1
|
Kao CY, Zhang YZ, Bregente CJB, Kuo PY, Chen PK, Chao JY, Duong TTT, Wang MC, Thuy TTD, Hidrosollo JH, Tsai PF, Li YC, Lin WH. A 24-year longitudinal study of Klebsiella pneumoniae isolated from patients with bacteraemia and urinary tract infections reveals the association between capsular serotypes, antibiotic resistance, and virulence gene distribution. Epidemiol Infect 2023; 151:e155. [PMID: 37675569 PMCID: PMC10548544 DOI: 10.1017/s0950268823001486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Li
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Tsai CC, Lin JC, Chen PC, Liu EYM, Tsai YK, Yu CP, Li JJ, Wang CH, Fung CP, Lin FM, Chang FY, Siu LK. A 20-Year Study of Capsular Polysaccharide Seroepidemiology, Susceptibility Profiles, and Virulence Determinants of Klebsiella pneumoniae from Bacteremia Patients in Taiwan. Microbiol Spectr 2023; 11:e0035923. [PMID: 37191538 PMCID: PMC10269490 DOI: 10.1128/spectrum.00359-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, we selected bacteremic Klebsiella pneumoniae isolates from the Taiwan Surveillance of Antimicrobial Resistance program. A total of 521 isolates were collected over a period of 2 decades, including 121 from 1998, 197 from 2008, and 203 from 2018. Seroepidemiology showed that the top five capsular polysaccharide types were serotypes K1, K2, K20, K54, and K62, constituting 48.5% of the total isolates, and the respective ratios at each time point have remained similar over the past 2 decades. The antibacterial susceptibility tests showed that K1, K2, K20, and K54 were susceptible to most antibiotics, while K62 was relatively resistant compared to other typeable and nontypeable strains. In addition, six virulence-associated genes, clbA, entB, iroN, rmpA, iutA, and iucA, were predominant in K1 and K2 isolates of K. pneumoniae. In conclusion, serotypes K1, K2, K20, K54, and K62 of K. pneumoniae are the most prevalent serotypes and carry more virulence determinants in bacteremia patients, which may indicate their invasiveness. If further serotype-specific vaccine development is performed, these five serotypes should be included. Since the antibiotic susceptibility profiles were stable over a long duration, empirical treatment may be predicted according to serotype if rapid diagnosis from direct clinical specimens is available, such as PCR or antigen serotyping for serotype K1 and K2. IMPORTANCE This is the first nationwide study to examine the seroepidemiology of Klebsiella pneumoniae using blood culture isolates collected over a period of 20 years. The study found that the prevalence of serotypes remained consistent over the 20-year period, with high-prevalence serotypes associated with invasive types. Nontypeable isolates had fewer virulence determinants than other serotypes. With the exception of serotype K62, the other high-prevalence serotypes were highly susceptible to antibiotics. If rapid diagnosis using direct clinical specimens, such as PCR or antigen serotyping, is available, empirical treatment can be predicted based on serotype, particularly for K1 and K2. The results of this seroepidemiology study could also help the development of future capsule polysaccharide vaccines.
Collapse
Affiliation(s)
- Chun-Chou Tsai
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Chen Chen
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Esther Yip-Mei Liu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kuo Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Peng Yu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Je Li
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Phone Fung
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Mei Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - L. Kristopher Siu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Zhao Q, Feng Y, Zong Z. Conjugation of a Hybrid Plasmid Encoding Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae of Sequence Type 592. Front Microbiol 2022; 13:852596. [PMID: 35558122 PMCID: PMC9085563 DOI: 10.3389/fmicb.2022.852596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Klebsiella pneumoniae simultaneously carrying genes encoding carbapenem resistance and hypervirulence causes fatal infections, representing a severe threat to human health. These carbapenem-resistant and hypervirulent K. pneumoniae (hvCRKP) strains are increasingly reported worldwide and have been found to belong to a variety of sequence types (STs). In this study, we report and characterized an hvCRKP strain of ST592, an uncommon ST, which caused a fatal infection in intensive care unit (ICU) in China and represents a novel type of hvCRKP. We demonstrated that this novel hvCRKP type emerged from the carbapenem-susceptible hypervirulent K. pneumoniae (hvKP) lineage of the K57 capsular type. K57 hvKP contains a pLVPK-like virulence plasmid and then acquired a conjugative blaKPC–2-carrying plasmid to form hvCRKP. The pLVPK-like virulence plasmid contains no complete conjugation module but was able to be transferred by fusion with the conjugative blaKPC–2-carrying plasmid during conjugation. This represents a new mechanism of simultaneous transfer genetic determinants of carbapenem resistance and virulence and highlights the undergoing expansion of hvCRKP, which requires rigorous monitoring and novel countermeasures to curb plasmid-mediated transmission.
