1
|
Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa HO, Al-Gaabary M, Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022; 11:pathogens11070715. [PMID: 35889961 PMCID: PMC9320398 DOI: 10.3390/pathogens11070715] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.
Collapse
Affiliation(s)
- Mohamed Borham
- Bacteriology Department, Animal Health Research Institute Matrouh Lab, Matrouh 51511, Egypt;
| | - Atef Oreiby
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Attia El-Gedawy
- Bacteriology Department, Animal Health Research Institute, Giza 12618, Egypt;
| | - Yamen Hegazy
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Hazim O. Khalifa
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
- Correspondence: (H.O.K.); (T.M.)
| | - Magdy Al-Gaabary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Correspondence: (H.O.K.); (T.M.)
| |
Collapse
|
2
|
Bernitz N, Kerr TJ, Goosen WJ, Clarke C, Higgitt R, Roos EO, Cooper DV, Warren RM, van Helden PD, Parsons SDC, Miller MA. Parallel measurement of IFN-γ and IP-10 in QuantiFERON®-TB Gold (QFT) plasma improves the detection of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Prev Vet Med 2019; 169:104700. [PMID: 31311648 DOI: 10.1016/j.prevetmed.2019.104700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
Abstract
The QuantiFERON®-TB Gold (QFT) stimulation platform for cytokine release is a novel approach for diagnosis of bovine tuberculosis in wildlife species. Plasma interferon gamma (IFN-γ) is routinely measured to detect immune sensitization to Mycobacterium bovis. However, the cytokine interferon gamma-inducible protein 10 (IP-10) has been proposed as an alternative, more sensitive, diagnostic biomarker. In this study, we investigated the use of the QFT system with measurement of IFN-γ and IP-10 in parallel to identify M. bovis-infected African buffaloes. The test results of either biomarker in a cohort of M. bovis-unexposed buffaloes (n = 70) led to calculation of 100% test specificity. Furthermore, in cohorts of M. bovis culture-positive (n = 51) and M. bovis-suspect (n = 22) buffaloes, the IP-10 test results were positive in a greater number of animals than the number based on the IFN-γ test results. Most notably, when the biomarkers were measured in parallel, the tests identified all M. bovis culture-positive buffaloes, a result neither the single comparative intradermal tuberculin test (SCITT) nor Bovigam® IFN-γ release assay (IGRA) achieved, individually or in parallel. These findings demonstrate the diagnostic potential of this blood-based assay to identify M. bovis-infected African buffaloes and a strategy to maximise the detection of infected animals while maintaining diagnostic specificity and simplifying test procedures.
Collapse
Affiliation(s)
- Netanya Bernitz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tanya J Kerr
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Wynand J Goosen
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Charlene Clarke
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Roxanne Higgitt
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Eduard O Roos
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - David V Cooper
- Ezemvelo KwaZulu-Natal Wildlife, PO Box 25, Mtubatuba, 3935, South Africa.
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Paul D van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sven D C Parsons
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
3
|
Bernitz N, Goosen WJ, Clarke C, Kerr TJ, Higgitt R, Roos EO, Cooper DV, Warren RM, van Helden PD, Parsons SD, Miller MA. Parallel testing increases detection of Mycobacterium bovis-infected African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2018; 204:40-43. [DOI: 10.1016/j.vetimm.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 11/25/2022]
|
4
|
Bernitz N, Clarke C, Roos EO, Goosen WJ, Cooper D, van Helden PD, Parsons SD, Miller MA. Detection of Mycobacterium bovis infection in African buffaloes ( Syncerus caffer ) using QuantiFERON ® -TB Gold (QFT) tubes and the Qiagen cattletype ® IFN-gamma ELISA. Vet Immunol Immunopathol 2018; 196:48-52. [DOI: 10.1016/j.vetimm.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
|
5
|
Infantes-Lorenzo JA, Moreno I, Risalde MDLÁ, Roy Á, Villar M, Romero B, Ibarrola N, de la Fuente J, Puentes E, de Juan L, Gortázar C, Bezos J, Domínguez L, Domínguez M. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis. Clin Proteomics 2017; 14:36. [PMID: 29142508 PMCID: PMC5669029 DOI: 10.1186/s12014-017-9171-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/27/2017] [Indexed: 12/28/2022] Open
Abstract
Background Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study was to carry out a proteomic characterisation of bPPD, aPPD and an immunopurified subcomplex from bPPD called P22 in order to identify proteins contributing to cross-reactivity among these three products in tuberculosis diagnosis. Methods Trypsin digests of bPPD, aPPD and P22 were analysed by nanoscale liquid chromatography-electrospray ionization tandem mass spectrometry. Mice were immunised with bPPD or aPPD, and their serum was tested by indirect ELISA for reactivity against these preparations as well as against P22. Results A total of 456 proteins were identified in bPPD, 1019 in aPPD and 118 in P22; 146 of these proteins were shared by bPPD and aPPD, and 43 were present in all three preparations. Candidate proteins that may cause cross-reactivity between bPPD and aPPD were identified based on protein abundance and antigenic propensity. Serum reactivity experiments indicated that P22 may provide greater specificity than bPPD with similar sensitivity for ELISA-type detection of antibodies against M. tuberculosis complex. Conclusion The subpreparation from bPPD called P22 may be an alternative to bPPD for serodiagnosis of bovine tuberculosis, since it shares fewer proteins with aPPD than bPPD does, reducing risk of cross-reactivity with anti-M. avium antibodies. Electronic supplementary material The online version of this article (10.1186/s12014-017-9171-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Antonio Infantes-Lorenzo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Unidad de Inmunología Microbiana, Majadahonda, Madrid Spain.,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Inmaculada Moreno
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Unidad de Inmunología Microbiana, Majadahonda, Madrid Spain
| | | | - Álvaro Roy
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,CZ Veterinaria S.A, Porriño, Pontevedra Spain
| | - Margarita Villar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Nieves Ibarrola
- Unidad de Proteómica, Instituto de Biología Molecular y Celular del Cáncer-USAL-CSIC, ProteoRed ISCIII, Campus Unamuno, Salamanca, Spain
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK USA
| | | | - Lucía de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,MAEVA SERVET S.L, Alameda del Valle, Madrid Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Domínguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Unidad de Inmunología Microbiana, Majadahonda, Madrid Spain
| |
Collapse
|
6
|
Higgitt RL, Buss PE, van Helden PD, Miller MA, Parsons SDC. Development of gene expression assays measuring immune responses in the spotted hyena (Crocuta crocuta). AFRICAN ZOOLOGY 2017. [DOI: 10.1080/15627020.2017.1309300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Roxanne L Higgitt
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter E Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Michele A Miller
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sven DC Parsons
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
7
|
Gcebe N, Michel A, Gey van Pittius NC, Rutten V. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins. Front Microbiol 2016; 7:795. [PMID: 27375559 PMCID: PMC4894912 DOI: 10.3389/fmicb.2016.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/11/2016] [Indexed: 01/15/2023] Open
Abstract
The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis identified a total of 609 proteins in the six PPDs and 22 of these were identified as shared between PPD of M.bovis and one or more of the NTM PPDs. Previously characterized M tuberculosis/M. bovis homologous immunogenic proteins detected in one or more of the nonpathogenic NTM in this study included CFP-10 (detected in M. malmesburii sp. nov. PPD), GroES (detected in all NTM PPDs but M. malmesburii sp. nov.), DnaK (detected in all NTM PPDs), and GroEL (detected in all NTM PPDs). This study confirms reports that the ESX-1, ESX-3, and ESX-4 regions are ancestral regions and thus found in the genomes of most mycobacteria. Identification of NTM homologs of immunogenic proteins warrants further investigation of their ability to cause cross-reactive immune responses with MTBC antigens.
