu2+) were drastically reduced at pH > 7.0 or in the presence of ligand-forming phosphates or NOM. Further, exponential phase L. pneumophila were 2.5× more susceptible to Cu toxicity relative to early stationary phase cultures. While Cu2+ ion was the most effective biocidal form of Cu, other inorganic ligands also had some biocidal impacts. A comparison of 33 large drinking water utilities' field-data from 1990 and 2018 showed that Cu2+ levels likely decreased more dramatically (>10×) than did the total or soluble Cu (2×) over recent decades. The overall findings aid in improving the efficacy of Cu as an actively dosed or passively released antimicrobial against L. pneumophila.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - William J Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
7
|
Carlson KM, Boczek LA, Chae S, Ryu H. Legionellosis and Recent Advances in Technologies for Legionella Control in Premise Plumbing Systems: A Review. WATER 2020; 12:1-676. [PMID: 32704396 PMCID: PMC7377215 DOI: 10.3390/w12030676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review discusses Legionella, among the most prolific and publicly well-known waterborne pathogens, and advances in potential treatment technologies. The number of cases associated with Legionella continues to rise, as does its public awareness. Currently, cases associated with premise plumbing account for the largest number of legionellosis cases in the United States. So, while it is important to understand Legionella as such, it is also important to investigate how to treat drinking water in premise plumbing for Legionella and other waterborne pathogens. While there are currently several methods recognized as potential means of inactivating waterborne pathogens, several shortcomings continue to plague its implementation. These methods are generally of two types. Firstly, there are chemical treatments such as chlorine, chlorine dioxide, monochloramine, ozone, and copper-silver ionization. Secondly, there are physical treatments such as thermal inactivation and media filtration. Their shortcomings range from being labor-intensive and costly to having negative health effects if not properly operated. Recently developed technologies including ultraviolet (UV) irradiation using light emitting diodes (LEDs) and innovative carbon nanotube (CNT) filters can better control waterborne pathogens by allowing for the simultaneous use of different treatment measures in plumbing systems.
Collapse
Affiliation(s)
- Kelsie M. Carlson
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45268, USA
| | - Laura A. Boczek
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45268, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
8
|
Ghanizadeh G, Gholinezhad M, Khaledi A, Esmaeili D. Heterogeneous catalytically ozonation as a novel disinfectant for inhibition of Legionella pneumophila virulence. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Sobisch LY, Rogowski KM, Fuchs J, Schmieder W, Vaishampayan A, Oles P, Novikova N, Grohmann E. Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. Front Microbiol 2019; 10:543. [PMID: 30941112 PMCID: PMC6433718 DOI: 10.3389/fmicb.2019.00543] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
The International Space Station (ISS) is a closed habitat in a uniquely extreme and hostile environment. Due to these special conditions, the human microflora can undergo unusual changes and may represent health risks for the crew. To address this problem, we investigated the antimicrobial activity of AGXX®, a novel surface coating consisting of micro-galvanic elements of silver and ruthenium along with examining the activity of a conventional silver coating. The antimicrobial materials were exposed on the ISS for 6, 12, and 19 months each at a place frequently visited by the crew. Bacteria that survived on the antimicrobial coatings [AGXX® and silver (Ag)] or the uncoated stainless steel carrier (V2A, control material) were recovered, phylogenetically affiliated and characterized in terms of antibiotic resistance (phenotype and genotype), plasmid content, biofilm formation capacity and antibiotic resistance transferability. On all three materials, surviving bacteria were dominated by Gram-positive bacteria and among those by Staphylococcus, Bacillus and Enterococcus spp. The novel antimicrobial surface coating proved to be highly effective. The conventional Ag coating showed only little antimicrobial activity. Microbial diversity increased with increasing exposure time on all three materials. The number of recovered bacteria decreased significantly from V2A to V2A-Ag to AGXX®. After 6 months exposure on the ISS no bacteria were recovered from AGXX®, after 12 months nine and after 19 months three isolates were obtained. Most Gram-positive pathogenic isolates were multidrug resistant (resistant to more than three antibiotics). Sulfamethoxazole, erythromycin and ampicillin resistance were most prevalent. An Enterococcus faecalis strain recovered from V2A steel after 12 months exposure exhibited the highest number of resistances (n = 9). The most prevalent resistance genes were ermC (erythromycin resistance) and tetK (tetracycline resistance). Average transfer frequency of erythromycin, tetracycline and gentamicin resistance from selected ISS isolates was 10−5 transconjugants/recipient. Most importantly, no serious human pathogens such as methicillin resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) were found on any surface. Thus, the infection risk for the crew is low, especially when antimicrobial surfaces such as AGXX® are applied to surfaces prone to microbial contamination.