Collapse
Affiliation(s)
- Qian Zhao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wang LT, Yen BL, Wang HH, Chao YY, Lee W, Huang LY, Chiu SK, Siu LK, Liu KJ, Sytwu HK, Yen ML. Placental mesenchymal stem cells boost M2 alveolar over M1 bone marrow macrophages via IL-1β in Klebsiella-mediated acute respiratory distress syndrome. Thorax 2022; 78:504-514. [PMID: 35450943 PMCID: PMC10176360 DOI: 10.1136/thoraxjnl-2021-217928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) is a lethal complication of severe bacterial pneumonia due to the inability to dampen overexuberant immune responses without compromising pathogen clearance. Both of these processes involve tissue-resident and bone marrow (BM)-recruited macrophage (MΦ) populations which can be polarised to have divergent functions. Surprisingly, despite the known immunomodulatory properties of mesenchymal stem cells (MSCs), simultaneous interactions with tissue-resident and recruited BMMΦ populations are largely unexplored. OBJECTIVES We assessed the therapeutic use of human placental MSCs (PMSCs) in severe bacterial pneumonia with elucidation of the roles of resident alveolar MΦs (AMΦs) and BMMΦs. METHODS We developed a lethal, murine pneumonia model using intratracheal infection of a clinically relevant Klebsiella pneumoniae (KP) strain with subsequent intravenous human PMSC treatment. Pulmonary AMΦ and recruited BMMΦ analyses, histological evaluation, bacterial clearance and mice survival were assessed. To elucidate the role of resident AMΦs in improving outcome, we performed AMΦ depletion in the KP-pneumonia model with intratracheal clodronate pretreatment. MEASUREMENTS AND MAIN RESULTS Human PMSC treatment decreased tissue injury and improved survival of severe KP-pneumonia mice by decreasing the presence and function of recruited M1 BMMΦ while preserving M2 AMΦs and enhancing their antibacterial functions. Interestingly, PMSC therapy failed to rescue AMΦ-depleted mice with KP pneumonia, and PMSC-secreted IL-1β was identified as critical in increasing AMΦ antibacterial activities to significantly improve pathogen clearance-especially bacteraemia-and survival. CONCLUSIONS Human PMSC treatment preferentially rescued resident M2 AMΦs over recruited M1 BMMΦs with overall M2 polarisation to improve KP-related ARDS survival.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan .,Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ying-Yin Chao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Li-Yueh Huang
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Kang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Infection, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - L Kristopher Siu
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Liu Y, Zhu H, Yin Y, Yan Z. Left eye enucleation caused by multi-systemic Klebsiella pneumoniae invasive syndrome. J Int Med Res 2022; 50:3000605211069284. [PMID: 34994239 PMCID: PMC8743943 DOI: 10.1177/03000605211069284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Klebsiella pneumoniae is generally considered the most common pathogenic bacterium causing community-acquired pneumonia. In recent years, cases of liver abscess caused by the bacterium and its spread have been reported in Asia and other parts of the world. This clinical symptom of liver abscess caused by hypervirulent K. pneumoniae and its migrating infection is also called invasive K. pneumoniae liver abscess syndrome (IKPLAS). This study explored the clinical characteristics, diagnosis, and treatment of an elderly patient with IKPLAS who experienced multi-organ failure caused by the infection. The treatment of the patient was difficult, and despite our efforts, the invasive infection led to eye enucleation. This paper is expected to improve our understanding and awareness of this disease in the clinic.
Collapse
Affiliation(s)
- Yanquan Liu
- Clinical Medicine Research Center, Department of Intensive Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Clinical Medicine Research Center, Department of Intensive Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yue Yin
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhimin Yan
- Clinical Medicine Research Center, Department of Intensive Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Infection with capsular genotype K1-ST23 hypervirulent Klebsiella pneumoniae isolates in Japan after a stay in East Asia: Two cases and a literature review. J Infect Chemother 2021; 27:1508-1512. [PMID: 34088602 DOI: 10.1016/j.jiac.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Disseminated community-acquired infections caused by the hypervirulent Klebsiella pneumoniae (hvKp) among relatively healthy individuals in East Asia have been reported in recent years. Isolate of the capsular genotype K1, belonging to sequence type (ST) 23, is the most common causative agent of this disease. We experienced two cases of K1-ST23 infection with a travel history in East Asia, and hvKp infection was diagnosed after entering or returning to Japan. Case 1 was a 45-year-old Myanmar seaman with a history of ischemic heart disease who developed a fever on board and was transported to Japan via Shanghai and Taiwan. He had multiple disseminated lesions due to K. pneumoniae; other symptoms included liver abscess, intraocular inflammation, intraventricular thrombosis, brain abscess, and bloodstream infection. Along with antimicrobial treatment, drainage of liver abscesses and surgery for intraocular inflammation and intraventricular thrombosis were required. The patient was discharged 93 days after admission, with little improvement in the visual acuity. Case 2: A 29-year-old Japanese man with no underlying disease developed a prostate abscess and bloodstream infection caused by K. pneumoniae after a trip to Korea. However, he improved only with antimicrobial treatment. K. pneumoniae in both cases were identified to have the rmpA gene, with capsular genotypes K1 and ST23. Further, both cases were considered to have been infected with hvKp during their stay in East Asia. In conclusion, it is important to suspect disseminated disease and perform a systemic search, taking into account that hvKp may be present in cases of Klebsiella infection acquired from East Asia.