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Tuberculosis Laboratory, Agricultural Research Council - Onderstepoort Veterinary InstituteOnderstepoort, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaOnderstepoort, South Africa
| | - Anita Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria Onderstepoort, South Africa
| | - Nicolaas C Gey van Pittius
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University Tygerberg, South Africa
| | - Victor Rutten
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaOnderstepoort, South Africa; Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
8
|
Goosen WJ, van Helden PD, Warren RM, Miller MA, Parsons SDC. The stability of plasma IP-10 enhances its utility for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2016; 173:17-20. [PMID: 27090621 DOI: 10.1016/j.vetimm.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 02/02/2023]
Abstract
The measurement of interferon gamma-induced protein 10 (IP-10) in antigen-stimulated whole blood is a sensitive biomarker of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). However, this species often occurs in remote locations and diagnostic samples must be transported to centralised laboratories for processing. In humans, plasma IP-10 is highly stable and this feature contributes to its diagnostic utility; for this reason we aimed to characterize the stability of this molecule in buffaloes. Blood from M. bovis-infected and -uninfected animals was incubated with pathogen-specific peptides, saline and phytohaemagglutinin, respectively. Plasma fractions were harvested and aliquots of selected samples were: (i) stored at different temperatures for various times; (ii) heat treated before storage at RT, and (iii) stored on Protein Saver Cards (PSCs) at RT for either 2 or 8 weeks before measurement of IP-10. Incubation of plasma at 65°C for 20 min caused no loss of IP-10 and this protein could be quantified in plasma stored on PSCs for 2 and 8 weeks. Moreover, for all storage conditions, IP-10 retained its excellent diagnostic characteristics. These features of IP-10 might allow for the heat inactivation of potentially infectious plasma which would facilitate the safe and simple transport of samples.
Collapse
Affiliation(s)
- Wynand J Goosen
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Michele A Miller
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Sven D C Parsons
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
9
|
IP-10 Is a Sensitive Biomarker of Antigen Recognition in Whole-Blood Stimulation Assays Used for the Diagnosis of Mycobacterium bovis Infection in African Buffaloes (Syncerus caffer). CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:974-8. [PMID: 26108287 DOI: 10.1128/cvi.00324-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022]
Abstract
African buffaloes (Syncerus caffer) are maintenance hosts of Mycobacterium bovis, the causative agent of bovine tuberculosis. They act as reservoirs of this infection for a wide range of wildlife and domestic species, and the detection of infected animals is important to control the geographic spread and transmission of the disease. Interferon gamma (IFN-γ) release assays (IGRAs) utilizing pathogen-derived peptide antigens are highly specific tests of M. bovis infection; however, the diagnostic sensitivities of these assays are suboptimal. We evaluated the diagnostic utility of measuring antigen-dependent interferon gamma-induced protein 10 (IP-10) release as an alternative to measuring IFN-γ levels. M. bovis-exposed buffaloes were tested using the Bovigam PC-EC and Bovigam PC-HP assays and a modified QuantiFERON TB-Gold (mQFT) assay. IP-10 was measured in the harvested plasma and was produced in significantly greater abundance in response to M. bovis antigens in Bovigam-positive than in Bovigam-negative animals. For each assay, using the Bovigam results as a reference, receiver operating characteristic curve analysis was done to determine diagnostically relevant cutoff values for IP-10. Thereafter, mQFT test results derived from measurement of IP-10 and IFN-γ were compared and a larger number of Bovigam-positive animals were detected using IP-10 as a diagnostic marker. Moreover, using IP-10, agreement between the mQFT assay and the Bovigam assays was increased, while the excellent agreement between the Bovigam assays was retained. We conclude that IP-10 is a sensitive marker of antigen recognition and that measurement of this cytokine in antigen-stimulated whole blood might increase the sensitivity of conventional IGRAs in African buffaloes.
Collapse
|
10
|
Goosen WJ, Cooper D, Warren RM, Miller MA, van Helden PD, Parsons SDC. The evaluation of candidate biomarkers of cell-mediated immunity for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2014; 162:198-202. [PMID: 25464825 DOI: 10.1016/j.vetimm.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 02/08/2023]
Abstract
We evaluated commercially available bovine enzyme linked immunosorbent assays (ELISA) and a human IP-10 ELISA to measure IP-10, MIG, MCP-1, MCP-2, MCP-3 and IL1-RA in buffalo plasma in order to identify sensitive markers of the immune response to Mycobacterium bovis-specific peptides. Additionally, we found that all coding mRNA sequences of these cytokines showed very high homology with their homologues in domestic cattle (97-99%) as did the derived amino acid sequences (97-99%). This high sequence homology between cattle and buffaloes supports the use of bovine ELISAs for the detection these cytokines in buffaloes. MCP-1 concentration showed a positive correlation with that of IFN-γ (p=0.0077) and appears to occur in far greater abundance in buffaloes when compared to humans. Using a bovine IP-10 ELISA, levels of this cytokine were found to be significantly increased in antigen-stimulated blood samples from M. bovis test positive buffaloes (p<0.0001) and IP-10 was detected in far greater abundance than IFN-γ. Measurement of IP-10 with this ELISA may prove to be a sensitive marker of M. bovis infection in African buffaloes.
Collapse
Affiliation(s)
- Wynand J Goosen
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - David Cooper
- Ezemvelo KZN Wildlife, PO Box 25, Mtubatuba 3935, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - Michele A Miller
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - Sven D C Parsons
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa.
| |
Collapse
|
11
|
Goosen WJ, Miller MA, Chegou NN, Cooper D, Warren RM, van Helden PD, Parsons SDC. Agreement between assays of cell-mediated immunity utilizing Mycobacterium bovis-specific antigens for the diagnosis of tuberculosis in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2014; 160:133-8. [PMID: 24794136 DOI: 10.1016/j.vetimm.2014.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 11/25/2022]
Abstract
We assessed the use of Mycobacterium bovis-specific peptides for the diagnosis of tuberculosis in African buffaloes (Syncerus caffer) by evaluating the agreement between the single intradermal comparative tuberculin test (SICTT), the Bovigam(®) EC (BEC) assay, the Bovigam(®) HP (BHP) assay and two assays utilizing the QuantiFERON(®) TB-Gold (in tube) system employing 20 h (mQFT20 assay) and 30 h (mQFT30 assay) whole blood incubation periods. Of 84 buffaloes, 45% were SICTT-positive, 48% were BEC-positive, 50% were BHP-positive, 37% were mQFT20-positive and 43% were mQFT30-positive. Agreement between the BEC and BHP Bovigam(®) assays was high (κ=0.86, 95% CI 0.75-0.97) and these detected the most test-positive animals suggesting that they were the most sensitive assays. Interferon-gamma release was significantly greater in buffaloes that were test-positive for all tests than in animals with discordant but positive Bovigam(®) results. Agreement between the mQFT assays was equally high (κ=0.88, 95% CI 0.77-0.98); however, all buffaloes with discordant mQFT results (n=6) were mQFT30-positive/mQFT20-negative, including three confirmed M. bovis-infected animals, suggesting that the mQFT30 assay is the more sensitive of the two. Agreements between the two Bovigam(®) and two mQFT assays were moderate, suggesting that in its current format the mQFT assay is less sensitive than either the BEC or the BHP assays.