Collapse
Affiliation(s)
- Lydia-Yasmin Sobisch
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Katja Marie Rogowski
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Jonathan Fuchs
- Institute of Biology, University Freiburg, Freiburg, Germany
| | | | - Ankita Vaishampayan
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Patricia Oles
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | | | - Elisabeth Grohmann
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany.,Institute of Biology, University Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Sicairos-Ruelas EE, Gerba CP, Bright KR. Efficacy of copper and silver as residual disinfectants in drinking water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:146-155. [PMID: 30686111 DOI: 10.1080/10934529.2018.1535160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/09/2023]
Abstract
Contamination events and biofilms can decrease the amount of free chlorine available in drinking water systems. The efficacy of 100 μg/L silver and 400 μg/L copper, individually and combined, were evaluated as secondary, longer-lasting residual disinfectants against Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, and Mycobacterium fortuitum at 24 °C and 4 °C. A >5.0-log10 reduction was observed in E. coli and L. monocytogenes after three hours and S. Typhimurium following seven hours of exposure to silver. M. fortuitum was the most resistant species to silver (1.11-log10 after seven hours). Copper did not significantly reduce S. Typhimurium and E. coli at 24 °C; ≥2.80-log10 reductions were observed in the Gram-positive L. monocytogenes and M. fortuitum. Longer exposure times were required at 4 °C to achieve significant reductions in all species. A synergistic effect was observed when silver and copper were combined at 24 °C. In addition, silver was not affected by the presence of organic matter at concentrations that completely inhibited 0.2 mg/L chlorine. The results of this study suggest that combinations of silver and copper show promise as secondary residual disinfectants. They may also be used in conjunction with low chlorine levels or other disinfectants to provide additional, long-lasting residuals in distribution systems.
Collapse
Affiliation(s)
- Enue E Sicairos-Ruelas
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| | - Charles P Gerba
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| | - Kelly R Bright
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| |
Collapse
|
11
|
Oh Y, Noga R, Shanov V, Ryu H, Chandra H, Yadav B, Yadav J, Chae S. Electrically heatable carbon nanotube point-of-use filters for effective separation and in-situ inactivation of Legionella pneumophila. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2019; 366:21-26. [PMID: 31275054 PMCID: PMC6604856 DOI: 10.1016/j.cej.2019.02.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite municipal chlorination and secondary disinfection, opportunistic waterborne pathogens (e.g., Legionella spp.) persist in public and private water distribution systems. As a potential source of healthcare-acquired infections, this warrants development of novel pathogen removal and inactivation systems. In this study, electrically heatable carbon nanotube (CNT) point-of-use (POU) filters have been designed to remove and inactivate Legionella pneumophila in water. The CNT/polymer composite membranes effectively removed Legionella (> 99.99%) (i.e., below detection limit) and were able to inactive them on the membrane surface at 100% efficiency within 60 s using ohmic heating at 20 V. The novel POU filters could be used as a final barrier to provide efficient rejection of pathogens and thereby simultaneously eliminate microorganisms in public and private water supplies.
Collapse
Affiliation(s)
- Yoontaek Oh
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| | - Ryan Noga
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| | - Vesselin Shanov
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| | - Hodon Ryu
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268, U.S.A
| | - Harish Chandra
- Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Brijesh Yadav
- Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Jagjit Yadav
- Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| |
Collapse
|
12
|
Stüken A, Haverkamp THA, Dirven HAAM, Gilfillan GD, Leithaug M, Lund V. Microbial Community Composition of Tap Water and Biofilms Treated with or without Copper-Silver Ionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3354-3364. [PMID: 29461810 DOI: 10.1021/acs.est.7b05963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Copper-silver ionization (CSI) is an in-house water disinfection method primarily installed to eradicate Legionella bacteria from drinking water distribution systems (DWDS). Its effect on the abundance of culturable Legionella and Legionella infections has been documented in several studies. However, the effect of CSI on other bacteria in DWDS is largely unknown. To investigate these effects, we characterized drinking water and biofilm communities in a hospital using CSI, in a neighboring building without CSI, and in treated drinking water at the local water treatment plant. We used 16S rDNA amplicon sequencing and Legionella culturing. The sequencing results revealed three distinct water groups: (1) cold-water samples (no CSI), (2) warm-water samples at the research institute (no CSI), and (3) warm-water samples at the hospital (after CSI; ANOSIM, p < 0.001). Differences between the biofilm communities exposed and not exposed to CSI were less clear (ANOSIM, p = 0.022). No Legionella were cultured, but limited numbers of Legionella sequences were recovered from all 25 water samples (0.2-1.4% relative abundance). The clustering pattern indicated local selection of Legionella types (Kruskal-Wallis, p < 0.001). Furthermore, one unclassified Betaproteobacteria OTU was highly enriched in CSI-treated warm water samples at the hospital (Kruskal-Wallis, p < 0.001).
Collapse
Affiliation(s)
- Anke Stüken
- Dept. Zoonotic, Food and Waterborne Infections , Norwegian Institute of Public Health , Oslo , Norway
| | - Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Blindern, Oslo , Norway
| | - Hubert A A M Dirven
- Dept. Toxicology and Risk Assessment , Norwegian Institute of Public Health , Oslo , Norway
| | - Gregor D Gilfillan
- Dept. Medical Genetics , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Magnus Leithaug
- Dept. Medical Genetics , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Vidar Lund
- Dept. Zoonotic, Food and Waterborne Infections , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
13
|
Rhoads WJ, Pruden A, Edwards MA. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7065-7075. [PMID: 28513143 DOI: 10.1021/acs.est.6b05616] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H2) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.