Collapse
Affiliation(s)
- Wynand J Goosen
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Michele A Miller
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Novel N Chegou
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - David Cooper
- Ezemvelo KZN Wildlife, P.O. Box 25, Mtubatuba 3935, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Sven D C Parsons
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa.
| |
Collapse
|
12
|
Duration of immunity against Mycobacterium bovis following neonatal vaccination with bacillus Calmette-Guérin Danish: significant protection against infection at 12, but not 24, months. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1254-60. [PMID: 22718125 DOI: 10.1128/cvi.00301-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination of neonatal calves with Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces a significant degree of protection against bovine tuberculosis, caused by infection with virulent M. bovis. In two independent experiments, we assessed the duration of the protective immunity induced in calves by neonatal vaccination with BCG Danish. Protection from disease was assessed at 12 and 24 months postvaccination in cattle challenged via the endotracheal route with M. bovis. We also assessed antigen-specific immune responses to assess their utility as correlates of protection. At 12 months postvaccination, significant reductions in lung and lymph node pathologies were observed compared to nonvaccinated M. bovis-challenged control cattle. At 24 months post-BCG vaccination, there was a reduction in lung and lymph node pathology scores and in bacterial burden. However, when comparing vaccinated and control groups, this did not reach statistical significance. Vaccination induced long-lived antigen (purified protein derivative [PPD])-specific gamma interferon (IFN-γ) release in whole-blood cultures, which remained above baseline levels for more than 20 months (approximately 90 weeks). The number of antigen-specific IFN-γ-secreting central memory T cells present at the time of M. bovis challenge was significantly higher in vaccinated than in control animals at 12 months postvaccination, but not at 24 months. Vaccination of neonatal calves with BCG Danish induced protective immune responses against bovine TB which were maintained for at least 12 months postvaccination. These studies provide data on the immunity induced by BCG vaccination in calves; the results could inform vaccination strategies for the control of bovine TB in United Kingdom cattle herds.
Collapse
|
13
|
Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:373-9. [PMID: 21228141 DOI: 10.1128/cvi.00543-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vaccination of neonatal calves with Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces a significant degree of protection against infection with virulent M. bovis, the causative agent of bovine tuberculosis (bTB). We compared two strains of BCG, Pasteur and Danish, in order to confirm that the current European human vaccine strain (BCG Danish) induced protective immunity in calves, and we assessed immune responses to determine correlates of protection that could assist future vaccine evaluation in cattle. Both vaccine strains induced antigen (purified protein derivate [PPD])-specific gamma interferon (IFN-γ) in whole-blood cultures. These responses were not significantly different for BCG Pasteur and BCG Danish and peaked at week 2 to 4 postvaccination. Vaccination with either BCG Danish or BCG Pasteur induced significant protection against bTB, with reductions in both lesion score and bacteriological burden evident in both groups of vaccinated calves compared with nonvaccinated control calves. Measurement of IFN-γ-expressing T lymphocytes postvaccination and postchallenge revealed both correlates and surrogates of protective efficacy. The frequency of central memory T lymphocytes present at 12 weeks postvaccination (at the time of M. bovis challenge) correlated significantly with protection. Conversely, the number of IFN-γ-expressing effector T cells present after M. bovis challenge was correlated with disease. These results demonstrate that vaccination of neonatal calves with either BCG Pasteur or BCG Danish induces protective immune responses against TB. In addition, we show that measurement of antigen-specific T lymphocyte populations may provide a reliable means for identifying protective vaccine candidates.
Collapse
|
14
|
Hope JC, Villarreal-Ramos B. Bovine TB and the development of new vaccines. Comp Immunol Microbiol Infect Dis 2008; 31:77-100. [PMID: 17764740 DOI: 10.1016/j.cimid.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis. The incidence of bTB is increasing in cattle herds of developed countries that have a wild life reservoir of M. bovis, such as the UK, New Zealand and the USA. The increase in the incidence of bTB is thought to be due, at least in part, to a wildlife reservoir of M. bovis. M. bovis is also capable of infecting humans and on a worldwide basis, M. bovis is thought to account for up to 10% of cases of human TB [Cosivi O, Grange JM, Daborn CJ et al. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 1998;4(1):59-70]. Thus, the increased incidence of bTB, besides being a major economic problem, poses an increased risk to human health. In the UK, the incidence of bTB continues to rise despite the use of the tuberculin test and slaughter control policy, highlighting the need for improved control strategies. Vaccination of cattle, in combination with more specific and sensitive diagnostic tests, is suggested as the most effective strategy for bovine TB control. The only vaccine currently available for human and bovine TB is the live attenuated Bacille Calmette Guerin (BCG). BCG is thought to confer protection through the induction of Th1 responses against mycobacteria. However, protection against TB conferred by BCG is variable and to this date the reasons for the successes and failures of BCG are not clear. Therefore, there is a need to develop vaccines that confer greater and more consistent protection against bTB than that afforded by BCG. Given that BCG is currently the only licensed vaccine against human TB, it is likely that any new vaccine or vaccination strategy will be based around BCG. In this review we discuss immune responses elicited by mycobacteria in cattle and the novel approaches emerging for the control of bovine TB based on our increasing knowledge of protective immune responses.
Collapse
Affiliation(s)
- Jayne C Hope
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK.
| | | |
Collapse
|
15
|
Khare S, Hondalus MK, Nunes J, Bloom BR, Garry Adams L. Mycobacterium bovis DeltaleuD auxotroph-induced protective immunity against tissue colonization, burden and distribution in cattle intranasally challenged with Mycobacterium bovis Ravenel S. Vaccine 2006; 25:1743-55. [PMID: 17240005 DOI: 10.1016/j.vaccine.2006.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 11/04/2006] [Accepted: 11/13/2006] [Indexed: 11/29/2022]
Abstract
Bovine tuberculosis is a chronic granulomatous disease caused by Mycobacterium bovis. Lack of definitive diagnostics and effective vaccines for domestic animals are major obstacles to the control and eradication of bovine tuberculosis. Auxotrophic mutants of Mycobacterium tuberculosis have shown promise as vaccine candidates for preventing human tuberculosis. Similarly, we constructed a leucine auxotroph of M. bovis, by using allelic exchange to delete leuD (encoding isopropyl malate isomerase), creating a strain requiring exogenous leucine for growth in vitro. We vaccinated 10 cattle subcutaneously with 10(9)CFU of M. bovis DeltaleuD and 10 age-matched, gender-matched controls were injected with phosphate-buffered saline. Vaccinated cattle had significantly increased in vitro antigen-specific T-cell-mediated responses. All cattle were challenged intranasally on day 160 post-immunization with 10(6)CFU of virulent M. bovis Ravenel S. On day 160 post-challenge vaccinated cattle had significantly reduced tissue mycobacterial burdens and 6 of 10 had complete clearance of the challenge strain and histopathological lesions were dramatically less severe in the vaccinated group. Thus, a single subcutaneous immunization of the M. bovis DeltaleuD mutant produced highly significantly protective immunity as measured by a reduction in tissue colonization, burden, bacilli dissemination, and histopathology caused by virulent M. bovis Ravenel S challenge.
Collapse
Affiliation(s)
- Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
In 1996, an independent scientific committee chaired by Professor John Krebs, tasked to review the problem of bovine tuberculosis (TB) in GB, concluded that vaccination of cattle offered the best long-term solution for controlling the disease in the National Herd. This view has been re-affirmed recently in the House of Commons Environment, Food and Rural Affairs Committee's report on Bovine TB (2004) and by the findings of the Independent Scientific Group Vaccine Scoping Sub-committee. Significant progress in developing TB vaccines for cattle has been made over the last 5 years. Specifically: (i) DNA or protein subunit vaccines used in combination with BCG have been shown to give superior protection against experimental challenge in cattle than BCG (heterologous prime-boost); (ii) prototype reagents that allow discrimination between vaccinated and infected animals have been developed; and (iii) and correlates of disease severity have been identified that can predict the success or failure of vaccination. These significant advances are detailed in this review with a summary of future directions that TB vaccine development for cattle is likely to take.
Collapse
Affiliation(s)
- Martin Vordermeier
- Veterinary Laboratories Agency-Weybridge, TB Research Group, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | |
Collapse
|
17
|
Vitale F, Reale S, Petrotta E, Caracappa S, Barera A, La Manna MP, Macaluso P, Caccamo N, Dieli F, Vordermeier HM, Sireci G, Salerno A. ESAT-6 peptide recognition by bovine CD8+ lymphocytes of naturally infected cows in herds from southern Italy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:530-3. [PMID: 16603624 PMCID: PMC1459644 DOI: 10.1128/cvi.13.4.530-533.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to define epitopes of Mycobacterium bovis from ESAT-6 (early secretory antigen of 6 kDa) recognized by CD8+ T lymphocytes from cows naturally infected with Mycobacterium bovis. We found that bovine CD8+ T cells recognized 10 out of 11 ESAT-6 peptides tested.
Collapse
Affiliation(s)
- Fabrizio Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90100 Palermo, Italia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vordermeier HM, Chambers MA, Buddle BM, Pollock JM, Hewinson RG. Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle. Vet J 2006; 171:229-44. [PMID: 16490705 DOI: 10.1016/j.tvjl.2004.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/28/2022]
Abstract
The sharp rise of bovine tuberculosis (TB) in Great Britain and the continuing problem of wild life reservoirs in countries such as New Zealand and Great Britain have resulted in increased research efforts into the disease. Two of the goals of this research are to develop (1) cattle vaccines against TB and (2) associated diagnostic reagents that can differentiate between vaccinated and infected animals (differential diagnosis). This review summarises recent progress and describes efforts to increase the protective efficacy of the only potential TB vaccine currently available, Mycobacterium bovis BCG, and to develop specific reagents for differential diagnosis. Vaccination strategies based on DNA or protein subunit vaccination, vaccination with live viral vectors as well as heterologous prime-boost scenarios are discussed. In addition, we outline results from studies aimed at developing diagnostic reagents to allow the distinction of vaccinated from infected animals, for example antigens that are not expressed by vaccines like Mycobacterium bovis Bacille-Calmette-Guérin, but recognised strongly in Mycobacterium bovis infected cattle.
Collapse
Affiliation(s)
- H M Vordermeier
- Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | |
Collapse
|
19
|
Hope JC, Thom ML, Villarreal-Ramos B, Vordermeier HM, Hewinson RG, Howard CJ. Exposure to Mycobacterium avium induces low-level protection from Mycobacterium bovis infection but compromises diagnosis of disease in cattle. Clin Exp Immunol 2005; 141:432-9. [PMID: 16045732 PMCID: PMC1809462 DOI: 10.1111/j.1365-2249.2005.02882.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We assessed the effect of exposure to Mycobacterium avium on the development of immune responses and the pathogenesis of disease observed following Mycobacterium bovis challenge. A degree of protection against M. bovis was observed in calves which were pre-exposed to M. avium as assessed by the extent of lesions and bacterial load compared to the M. bovis alone group. The immune response following M. bovis challenge in cattle previously inoculated with M. avium was biased towards antigens (PPD) present in M. avium, whereas the response following M. bovis alone was biased towards antigens present in M. bovis, indicating an imprinting of memory to avian antigens on T lymphocytes. A consequence of the memory to M. avium antigens was failure to diagnose M. bovis infection by the skin test or the IFN(gamma) assay in some of the animals which had lesions of tuberculosis at necropsy. The use of M. bovis specific antigens ESAT-6 and CFP-10 increased IFN(gamma) test specificity in animals previously exposed to M. avium but the responses to these antigens were lower than those observed in animals exposed to M. bovis alone. The implication is that responses to M. avium, although providing some immunity, may mask diagnosis of M. bovis infection, even when specific antigens are employed, potentially contributing to disease transmission in the field.
Collapse
Affiliation(s)
- J C Hope
- Institute for Animal Health, Compton, Newbury, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Buddle BM, Aldwell FE, Skinner MA, de Lisle GW, Denis M, Vordermeier HM, Hewinson RG, Wedlock DN. Effect of oral vaccination of cattle with lipid-formulated BCG on immune responses and protection against bovine tuberculosis. Vaccine 2005; 23:3581-9. [PMID: 15855017 DOI: 10.1016/j.vaccine.2005.01.150] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Revised: 12/16/2004] [Accepted: 01/21/2005] [Indexed: 11/16/2022]
Abstract
Cattle were given Mycobacterium bovis bacillus Calmette-Guerin (BCG) in a lipid-based formulation via the oral route and tested for immune responses and protection against a challenge with virulent M. bovis. Calves were vaccinated by orally administering a pellet containing 10(8) colony forming units (CFU) of BCG, or 10 pellets containing a total of 10(9) CFU of BCG, whereas positive controls were injected subcutaneously with 10(6) CFU of BCG. All of the subcutaneously vaccinated calves produced positive responses in the caudal fold tuberculin skin test at 8 weeks after vaccination, whereas only 3/9 of the low dose and 6/10 of the high dose orally-vaccinated animals produced positive reactions. None of the animals produced positive reactions to the mycobacterial antigens, ESAT-6 and CFP10 in the interferon-gamma (IFN-gamma) test and only a total of four of the BCG-vaccinated animals produced positive responses in either the standard IFN-gamma or comparative cervical skin test. Oral administration of 10 pellets of lipid-formulated BCG to cattle induced a significant level of protection against bovine tuberculosis compared to that observed in non-vaccinated animals and this level was similar to that seen in the BCG subcutaneously vaccinated animals. Oral vaccination of BCG in a lipid-formulation to calves was shown to induce some positive tuberculin skin test reactions, but could also induce protection against bovine tuberculosis.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Wallaceville Animal Research Centre, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hope JC, Thom ML, Villarreal-Ramos B, Vordermeier HM, Hewinson RG, Howard CJ. Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovis. Clin Exp Immunol 2005; 139:48-56. [PMID: 15606613 PMCID: PMC1809274 DOI: 10.1111/j.1365-2249.2005.02668.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Vaccination of neonates with Mycobacterium bovis bacillus Calmette-Guerin (BCG) may be a strategy that overcomes reduced vaccine efficacy associated with exposure to environmental mycobacteria in humans and cattle. Preliminary comparisons indicated that 2-week-old calves produced an immune response to vaccination at least as intense as that observed in adults. Subsequently, five gnotobiotic hysterotomy derived calves aged 1 day were inoculated with BCG and 3 months later were challenged intranasally with virulent M. bovis. The number of tissues with lesions and the pathological extent of these lesions was reduced significantly in vaccinates. Furthermore, lesions were evident in the lung or associated chest lymph nodes of four of five controls but none of five vaccinates. BCG vaccination reduced significantly the level of bacterial colonization. However, lesions in the head associated lymph nodes were observed in three of five BCG-vaccinated cattle. Levels of interferon gamma (IFN-gamma) detected by enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot (ELISPOT) in individual vaccinated animals at challenge did not correlate with subsequent resistance and in general immune responses post-challenge were lower in vaccinated calves. Low IL-10 responses were evident but IL-4 was not detected. Responses to ESAT-6 and/or CFP-10 were evident in four of four control calves that had lesions. Two of the BCG vaccinates with lesions did not produce a response to ESAT-6 and CFP-10, indicating that these antigens did not distinguish vaccinated immune animals from vaccinated animals with lesions. Overall, vaccination of neonatal calves with BCG induced significant protection against disease and has potential as a strategy for the reduction of the incidence of bovine tuberculosis.