Collapse
Affiliation(s)
- William J Rhoads
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Jwanoswki K, Wells C, Bruce T, Rutt J, Banks T, McNealy TL. The Legionella pneumophila GIG operon responds to gold and copper in planktonic and biofilm cultures. PLoS One 2017; 12:e0174245. [PMID: 28463986 PMCID: PMC5413113 DOI: 10.1371/journal.pone.0174245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila contaminates man-made water systems and creates numerous exposure risks for Legionnaires’ Disease. Because copper/silver ionization is commonly used to control L. pneumophila, its mechanisms of metal response and detoxification are of significant interest. Here we describe an L. pneumophila operon with significant similarity to the GIG operon of Cupriavidus metallidurans. The Legionella GIG operon is present in a subset of strains and has been acquired as part of the ICE-βox 65-kB integrative conjugative element. We assessed GIG promoter activity following exposure of L. pneumophila to multiple concentrations of HAuCl4, CuSO4 and AgNO3. At 37°C, control stationary phase cultures exhibited GIG promoter activity. This activity increased significantly in response to 20 and 50uM HAuCl4 and CuSO4 but not in response to AgNO3. Conversely, at 26°C, cultures exhibited decreased promoter response to copper. GIG promoter activity was also induced by HAuCl4 or CuSO4 during early biofilm establishment at both temperatures. When an L. pneumophila GIG promoter construct was transformed into E. coli DH5α, cultures showed baseline expression levels that did not increase following metal addition. Analysis of L. pneumophila transcriptional regulatory mutants suggested that GIG up-regulation in the presence of metal ions may be influenced by the stationary phase sigma factor, RpoS.
Collapse
Affiliation(s)
- Kathleen Jwanoswki
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christina Wells
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer Rutt
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tabitha Banks
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tamara L. McNealy
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Triantafyllidou S, Lytle D, Muhlen C, Swertfeger J. Copper-silver ionization at a US hospital: Interaction of treated drinking water with plumbing materials, aesthetics and other considerations. WATER RESEARCH 2016; 102:1-10. [PMID: 27318299 PMCID: PMC7384302 DOI: 10.1016/j.watres.2016.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/28/2016] [Accepted: 06/03/2016] [Indexed: 05/29/2023]
Abstract
Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building's copper pipes but was typically unable to reach 200 μg/L in first-draw and flushed hot and cold water samples. Cold water lines had >20 μg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (in the cold water line but particularly in the hot water line) prevented reaching 20 μg/L silver in cold and/or hot water of some taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag(+) ions combined with Cl(-) ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection.
Collapse
Affiliation(s)
- Simoni Triantafyllidou
- Oak Ridge Institute for Science and Education at US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| | - Darren Lytle
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Water Supply and Water Resources Division, Cincinnati, OH 45268, USA
| | - Christy Muhlen
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Water Supply and Water Resources Division, Cincinnati, OH 45268, USA
| | | |
Collapse
|
16
|
Dziewulski DM, Ingles E, Codru N, Strepelis J, Schoonmaker-Bopp D. Use of copper-silver ionization for the control of legionellae in alkaline environments at health care facilities. Am J Infect Control 2015; 43:971-6. [PMID: 26149750 DOI: 10.1016/j.ajic.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND There are multiple treatment options for the control of legionellae in premise hot water systems. Water chemistry plays a role in the efficacy of these treatments and should be considered when selecting a treatment. This study demonstrated the efficacy of copper-silver ionization (CSI) under alkaline water conditions in 2 health care facilities. METHODS Monitoring for copper (Cu) and silver (Ag) ions was performed, and the corresponding percentage of positive Legionella cultures was monitored. Low Legionella colony forming units (CFU), with a mean <10 CFU/100 mL, and ≤30% positive culture for each sampling period, along with no recurrent disease, were considered indicative of control. RESULTS CSI treatment was shown to reduce both the number of CFU found and the percentage of samples found to be culture positive. After treatment was established, culture positivity was, for example, reduced from 70% (>10(3) CFU/100 mL) to consistently <30% (38 CFU/100 mL). CONCLUSION Control of legionellae in premise water systems may be a complex process requiring long-term assessments for adequate control. This work found that CSI could be successful in controlling Legionella under alkaline water conditions, and the evidence suggests that Ag ions are responsible for the control of Legionella pneumophila 1, L pneumophila 6, and L anisa.
Collapse
Affiliation(s)
- David M Dziewulski
- Bureau of Water Supply Protection, New York State Department of Health, Albany, NY; School of Public Health, Department of Environmental Health Sciences, State University at Albany, Rensselaer, NY.
| | - Erin Ingles
- Central Regional Office, New York State Department of Health, Syracuse, NY
| | - Neculai Codru
- Bureau of Water Supply Protection, New York State Department of Health, Albany, NY
| | - John Strepelis
- Central Regional Office, New York State Department of Health, Syracuse, NY
| | | |
Collapse
|
17
|
Guridi A, Diederich AK, Aguila-Arcos S, Garcia-Moreno M, Blasi R, Broszat M, Schmieder W, Clauss-Lendzian E, Sakinc-Gueler T, Andrade R, Alkorta I, Meyer C, Landau U, Grohmann E. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:1-11. [PMID: 25746238 DOI: 10.1016/j.msec.2015.01.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/21/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
Abstract
Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells.