Collapse
Affiliation(s)
- J C Hope
- Institute for Animal Health, Compton, Newbury, Berkshire, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Tomar D, Chattree V, Tripathi V, Khan AA, Bakshi AR, Rao DN. New dimensions in vaccinology: A new insight. Indian J Clin Biochem 2005; 20:213-30. [PMID: 23105525 PMCID: PMC3454171 DOI: 10.1007/bf02893073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The development of vaccines to prevent infectious diseases has been one of the most important contributions of biomedical sciences. Increasing understanding in biochemistry, molecular biology, molecular genetics and related fields have provided an opportunity for the development of new generation vaccines that are based on rational design approaches. This is possible because of proper understanding of the microbial-genetics, biochemistry, host-pathogen interaction and recent developments in molecular immunology. Another important improvement made in the quality of vaccine production is the incorporation of immunomodulators or adjuvants with modified delivery vehicles viz liposomes, Iscoms and microspheres apart from alum being used as a gold standard. This article reviews the art of vaccination from Jenner period to present day context highlighting all the developments made at each stage of the vaccine development. Various criteria have been discussed regarding the selection of epitopes that expand B & T cells, its linkage with other accessory cells of the immune system, means to overcome MHC linked immune unresponsiveness, enhanced antigen processing and presentations that specially induce either helper or cytotoxic or mucosal immune responses were critically discussed.
Collapse
Affiliation(s)
- D Tomar
- Department of Biochemistry, All India Institute of Medical Sciences, 110029 New Delhi
| | - V Chattree
- Department of Biochemistry, All India Institute of Medical Sciences, 110029 New Delhi
| | - V Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences, 110029 New Delhi
| | - A A Khan
- Department of Biochemistry, All India Institute of Medical Sciences, 110029 New Delhi
| | - A R Bakshi
- Department of Biochemistry, All India Institute of Medical Sciences, 110029 New Delhi
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Sciences, 110029 New Delhi
| |
Collapse
|
23
|
Abstract
The Eurasian badger (Meles meles) is considered to be an important wildlife reservoir of Mycobacterium bovis infection for cattle in Ireland and in Great Britain. The inability to eradicate the disease from cattle is, in part, a consequence of M. bovis infection in badgers sharing the environment with cattle. Whereas national tuberculosis eradication programmes continue to be effective in maintaining the disease prevalence in cattle at a low level, strategies to control and eradicate tuberculosis in badgers remain constrained by a lack of reagents and rapid tests to diagnose tuberculosis infection in live badgers. However, the development of rational control measures for both badgers and cattle can be achieved by detailed epidemiological analysis combining immunological testing and strain typing with current developments in information technology and geographical information systems. This allows for construction of detailed profiles of tuberculosis episodes which can identify the nature of the outbreak, its likely origin and future spread. The identification of critical areas for control then permits the strategic allocation of resources based on analysis of disease patterns in cattle and badgers. Targeted vaccination of badgers is an option which could facilitate the elimination of disease in affected areas.
Collapse
Affiliation(s)
- E Gormley
- Large Animal Clinical Studies, Faculty of Veterinary Medicine, University College Dublin, Dublin 4, Ireland.
| | | |
Collapse
|
24
|
Hewinson RG, Vordermeier HM, Buddle BM. Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics. Tuberculosis (Edinb) 2003; 83:119-30. [PMID: 12758201 DOI: 10.1016/s1472-9792(02)00062-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Over the past few years there has been a resurgence in research into bovine tuberculosis due to the sharp rise of the disease in countries such as Great Britain and to the continuing problem of wild-life reservoirs in countries such as New Zealand. One of the goals of this research is to develop cattle vaccines against TB. The initial testing of candidate vaccines is carried out in laboratory animals, initially mice and subsequently guinea pigs. A unique feature of the cattle vaccination programme is that candidate vaccines which show promise in laboratory models can then be tested in the natural host species, cattle, before progressing to clinical trials. This is a major advantage over the strategy for developing a vaccine for human tuberculosis where, of course, it is impossible to test a candidate vaccine by experimentally challenging the host species with the pathogen. The most commonly used model for testing vaccine candidates in cattle consists of an intra-tracheal challenge of between 10(3) and 10(4) colony forming units of Mycobacterium bovis. The pathology observed following challenge is similar to human tuberculosis giving rise to a marked granulomatous reaction and a predominantly cellular immune response. Using this model we have been able to make a number of significant advances towards a bovine TB vaccine. First we have developed antigen cocktails that, when used in a whole blood gamma interferon assay, can differentiate between M. bovis infected and BCG vaccinated animals. Next we have developed immune correlates of pathology, which allow us to assess whether the vaccine is protecting animals against challenge before post mortem examination. Finally we have been able to use the model to develop a vaccine that improves the efficacy of BCG against M. bovis challenge.
Collapse
Affiliation(s)
- R G Hewinson
- TB Research Group, Department of Bacterial Diseases, VLA Weybridge, Addlestone, Surrey KT15 3NB, UK.
| | | | | |
Collapse
|
25
|
Suazo FM, Escalera AMA, Torres RMG. A review of M. bovis BCG protection against TB in cattle and other animals species. Prev Vet Med 2003; 58:1-13. [PMID: 12628767 DOI: 10.1016/s0167-5877(03)00003-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bovine tuberculosis (TB) causes severe economic losses in livestock due to low production, animal deaths and condemnation of carcasses. It is also an important constraint in international trade of animals and animal products. A scientific committee in Great Britain in 1997 concluded that the development of a cattle vaccine would be the best option for long-term control of TB. However, vaccination of cattle currently is not accepted because the vaccine interferes with the skin reaction to the tuberculin test in the field. Efficacy of M. bovis BCG in protecting bovine and other animal species against tuberculous infection has received much study. Vaccination of cattle prevents the spread of the disease in populations by reducing the number and size of the lesions, and the load of bacteria (rather than by preventing infection). We review the literature about the efficacy of BCG in protecting cattle and other animal species against infection with field strains of M. bovis and discusses its potential use in programs of TB control in high-prevalence populations.