Collapse
Affiliation(s)
- A Guridi
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - A-K Diederich
- University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg, Germany; Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - S Aguila-Arcos
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - M Garcia-Moreno
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - R Blasi
- University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg, Germany; Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - M Broszat
- University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg, Germany; Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - W Schmieder
- Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - E Clauss-Lendzian
- Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - T Sakinc-Gueler
- University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - R Andrade
- Advanced Research Facilities (SGIker), University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - I Alkorta
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - C Meyer
- Largentec GmbH, Am Waldhaus 32, 14129 Berlin, Germany
| | - U Landau
- Largentec GmbH, Am Waldhaus 32, 14129 Berlin, Germany
| | - E Grohmann
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain; University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg, Germany; Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
18
|
Denham ME, Kasali A, Steinberg JP, Cowan DZ, Zimring C, Jacob JT. The Role of Water in the Transmission of Healthcare-Associated Infections: Opportunities for Intervention through the Environment. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2013. [DOI: 10.1177/193758671300701s08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: To assess and synthesize available evidence in the infection control and healthcare design literature on strategies using the built environment to reduce the transmission of pathogens in water that cause healthcare-associated infections (HAIs). BACKGROUND: Water can serve as a reservoir or source for pathogens, which can lead to the transmission of healthcare-associated infections (HAIs). Water systems harboring pathogens, such as Legionella and Pseudomonas spp., can also foster the growth of persistent biofilms, presenting a great health risk. TOPICAL HEADINGS: Strategies for interrupting the chain of transmission through the built environment can be proactive or reactive, and include three primary approaches: safe plumbing practices (maintaining optimal water temperature and pressure; eliminating dead ends), decontamination of water sources (inactivating or killing pathogens to prevent contamination), and selecting appropriate design elements (fixtures and materials that minimize the potential for contamination). CONCLUSIONS: Current evidence clearly identifying the environment's role in the chain of infection is limited by the variance in surveillance strategies and in the methods used to assess impact of these strategies. In order to optimize the built environment to serve as a tool for mitigating infection risk from waterborne pathogens—from selecting appropriate water features to maintaining the water system—multidisciplinary collaboration and planning is essential.
Collapse
|
19
|
What can we learn from each other in infection control? Experience in Europe compared with the USA. J Hosp Infect 2013; 83:173-84. [DOI: 10.1016/j.jhin.2012.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 11/22/2022]
|
20
|
Unger C, Lück C. Inhibitory effects of silver ions on Legionella pneumophila grown on agar, intracellular in Acanthamoeba castellanii and in artificial biofilms. J Appl Microbiol 2012; 112:1212-9. [PMID: 22413947 DOI: 10.1111/j.1365-2672.2012.05285.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS We undertook a series of experiments to investigate the susceptibility of Legionella pneumophila grown under extracellular and intracellular conditions and other water-related bacteria to silver ions. METHODS AND RESULTS In this study, the antimicrobial effect of silver ions to intra- and extra-cellular grown Legionella bacteria was investigated. The minimal inhibitory concentration (MIC) after 24 h exposure, leading to a 5 log reduction, was c. 64 μg l(-1) AgNO(3) for extracellular grown Legionella and other tested Gram-positive and Gram-negative bacteria. In contrast, the MIC for intracellularly grown Legionella was up to 4096 μg l(-1) AgNO(3) after 24 h. Furthermore, the heterotrophic bacteria grown within a biofilm model were killed at a concentration of 4-16 μg l(-1) AgNO(3). In contrast, biofilm-associated Legionella were less sensitive (MIC 128-512 μg l(-1) AgNO(3)). CONCLUSION Intracellularly and biofilm-grown legionellae are less sensitive against silver compared with agar-grown bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The reduced sensitivity of Legionella grown in amoebae might explain why the effect of silver decontamination requires an extended exposure in field trials.
Collapse
Affiliation(s)
- C Unger
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine 'Carl Gustav Carus', University of Technology, Dresden, Germany
| | | |
Collapse
|
21
|
Lin YE, Stout JE, Yu VL. Controlling Legionella in hospital drinking water: an evidence-based review of disinfection methods. Infect Control Hosp Epidemiol 2011; 32:166-73. [PMID: 21460472 DOI: 10.1086/657934] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hospital-acquired Legionnaires' disease is directly linked to the presence of Legionella in hospital drinking water. Disinfecting the drinking water system is an effective preventive measure. The efficacy of any disinfection measures should be validated in a stepwise fashion from laboratory assessment to a controlled multiple-hospital evaluation over a prolonged period of time. In this review, we evaluate systemic disinfection methods (copper-silver ionization, chlorine dioxide, monochloramine, ultraviolet light, and hyperchlorination), a focal disinfection method (point-of-use filtration), and short-term disinfection methods in outbreak situations (superheat-and-flush with or without hyperchlorination). The infection control practitioner should take the lead in selection of the disinfection system and the vendor. Formal appraisals by other hospitals with experience of the system under consideration is indicated. Routine performance of surveillance cultures of drinking water to detect Legionella and monitoring of disinfectant concentrations are necessary to ensure long-term efficacy.
Collapse
Affiliation(s)
- Yusen E Lin
- National Kaohsiung Normal University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
22
|
Abstract
Legionella is an underreported disease challenge within the hospital setting. In order to combat Legionella during times of construction and renovation, infection preventionists must become construction experts. The infection preventionist must be able to plan for potential waterborne disease outbreaks and protect the hospital staff, patients and visitors from waterborne pathogens. Legionella's history, signs and symptoms, diagnostic testing and treatment will be discussed. The hospital's convening of a multidisciplinary Legionella task force to work cohesively to develop a waterborne pathogens plan will also be discussed. This article was written from the perspective of the infection preventionist and employee health nurse at the time of the Legionella outbreak at their hospital.
Collapse
|
23
|
Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA, Lee YJ, Rajashankar KR, Yu EW. Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 2009; 393:342-55. [PMID: 19695261 DOI: 10.1016/j.jmb.2009.08.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes belonging to the resistance-nodulation-division family to expel diverse toxic compounds from the cell. These systems contain a periplasmic membrane fusion protein (MFP) that is critical for substrate transport. We here present the x-ray structures of the CusB MFP from the copper/silver efflux system of E. coli. This is the first structure of any MFPs associated with heavy-metal efflux transporters. CusB bridges the inner-membrane efflux pump CusA and outer-membrane channel CusC to mediate resistance to Cu(+) and Ag(+) ions. Two distinct structures of the elongated molecules of CusB were found in the asymmetric unit of a single crystal, which suggests the flexible nature of this protein. Each protomer of CusB can be divided into four different domains, whereby the first three domains are mostly beta-strands and the last domain adopts an entirely helical architecture. Unlike other known structures of MFPs, the alpha-helical domain of CusB is folded into a three-helix bundle. This three-helix bundle presumably interacts with the periplasmic domain of CusC. The N- and C-termini of CusB form the first beta-strand domain, which is found to interact with the periplasmic domain of the CusA efflux pump. Atomic details of how this efflux protein binds Cu(+) and Ag(+) were revealed by the crystals of the CusB-Cu(I) and CusB-Ag(I) complexes. The structures indicate that CusB consists of multiple binding sites for these metal ions. These findings reveal novel structural features of an MFP in the resistance-nodulation-division efflux system and provide direct evidence that this protein specifically interacts with transported substrates.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Weintraub JM, Flannery B, Vugia DJ, Gelling LB, Salerno JJ, Conroy MJ, Stevens VA, Rose CE, Besser RE, Fields BS, Moore MR. Legionellareduction after conversion to monochloramine for residual disinfection. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/j.1551-8833.2008.tb09609.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Cachafeiro SP, Naveira IM, García IG. Is copper–silver ionisation safe and effective in controlling legionella? J Hosp Infect 2007; 67:209-16. [PMID: 17904690 DOI: 10.1016/j.jhin.2007.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
Copper-silver ionisation is gaining popularity worldwide as a water disinfection method. We review the literature that supports the effectiveness and safety of the copper-silver ionisation pertaining to legionella control in water distribution systems. A search between January 1997 and January 2007 was conducted in relevant health databases: Medline, Embase, NHS CRD, Cochrane Library Plus, Web of Knowledge, IME (Spanish Medical Index) and IBECS (Health Sciences Bibliographic Index). Ten published studies were selected according to inclusion and exclusion criteria previously established; most of these were experimental. Legionella levels decrease with the application of any of the procedures used in these studies and the procedures can be combined to obtain better outcomes. No studies containing an economic evaluation were found. We conclude that copper-silver ionisation is an effective method to control legionella, bearing in mind that eradication cannot be achieved by any method in isolation. Maintaining high temperatures in the water system can maximise effectiveness of the method. Copper-silver appears to be safe, as long as ion levels are monitored and kept within international recommended levels. More studies with concurrent control group, long follow-up and economic evaluation are required to properly assess this procedure.
Collapse
|
26
|
Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR. Silver as a disinfectant. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 191:23-45. [PMID: 17708071 PMCID: PMC7120063 DOI: 10.1007/978-0-387-69163-3_2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 05/16/2023]
Abstract
Silver has been used as an antimicrobial for thousands of years. Over the past several decades, it has been introduced into numerous new venues such as in the treatment of water, in dietary supplements, in medical applications, and to produce antimicrobial coatings and products. Silver is often used as an alternative disinfectant in applications in which the use of traditional disinfectants such as chlorine may result in the formation of toxic by-products or cause corrosion of surfaces. Silver has also been demonstrated to produce a synergistic effect in combination with several other disinfectants. Many mechanisms of the antibacterial effect of silver have been described, but its antiviral and antiprotozoal mechanisms are not well understood. Both microbial tolerance and resistance to silver have been reported; however, the effect of silver has been observed against a wide variety of microorganisms over a period of years. Further research is needed to determine the antimicrobial efficacy of silver in these new applications and the effects of its long-term usage.
Collapse
|
27
|
Flannery B, Gelling LB, Vugia DJ, Weintraub JM, Salerno JJ, Conroy MJ, Stevens VA, Rose CE, Moore MR, Fields BS, Besser RE. Reducing Legionella colonization in water systems with monochloramine. Emerg Infect Dis 2006; 12:588-96. [PMID: 16704806 PMCID: PMC3294698 DOI: 10.3201/eid1204.051101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Monochloramine reduced colonization in building hot water systems. Monochloramine disinfection of municipal water supplies is associated with decreased risk for Legionnaires' disease. We conducted a 2-year, prospective, environmental study to evaluate whether converting from chlorine to monochloramine for water disinfection would decrease Legionella colonization of hot water systems. Water and biofilm samples from 53 buildings were collected for Legionella culture during 6 intervals. Prevalence ratios (PRs) comparing Legionella colonization before and after monochloramine disinfection were adjusted for water system characteristics. Legionella colonized 60% of the hot water systems before monochloramine versus 4% after conversion (PR 0.07, 95% confidence interval 0.03–0.16). The median number of colonized sites per building decreased with monochloramine disinfection. Increased prevalence of Legionella colonization was associated with water heater temperatures <50°C, buildings taller than 10 stories, and interruptions in water service. Increasing use of monochloramine in water supplies throughout the United States may reduce Legionella transmission and incidence of Legionnaires' disease.