Collapse
Affiliation(s)
- Feliciano Milian Suazo
- CENID-Fisilogía y Mejoramiento Animal-INIFAP-SAGARPA. Km 1 Carretera a Colón, Qro. C.P. 76280, Ajuchitlán, Mexico.
| | | | | |
Collapse
|
26
|
Al-Attiyah R, Shaban FA, Wiker HG, Oftung F, Mustafa AS. Synthetic peptides identify promiscuous human Th1 cell epitopes of the secreted mycobacterial antigen MPB70. Infect Immun 2003; 71:1953-60. [PMID: 12654813 PMCID: PMC152036 DOI: 10.1128/iai.71.4.1953-1960.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MPB70 is a secreted protein of Mycobacterium bovis and Mycobacterium tuberculosis which stimulates both cellular and humoral immune responses during infection with bovine and human tubercle bacilli. In addition, vaccination with MPB70 has been shown to induce Th1 cell responses and protection in animal models of tuberculosis. The present study was carried out to map the dominant human Th1 cell epitopes of MPB70 in relation to major histocompatibility complex (MHC) class II restriction in healthy subjects showing strong T-cell responses to complex mycobacterial antigens. Peripheral blood mononuclear cells (PBMC) from HLA-DR-typed donors were tested with complex mycobacterial antigens (whole-cell M. tuberculosis and M. tuberculosis culture filtrates), with MPB70 purified from the culture filtrate of M. bovis BCG Tokyo, and with 13 synthetic peptides (25-mers overlapping by 10 residues) covering the sequence of MPB70. The donors that responded to the complex antigens and MPB70 also responded to the cocktail of synthetic MPB70 peptides. Testing of PBMC with individual peptides showed that peptides p5 (amino acids [aa] 61 to 85), p6 (aa 76 to 100), p8 (aa 106 to 130), p12 (aa 166 to 190), and p13 (aa 181 to 193) were most frequently recognized in proliferation and gamma interferon (IFN-gamma) assays. Testing of antigen-specific CD4(+) T-cell lines with the individual peptides of MPB70 confirmed that peptides p8, p12, and p13 contain immunodominant Th1 cell epitopes of MPB70. MHC restriction analysis with HLA-typed donors showed that MPB70 and its immunodominant peptides were presented to T cells promiscuously. The T-cell lines responding to MPB70 and peptides p8, p12, and p13 in IFN-gamma assays mediated antigen-peptide-specific cytotoxic activity against monocytes/macrophages pulsed with the whole-protein antigen or the peptides. In conclusion, the promiscuous recognition of MPB70 and its immunodominant peptide defined epitopes (aa 106 to 130 and 166 to 193) by IFN-gamma-producing Th1 cells supports possible application of this secreted antigen to subunit vaccine design.
Collapse
Affiliation(s)
- Raja Al-Attiyah
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | | | | | |
Collapse
|
27
|
Vordermeier M, Whelan AO, Hewinson RG. Recognition of mycobacterial epitopes by T cells across mammalian species and use of a program that predicts human HLA-DR binding peptides to predict bovine epitopes. Infect Immun 2003; 71:1980-7. [PMID: 12654816 PMCID: PMC152066 DOI: 10.1128/iai.71.4.1980-1987.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioinformatics tools have the potential to accelerate research into the design of vaccines and diagnostic tests by exploiting genome sequences. The aim of this study was to assess whether in silico analysis could be combined with in vitro screening methods to rapidly identify peptides that are immunogenic during Mycobacterium bovis infection of cattle. In the first instance the M. bovis-derived protein ESAT-6 was used as a model antigen to describe peptides containing T-cell epitopes that were frequently recognized across mammalian species, including natural hosts for tuberculosis (humans and cattle) and small-animal models of tuberculosis (mice and guinea pigs). Having demonstrated that some peptides could be recognized by T cells from a number of M. bovis-infected hosts, we tested whether a virtual-matrix-based human prediction program (ProPred) could identify peptides that were recognized by T cells from M. bovis-infected cattle. In this study, 73% of the experimentally defined peptides from 10 M. bovis antigens that were recognized by bovine T cells contained motifs predicted by ProPred. Finally, in validating this observation, we showed that three of five peptides from the mycobacterial antigen Rv3019c that were predicted to contain HLA-DR-restricted epitopes were recognized by T cells from M. bovis-infected cattle. The results obtained in this study support the approach of using bioinformatics to increase the efficiency of epitope screening and selection.
Collapse
Affiliation(s)
- Martin Vordermeier
- TB Research Group, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | |
Collapse
|
28
|
Tollefsen S, Vordermeier M, Olsen I, Storset AK, Reitan LJ, Clifford D, Lowrie DB, Wiker HG, Huygen K, Hewinson G, Mathiesen I, Tjelle TE. DNA injection in combination with electroporation: a novel method for vaccination of farmed ruminants. Scand J Immunol 2003; 57:229-38. [PMID: 12641651 DOI: 10.1046/j.1365-3083.2003.01218.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Injection of plasmid DNA encoding antigens into rodents followed by electroporation improved the immune response when compared with injection without electroporation (Widera et al. J Immunol 2000;164:4635-40; Zucchelli et al. J Virol 2000;74:11598-607; Kadowaki et al. Vaccine 2000;18:2779-88). The present study describes the extension of this technology to farm animals, by injecting plasmid DNA encoding mycobacterial antigens (MPB70, Ag85B and Hsp65) into the muscles of goats and cattle using two different types of electrodes, both allowing DNA delivery at the site of electroporation. The animals were vaccinated under local anaesthesia without any observed immediate or long-term distress or discomfort, or any behavioural signs of muscle damage or pathological changes after the electroporation. DNA-injected and electroporated goats showed increased humoral response after the primary vaccination when compared with nonelectroporated animals. Improved T-cell responses following electroporation were observed in hsp65 DNA-vaccinated cattle. DNA injection with or without electroporation did not compromise the specificity of the tuberculin skin test. In conclusion, a protocol applying in vivo electroporation free of side effects to farmed ruminants was established. In addition, we show that DNA vaccination in combination with electroporation can improve the primary immune responses to the encoded antigens.
Collapse
Affiliation(s)
- S Tollefsen
- Immunological Institute, Rikshospitalet University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cockle PJ, Gordon SV, Lalvani A, Buddle BM, Hewinson RG, Vordermeier HM. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect Immun 2002; 70:6996-7003. [PMID: 12438379 PMCID: PMC132958 DOI: 10.1128/iai.70.12.6996-7003.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An independent review for the British government has concluded that the development of a cattle vaccine against Mycobacterium bovis holds the best long-term prospects for tuberculosis control in British herds. The development of complementary diagnostic tests to differentiate between vaccinated and infected animals is necessary to allow the continuation of test-and-slaughter-based control policies alongside vaccination. Vaccination with M. bovis bacillus Calmette-Guérin (BCG), the only available vaccine, results in tuberculin purified protein derivative sensitivity and has shown varying vaccine efficacies in cattle. Thus, identification of more-specific reagents to distinguish between vaccination and infection, as well as the identification of subunit vaccine candidates for improved tuberculosis vaccines, is a research priority. In the present study, we applied comparative genomics to identify M. bovis-Mycobacterium tuberculosis antigens whose genes had been deleted in BCG Pasteur. In total, 13 open reading frames (ORFs) from the RD1, RD2, and RD14 regions of the M. tuberculosis genome were selected. Pools of overlapping peptides spanning these ORFs were tested in M. bovis-infected (n = 22), BCG-vaccinated (n = 6), and unvaccinated (n = 10) control cattle. All were recognized in infected cattle, with responder frequencies varying between 16 and 86%. In particular, eight highly immunogenic antigens were identified whose potentials as diagnostic reagents or as subunit vaccines warrant further study (Rv1983, Rv1986, Rv3872, Rv3873, Rv3878, Rv3879c, Rv1979c, and Rv1769).
Collapse
Affiliation(s)
- P J Cockle
- TB Research Group, Department of Bacterial Diseases, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Mustafa AS, Cockle PJ, Shaban F, Hewinson RG, Vordermeier HM. Immunogenicity of Mycobacterium tuberculosis RD1 region gene products in infected cattle. Clin Exp Immunol 2002; 130:37-42. [PMID: 12296851 PMCID: PMC1906505 DOI: 10.1046/j.1365-2249.2002.01937.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current immuno-diagnostic tests for the detection of Mycobacterium bovis infection in cattle rely on the use of tuberculin PPD as antigens. However, the use of a cattle vaccine is effectively prohibited because BCG, the only potentially available cattle TB vaccine, compromises the current tuberculin test. The main objective of this study was to identify specific antigens, which could increase the test sensitivity to levels achieved with tuberculin. Our approach utilized the availability of the genome sequences of Mycobacterium tuberculosis and BCG by applying principles of comparative genomics to the identification of species-specific antigens. Eight open-reading frames (Rv3871 to Rv3878) encoding for putative antigens in the RD1 region of the M. tuberculosis genome, which is deleted in all strains of BCG, were selected and screened in the form of pools of synthetic peptides for immunological reactivity (antigen induced proliferation and IFN-gamma secretion) with peripheral blood mononuclear cells from cattle experimentally infected with M. bovis. Our results confirm the immunodominant role of two RD1 region products, CFP-10 (Rv3874) and ESAT-6 (Rv3875). In addition, we were able to identify 3 more antigens (Rv3871, Rv3872 and Rv3873), which induced immunological reactivity in PBMC from more than 50%M. bovis of infected cattle.
Collapse
Affiliation(s)
- A S Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | | | | | | |
Collapse
|
31
|
Vordermeier HM, Chambers MA, Cockle PJ, Whelan AO, Simmons J, Hewinson RG. Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect Immun 2002; 70:3026-32. [PMID: 12010994 PMCID: PMC128013 DOI: 10.1128/iai.70.6.3026-3032.2002] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine development and the understanding of the pathology of bovine tuberculosis in cattle would be greatly facilitated by the definition of immunological correlates of protection and/or pathology. To address these questions, cattle were vaccinated with Mycobacterium bovis bacillus Calmette-Guérin (BCG) and were then challenged with virulent M. bovis. Applying a semiquantitative pathology-scoring system, we were able to demonstrate that BCG vaccination imparted significant protection by reducing the disease severity on average by 75%. Analysis of cellular immune responses following M. bovis challenge demonstrated that proliferative T-cell and gamma interferon (IFN-gamma) responses towards the M. bovis-specific antigen ESAT-6, whose gene is absent from BCG, were generally low in vaccinated animals but were high in all nonvaccinated calves. Importantly, the amount of ESAT-6-specific IFN-gamma measured by enzyme-linked immunosorbent assay after M. bovis challenge, but not the frequency of responding cells, correlated positively with the degree of pathology found 18 weeks after infection. Diagnostic reagents based on antigens not present in BCG, like ESAT-6 and CFP-10, were still able to distinguish BCG-vaccinated, diseased animals from BCG-vaccinated animals without signs of disease. In summary, our results suggest that the determination of ESAT-6-specific IFN-gamma, while not a direct correlate of protection, constitutes nevertheless a useful prognostic immunological marker predicting both vaccine efficacy and disease severity.
Collapse
Affiliation(s)
- H Martin Vordermeier
- Veterinary Laboratories Agency Weybridge, TB Research Group, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Wedlock DN, Skinner MA, de Lisle GW, Buddle BM. Control of Mycobacterium bovis infections and the risk to human populations. Microbes Infect 2002; 4:471-80. [PMID: 11932198 DOI: 10.1016/s1286-4579(02)01562-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional control methods based on test-and-slaughter policies have, in several countries, led to the successful eradication of bovine tuberculosis in cattle. However, new approaches for control of bovine tuberculosis are required in developing countries and those with a wildlife reservoir of infection. Recent developments include improved diagnostics and evaluation of new vaccination strategies.
Collapse
Affiliation(s)
- D Neil Wedlock
- AgResearch Limited, Wallaceville Animal Research Centre, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | | | |
Collapse
|
33
|
Harboe M, Whelan AO, Ulvund G, McNair J, Pollock JM, Hewinson RG, Wiker HG. Generation of antibodies to the signal peptide of the MPT83 lipoprotein of Mycobacterium tuberculosis. Scand J Immunol 2002; 55:82-7. [PMID: 11841695 DOI: 10.1046/j.1365-3083.2002.01030.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mpt83 gene (Rv2873) encodes the exported MPT83 lipoprotein of Mycobacterium tuberculosis. The corresponding identical mpb83 gene of Mycobacterium bovis is expressed to varying extents in different substrains of M. bovis Bacille Calmette Guerin (BCG), BCG Tokyo and BCG Moreau being high producers and BCG Danish 1331, a low producer of the MPB83 protein. Immunization with the 13-mer N-terminal part of the signal peptide of MPT83, MINVQAKPAAAASC, coupled to keyhole limpet haemocyanin (KLH) through the added C-terminal cysteine resulted in rapid antibody formation monitored by enzyme-linked immunosorbent assay (ELISA) with free immunizing peptide on the solid phase. In ELISA, with four 20-mer overlapping peptides covering the N-terminal part of the MPT83 sequence, three polyclonal rabbit antisera reacted only with the N-terminal peptide. Antigenic signal peptide could not be detected in sonicates of BCG Tokyo and BCG Moreau. After SDS-PAGE and blotting, the antibodies reacted with sonicates of recombinant Escherichia coli containing the entire mpt83 gene including the signal sequence, but not with the 22 kDa form of native MPB83 purified from BCG culture filtrate. In partition chromatography the recMPT83 partitioned in the water phase while 26 kDa MPB83 in BCG culture filtrate partitioned in the lipid phase confirming that lipidation at the N-terminal cysteine residue occurs after the splitting of the polypeptide chain by signal peptidase II.