Collapse
Affiliation(s)
- Brendan Flannery
- Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hosein IK, Hill DW, Tan TY, Butchart EG, Wilson K, Finlay G, Burge S, Ribeiro CD. Point-of-care controls for nosocomial legionellosis combined with chlorine dioxide potable water decontamination: a two-year survey at a Welsh teaching hospital. J Hosp Infect 2005; 61:100-6. [PMID: 16002178 DOI: 10.1016/j.jhin.2005.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
This study reports a two-year programme of attempted eradication of Legionella colonization in the potable water supply of a 1000-bed tertiary care teaching hospital in Wales. There was a simultaneous, point-of-care, sterile-water-only policy for all intensive care units (ICU) and bone marrow and renal transplant units in order to prevent acquisition of nosocomial Legionnaires' disease. The programme was initiated following a case of nosocomial pneumonia caused by Legionella pneumophila serogroup 1-Bellingham-like genotype A on the cardiac ICU. The case occurred 14 days after mitral and aortic valve replacement surgery. Clinical and epidemiological investigations implicated aspiration of hospital potable water as the mechanism of infection. Despite interventions with chlorine dioxide costing over 25000 UK pounds per annum, Legionella has remained persistently present in significant numbers (up to 20000 colony forming units/L) and with little reduction in the number of positive sites. Two further cases of nosocomial disease occurred over the following two-year period; in one case, aspiration of tap water was implicated again, and in the other case, instillation of contaminated water into the right main bronchus via a misplaced nasogastric tube was implicated. These cases arose because of inadvertent non-compliance with the sterile-water-only policy in high-risk locations. Enhanced clinical surveillance over the same two-year period detected no other cases of nosocomial disease. This study suggests that attempts at eradication of Legionella spp. from complex water systems may not be a cost-effective measure for prevention of nosocomial infections, and to the best of our knowledge is the first study from the UK to suggest that the introduction of a sterile-water-only policy for ICUs and other high-risk units may be a more cost-effective approach.
Collapse
Affiliation(s)
- I K Hosein
- Infection Prevention and Control Department, Cardiff and Vale NHS Trust, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, Wales, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Peiró Callizo EF, Sierra JD, Pombo JMS, Baquedano CE, Huerta BP. Evaluation of the effectiveness of the Pastormaster method for disinfection of legionella in a hospital water distribution system. J Hosp Infect 2005; 60:150-8. [PMID: 15866014 DOI: 10.1016/j.jhin.2004.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 11/09/2004] [Indexed: 11/26/2022]
Abstract
The Pastormaster method consists of heating the water of hospital distribution systems at a specific point to a sufficient temperature for a minimum amount of time to eradicate legionella. The object of this study was to evaluate the effectiveness of the Pastormaster method for legionella disinfection in a hospital environment. A two-phase procedure was performed: hydraulic optimization of the water supply circuit, and implementation of the Pastormaster method. Water samples were taken at 10 representative points in the hospital hot-water system and cultured microbiologically. Other physical and chemical measurements were also determined. Implementation of the Pastormaster method and correction of the deficiencies identified during a hydraulic system audit confirmed the absence of legionella in the hospital water distribution system. The combination of implementation of the Pastormaster method and conduction of a hydraulic audit designed to identify and remedy any possible problems in water circulation is effective in minimizing the risk of legionella contamination in hospital water distribution systems.
Collapse
|
30
|
Blanc DS, Carrara P, Zanetti G, Francioli P. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital. J Hosp Infect 2005; 60:69-72. [PMID: 15823660 DOI: 10.1016/j.jhin.2004.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 10/20/2004] [Indexed: 11/30/2022]
Abstract
The efficacy of ozonation, copper-silver ionization and increased temperature in controlling Legionella spp. in the hot water distribution networks of a university hospital was evaluated. Two separate water distribution networks were studied; network 1 which supplies the surgical intensive care units, and network 2 which supplies the medical intensive care units and the emergency room. Network 1 has been disinfected by ozonation since 1995, and network 2 has been disinfected by ionisation since 1999. The hot water temperature was increased from 50 to 65 degrees C in 1998 and 2000 in networks 1 and 2, respectively. Water samples and swabs of the water outlets were cultured for Legionella spp. between four and six times each year, providing data before and after implementation of the disinfection procedures. There was no significant difference in the proportion of samples positive for Legionella spp. after ozonation in network 1 or after ionization in network 2. In both networks, there was a significant reduction in legionella isolates after increasing the hot water temperature to 65 degrees C. Maintaining the hot water temperature above 50 degrees C throughout both networks proved to be the most effective control measure in our hospital.
Collapse
Affiliation(s)
- D S Blanc
- Division of Hospital Preventive Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | | | | | | |
Collapse
|
31
|
Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Lévi Y. Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 2005; 97:950-63. [PMID: 15479410 DOI: 10.1111/j.1365-2672.2004.02391.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Monitoring of microbial changes during and after application of various disinfection treatments in a model domestic water system. METHODS AND RESULTS A pilot-scale domestic water system consisting of seven galvanized steel re-circulation loops and copper dead legs was constructed. Culture techniques, confocal laser scanning microscopy after fluorescent in situ hybridization and viability staining with the BacLight LIVE/DEAD kit were used for planktonic and biofilm flora monitoring. Before starting the treatments, the system was highly contaminated with Legionella pneumophila and biofilm populations mainly consisted of beta-proteobacteria. In the water and the biofilm of the loops, continuous application of chlorine dioxide (0.5 mg l(-1)), or chlorine (2.5 mg l(-1)) were very effective in reducing the microbial flora, including L. pneumophila. Heterotrophic bacteria, although strongly reduced, were still detectable after ozone application (0.5 mg l(-1)), whereas with monochloramine (0.5 mg l(-1)) and copper-silver ionization (0.8/0.02 mg l(-1)), the contamination remained significantly higher. Monochloramine and copper-silver did not remove the biofilm. During copper-silver application, Legionella re-growth was observed. Only chlorine dioxide led to detectable effects in the dead leg. Amoebae could not be eliminated, and after interrupting the treatments, L. pneumophila quickly recovered their initial levels, in all cases. CONCLUSIONS Chlorine dioxide, applied as a continuous treatment, was identified in this study as the most efficient for controlling L. pneumophila in a domestic water system. Chlorine dioxide showed a longer residual activity, leading to improved performance in the dead leg. Amoebae resisted to all the treatments applied and probably acted as reservoirs for L. pneumophila, allowing a quick re-colonization of the system once the treatments were interrupted. SIGNIFICANCE AND IMPACT OF THE STUDY Control of microbial contamination requires maintenance of a constant disinfectant residual throughout the water system. Treatment strategies targeting free-living amoebae should lead to improved control of L. pneumophila. Such treatment strategies still have to be investigated.