Collapse
Affiliation(s)
- M Harboe
- Institute of Immunology, The National Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
34
|
Chambers MA, Stagg D, Gavier-Widén D, Lowrie D, Newell D, Hewinson RG. A DNA vaccine encoding MPB83 from Mycobacterium bovis reduces M. bovis dissemination to the kidneys of mice and is expressed in primary cell cultures of the European badger (Meles meles). Res Vet Sci 2001; 71:119-26. [PMID: 11883890 DOI: 10.1053/rvsc.2001.0498] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleic acid (DNA) vaccination against tuberculosis in the European badger (Meles meles) is one approach to addressing the escalating problem of bovine tuberculosis in Great Britain. The aim of vaccination is to reduce the burden of tuberculosis within the badger population and the shedding of Mycobacterium bovis to levels that would break the transmission of infection to cattle. To this end, the vaccine would be required to limit the amount of disseminated tuberculosis in the badger, especially dissemination to the kidney from where M. bovis can be shed in the urine. A promising candidate DNA vaccine encoding a 26 kDa major antigen (MPB83) of M. bovis was evaluated in a mouse model of disseminated M. bovis infection. Using the DNA vaccine, protection against infection of the kidney was found to be greater than that achieved with the current live vaccine, Bacille Calmette-Guerin (BCG). Kidney tissue and skeletal muscle from the badger was used to derive primary cell cultures in which to examine the expression of MPB83 following transfection with the DNA vaccine. Kidney cortex gave rise to a monotypic culture of epithelial cells whilst the muscle gave rise to a mixed culture of fibroblasts and myoblasts. During culture the myoblasts differentiated into multinucleated myotubes, verified by immunofluorescent detection of mammalian desmin. Successful expression of MPB83 by transfected epithelial and myotube cells was confirmed by immunofluorescence using a monoclonal antibody specific to the protein. These observations fulfil the early requirements for the development of a DNA vaccine for badger tuberculosis.
Collapse
Affiliation(s)
- M A Chambers
- Department of Bacterial Diseases, Veterinary Laboratories Agency Weybridge, Addlestone, Surrey, UK
| | | | | | | | | | | |
Collapse
|
35
|
Vordermeier M, Aranaz A, Pollock JM. Immunodiagnosis of bovine tuberculosis. Summary of a satellite workshop of the Mycobacterium bovis 2000 conference, Cambridge, UK, 17 August 2000. Tuberculosis (Edinb) 2001; 81:177-80. [PMID: 11463240 DOI: 10.1054/tube.2001.0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- M Vordermeier
- VLA Weybridge, Department of Bacterial Diseases, TB Research Group, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | | | | |
Collapse
|
36
|
Vordermeier HM, Whelan A, Cockle PJ, Farrant L, Palmer N, Hewinson RG. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:571-8. [PMID: 11329460 PMCID: PMC96103 DOI: 10.1128/cdli.8.3.571-578.2001] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Great Britain an independent scientific review for the government has concluded that the development of a cattle vaccine against Mycobacterium bovis infection holds the best long-term prospect for tuberculosis control in British herds. A precondition for vaccination is the development of a complementary diagnostic test to differentiate between vaccinated animals and those infected with M. bovis so that testing and slaughter-based control strategies can continue alongside vaccination. To date bacillus Calmette-Guérin (BCG), an attenuated strain of M. bovis, is the only available vaccine for the prevention of tuberculosis. However, tests based on tuberculin purified protein derivative cannot distinguish between M. bovis infection and BCG vaccination. Therefore, specific antigens expressed by M. bovis but absent from BCG constitute prime candidates for differential diagnostic reagents. Recently, two such antigens, ESAT-6 and CFP-10, have been reported to be promising candidates as diagnostic reagents for the detection of M. bovis infection in cattle. Here we report the identification of promiscuous peptides of CFP-10 that were recognized by M. bovis-infected cattle. Five of these peptides were formulated into a peptide cocktail together with five peptides derived from ESAT-6. Using this peptide cocktail in T-cell assays, M. bovis-infected animals were detected, while BCG-vaccinated or Mycobacterium avium-sensitized animals did not respond. The sensitivity of the peptide cocktail as an antigen in a whole-blood gamma interferon assay was determined using naturally infected field reactor cattle, and the specificity was determined using blood from BCG-vaccinated and noninfected, nonvaccinated animals. The sensitivity of the assay in cattle with confirmed tuberculosis was found to be 77.9%, with a specificity of 100% in BCG-vaccinated or nonvaccinated animals. This compares favorably with the specificity of tuberculin when tested in noninfected or vaccinated animals. In summary, our results demonstrate that this peptide cocktail can discriminate between M. bovis infection and BCG vaccination with a high degree of sensitivity and specificity.
Collapse
Affiliation(s)
- H M Vordermeier
- TB Research Group, Department of Bacterial Diseases, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Gormley E, Collins JD. The development of wildlife control strategies for eradication of tuberculosis in cattle in Ireland. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 2001; 80:229-36. [PMID: 11052912 DOI: 10.1054/tuld.2000.0250] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wildlife species, such as badgers, act as maintenance hosts for Mycobacterium bovis and contribute to the spread and persistence of tuberculosis in associated cattle populations. In areas in which there is a tuberculosis problem affecting a number of herds, the involvement of infected wildlife in the introduction of M. bovis infection into herds act as a constraint to eradication of the disease. Epidemiological evidence demonstrates a high prevalence of tuberculosis in badgers, and controlled studies involving comprehensive badger removal have shown that this strategy can serve to significantly reduce cattle reactor rates in the targeted areas. However, as the badger is a protected wildlife species, alternative strategies are required to combat the disease. Targeted vaccination of wildlife species against tuberculosis is an option which, if successfully employed, could directly facilitate the advancement of bovine tuberculosis eradication in affected areas. Any proposed vaccination programme would need to be undertaken against the background of an exhaustive investigation of the cattle and herd management-related factors, and take account of environmental issues.
Collapse
Affiliation(s)
- E Gormley
- Department of Large Animal Clinical Studies, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
38
|
Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2001; 2:RESEARCH0044. [PMID: 11597336 PMCID: PMC57799 DOI: 10.1186/gb-2001-2-10-research0044] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2001] [Revised: 08/06/2001] [Accepted: 08/22/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genome of Mycobacterium tuberculosis H37Rv has five copies of a cluster of genes known as the ESAT-6 loci. These clusters contain members of the CFP-10 (lhp) and ESAT-6 (esat-6) gene families (encoding secreted T-cell antigens that lack detectable secretion signals) as well as genes encoding secreted, cell-wall-associated subtilisin-like serine proteases, putative ABC transporters, ATP-binding proteins and other membrane-associated proteins. These membrane-associated and energy-providing proteins may function to secrete members of the ESAT-6 and CFP-10 protein families, and the proteases may be involved in processing the secreted peptide. RESULTS Finished and unfinished genome sequencing data of 98 publicly available microbial genomes has been analyzed for the presence of orthologs of the ESAT-6 loci. The multiple duplicates of the ESAT-6 gene cluster found in the genome of M. tuberculosis H37Rv are also conserved in the genomes of other mycobacteria, for example M. tuberculosis CDC1551, M. tuberculosis 210, M. bovis, M. leprae, M. avium, and the avirulent strain M. smegmatis. Phylogenetic analyses of the resulting sequences have established the duplication order of the gene clusters and demonstrated that the gene cluster known as region 4 (Rv3444c-3450c) is ancestral. Region 4 is also the only region for which an ortholog could be found in the genomes of Corynebacterium diphtheriae and Streptomyces coelicolor. CONCLUSIONS Comparative genomic analysis revealed that the presence of the ESAT-6 gene cluster is a feature of some high-G+C Gram-positive bacteria. Multiple duplications of this cluster have occurred and are maintained only within the genomes of members of the genus Mycobacterium.
Collapse
Affiliation(s)
- N C Gey Van Pittius
- US/MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, Tygerberg, 7505, South Africa.
| | | | | | | | | | | |
Collapse
|