Collapse
Affiliation(s)
- V Thomas
- Department of Public Health-Environment, School of Pharmacy, University of Paris, Châtenay-Malabry Cedex, France.
| | | | | | | | | | | |
Collapse
|
32
|
Legionella. Am J Transplant 2004; 4 Suppl 10:25-7. [PMID: 15504207 DOI: 10.1111/j.1600-6135.2004.00721.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Stout JE, Yu VL. Experiences of the first 16 hospitals using copper-silver ionization for Legionella control: implications for the evaluation of other disinfection modalities. Infect Control Hosp Epidemiol 2003; 24:563-8. [PMID: 12940575 DOI: 10.1086/502251] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Hospital-acquired legionnaires' disease can be prevented by disinfection of hospital water systems. This study assessed the long-term efficacy of copper-silver ionization as a disinfection method in controlling Legionella in hospital water systems and reducing the incidence of hospital-acquired legionnaires' disease. A standardized, evidence-based approach to assist hospitals with decision making concerning the possible purchase of a disinfection system is presented. DESIGN The first 16 hospitals to install copper-silver ionization systems for Legionella disinfection were surveyed. Surveys conducted in 1995 and 2000 documented the experiences of the hospitals with maintenance of the system, contamination of water with Legionella, and occurrence of hospital-acquired legionnaires' disease. All were acute care hospitals with a mean of 435 beds. RESULTS All 16 hospitals reported cases of hospital-acquired legionnaires' disease prior to installing the copper-silver ionization system. Seventy-five percent had previously attempted other disinfection methods including superheat and flush, ultraviolet light, and hyperchlorination. By 2000, the ionization systems had been operational from 5 to 11 years. Prior to installation, 47% of the hospitals reported that more than 30% of distal water sites yielded Legionella. In 1995, after installation, 50% of the hospitals reported 0% positivity, and 43% still reported 0% in 2000. Moreover, no cases of hospital-acquired legionnaires' disease have occurred in any hospital since 1995. CONCLUSIONS This study represents the final step in a proposed 4-step evaluation process of disinfection systems that includes (1) demonstrated efficacy of Legionella eradication in vitro using laboratory assays, (2) anecdotal experiences in preventing legionnaires' disease in individual hospitals, (3) controlled studies in individual hospitals, and (4) validation in confirmatory reports from multiple hospitals during a prolonged time (5 to 11 years in this study). Copper-silver ionization is now the only disinfection modality to have fulfilled all four evaluation criteria.
Collapse
Affiliation(s)
- Janet E Stout
- Special Pathogens Laboratory, Veterans Affairs Medical Center, Pittsburg, Pennsylvania 15240, USA
| | | |
Collapse
|
34
|
Srinivasan A, Bova G, Ross T, Mackie K, Paquette N, Merz W, Perl TM. A 17-month evaluation of a chlorine dioxide water treatment system to control Legionella species in a hospital water supply. Infect Control Hosp Epidemiol 2003; 24:575-9. [PMID: 12940577 DOI: 10.1086/502254] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To assess the safety and efficacy of a chlorine dioxide water treatment system in controlling Legionella in a hospital water supply. DESIGN For 17 months following installation of the system, we performed regular water cultures throughout the building, assessed chlorine dioxide and chlorite levels, and monitored metal corrosion. RESULTS Sites that grew Legionella species decreased from 41% at baseline to 4% (P = .001). L. anisa was the only species recovered and it was found in samples of both hot and cold water. Levels of chlorine dioxide and chlorite were below Environmental Protection Agency (EPA) limits for these chemicals in potable water. Further, enhanced carbon filtration effectively removed the chemicals, even at chlorine dioxide levels of more than twice what was used to treat the water. After 9 months, corrosion of copper test strips exposed to the chlorine dioxide was not higher than that of control strips. During the evaluation period, there were no cases of nosocomial Legionella in the building with the system, whereas there was one case in another building. CONCLUSIONS Our results indicate that operation of a chlorine dioxide system effectively removed Legionella species from a hospital water supply. Furthermore, we found that the system was safe, as levels of chlorine dioxide and chlorite were below EPA limits. The system did not appear to cause increased corrosion of copper pipes. Our results indicate that chlorine dioxide may hold promise as a solution to the problem of Legionella contamination of hospital water supplies.
Collapse
Affiliation(s)
- Arjun Srinivasan
- Department of Medicine, Division of Infectious Diseases, Hospital Epidemiology and Infection Control, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21287, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lin YSE, Vidic RD, Stout JE, Yu VL. Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila. Appl Environ Microbiol 2002; 68:2711-5. [PMID: 12039724 PMCID: PMC123931 DOI: 10.1128/aem.68.6.2711-2715.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper-silver (Cu-Ag) ionization has effectively controlled Legionella spp. in the hot water systems of numerous hospitals. However, it was ineffective at controlling Legionella in one Ohio hospital despite the confirmation of adequate total concentrations of copper and silver ions. The pH of the water at this hospital was found to be 8.5 to 9.0. The purpose of this study was to investigate the impact of pH and other water quality parameters, including alkalinity (HCO3-), hardness (Ca2+ and Mg2+), and amount of dissolved organic carbon (DOC), on the control of Legionella by Cu-Ag ionization. Initial concentrations of Legionella and copper and silver ions used in batch experiments were 3 x 10(6) CFU/ml and 0.4 and 0.08 mg/liter, respectively. Changes in bicarbonate ion concentration (50, 100, and 150 mg/liter), water hardness (Ca2+ at 50 and 100 mg/liter; Mg2+ at 40 and 80 mg/liter), and level of DOC (0.5 and 2 mg/liter) had no significant impact on the efficacy of copper and silver ions in killing Legionella at a neutral pH. When the pH was elevated to 9 in these experiments, copper ions achieved only a 10-fold reduction in the number of Legionella organisms in 24 h, compared to a millionfold decrease at pH 7.0. Silver ions were able to achieve a millionfold reduction in 24 h at all ranges of water quality parameters tested. Precipitation of insoluble copper complexes was observed at a pH above 6.0. These results suggest that pH may be an important factor in the efficacy of copper-silver ionization in controlling Legionella in water systems.
Collapse
Affiliation(s)
- Yu-Sen E Lin
- Graduate Institute of Environmental Education, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
36
|
|
37
|
Darelid J, Löfgren S, Malmvall BE. Control of nosocomial Legionnaires' disease by keeping the circulating hot water temperature above 55 degrees C: experience from a 10-year surveillance programme in a district general hospital. J Hosp Infect 2002; 50:213-9. [PMID: 11886198 DOI: 10.1053/jhin.2002.1185] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
After a nosocomial outbreak of Legionnaires' disease in a 450-bed district general hospital in 1991, the circulating hot water temperature was kept above 55 degrees C as the sole control measure. From 1991 to 2000, all cases of nosocomial pneumonia were clinically monitored and tested for Legionella pneumophila serogroup 1 by serology or urinary antigen detection. Water samples from peripheral tap sites were cultured for Legionella spp. twice a year. An infection with L. pneumophila serogroup 1 was diagnosed in four out of 366 (1.1%) patients treated for nosocomial pneumonia, representing one case per 26,000 admissions. All patients were cured without complications. L. pneumophila serogroup 1 was isolated in 30 of 251 (12%) cultured hospital water samples during the monitoring period. We conclude that control of nosocomial Legionnaires' disease in a primary referral hospital is possible by keeping the circulating hospital hot water temperature above 55 degrees C, together with careful clinical surveillance. Complete eradication of Legionella spp. from the hot water system does not seem necessary.
Collapse
Affiliation(s)
- J Darelid
- Department of Infectious Diseases, Ryhov Hospital, Jönköping, Sweden.
| | | | | |
Collapse
|
38
|
Levi Y. Écologie microbienne des réseaux d'eau potable et risque microbiologique : l'exemple de Legionella pneumophila. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0338-9898(01)80387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
|
40
|
Rohr U. Reply. Clin Infect Dis 2000; 31:1316-7. [PMID: 11073781 DOI: 10.1086/317442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- U Rohr
- Institut fur Hygiene und Mikrobiologie, Abteilung fur Hygiene, Sozial- und Umweltmedizin, Ruhr-Universitat Bochum, Bochum, Germany.
| |
Collapse
|
41
|
Abstract
There is an ongoing controversy in Europe about the benefits and limitations of epidemiologic methods for the prevention and control of hospital-acquired infections. Hospital epidemiology, aimed at measuring the necessity, or effect, of preventive strategies for nosocomial infection control, is still an unknown field in many European institutions. The conceptual framework presented here is not intended as a complete review of modern hospital epidemiology, but should be considered rather a viewpoint which tries to bridge the gap between microbiology-based hospital hygiene and hospital epidemiology in Europe. The explanatory power and limitations of descriptive, analytical and interventional epidemiology are described. Based on the assumption that nosocomial infections have causal and preventive factors that can be identified through systematic investigation, epidemiologic methods add important knowledge to reduce hospital-acquired infections.
Collapse
Affiliation(s)
- S Harbarth
- Division of Infectious Diseases and Infection Control, Children's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
42
|
Hayes J. Silver/Copper ionization is effective for controlof legionella. Clin Infect Dis 2000; 31:846-7. [PMID: 11017807 DOI: 10.1086/314003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- J Hayes
- Tarn-Pure Technology, High Wycombe, Buckinghamshire, United Kingdom.
| |
Collapse
|
43
|
Abstract
Numerous reports of endemic legionellosis have been published within the past year. The scope has been expanded to longterm care facilities, nursing homes, rehabilitation centers, and pediatric hospitals. The institutional water supply has been the source in all reports and aspiration was explicitly linked as the mode of transmission in several reports. Discovery of a single case should not be considered as an isolated sporadic event, but instead indicative of unrecognized cases within that hospital. Copper-silver ionization has displaced hyperchlorination as the longterm disinfection modality of choice. Guidelines mandating the use of routine environmental cultures in hospital water supplies have been implemented in several American states and European countries.
Collapse
Affiliation(s)
- Victor L. Yu
- VA Medical Center and, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Affiliation(s)
- C J Hoebe
- Department of Infectious Diseases, Municipal Health Service, Heerlen, The Netherlands
| | | |
Collapse
|