Collapse
|
7
|
Tai CH, Hsu CN, Yang SC, Wu CK, Liang CM, Tai WC, Chuah SK, Lee CH. The impact of aspirin on Klebsiella pneumoniae liver abscess in diabetic patients. Sci Rep 2020; 10:21329. [PMID: 33288865 PMCID: PMC7721809 DOI: 10.1038/s41598-020-78442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, we aimed to investigate the impact of aspirin on the risk of pyogenic liver abscess caused by Klebsiella pneumoniae (KP-PLA) and invasive KP-PLA syndrome (IKPS) in diabetic patients. Diabetic patients who were propensity-score matched were retrospectively included from hospital-based database. Kaplan-Meier approach with a log-rank test was used to compare the cumulative incidences of KP-PLA including IKPS between aspirin users and non-users. Totally, 63,500 patients were analyzed after propensity-score matching (1:1). Compared with that of non-users, the incidence of KP-PLA was significantly reduced in aspirin users (0.31% vs. 0.50%, p < 0.01), but not for that of IKPS (0.02% vs. 0.03%, p = 0.29). Patients taking aspirin for ≥ 90 days had a significantly lower risk for KP-PLA (hazard ratio, 0.67; 95%CI, 0.50-0.90). Females, taking clopidogrel or metformin for ≥ 90 days, and taking H2-blockers or proton pump inhibitors (PPIs) for ≥ 5 days were also associated with a lower risk of KP-PLA. However, cholangitis and a glycated hemoglobin ≥ 8.5% were associated with an increased risk of KP-PLA.
Collapse
Affiliation(s)
- Chien-Hsiang Tai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Cheng Yang
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cheng-Kun Wu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chih-Ming Liang
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Wei-Chen Tai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Seng-Kee Chuah
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chen-Hsiang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,College of Medicine, Chang Gung University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Capsular polysaccharide and lipopolysaccharide O type analysis of Klebsiella pneumoniae isolates by genotype in China. Epidemiol Infect 2020; 148:e191. [PMID: 32782064 PMCID: PMC7488366 DOI: 10.1017/s0950268820001788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Klebsiella pneumoniae is a common pathogen associated with nosocomial infections and is characterised serologically by capsular polysaccharide (K) and lipopolysaccharide O antigens. We surveyed a total of 348 non-duplicate K. pneumoniae clinical isolates collected over a 1-year period in a tertiary care hospital, and determined their O and K serotypes by sequencing of the wbb Y and wzi gene loci, respectively. Isolates were also screened for antimicrobial resistance and hypervirulent phenotypes; 94 (27.0%) were identified as carbapenem-resistant (CRKP) and 110 (31.6%) as hypervirulent (hvKP). isolates fell into 58 K, and six O types, with 92.0% and 94.2% typeability, respectively. The predominant K types were K14K64 (16.38%), K1 (14.66%), K2 (8.05%) and K57 (5.46%), while O1 (46%), O2a (27.9%) and O3 (11.8%) were the most common. CRKP and hvKP strains had different serotype distributions with O2a:K14K64 (41.0%) being the most frequent among CRKP, and O1:K1 (26.4%) and O1:K2 (17.3%) among hvKP strains. Serotyping by gene sequencing proved to be a useful tool to inform the clinical epidemiology of K. pneumoniae infections and provides valuable data relevant to vaccine design.
Collapse
|
9
|
Hartantyo SHP, Chau ML, Koh TH, Yap M, Yi T, Cao DYH, GutiÉrrez RA, Ng LC. Foodborne Klebsiella pneumoniae: Virulence Potential, Antibiotic Resistance, and Risks to Food Safety. J Food Prot 2020; 83:1096-1103. [PMID: 31928427 DOI: 10.4315/jfp-19-520] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Gastrointestinal carriage of Klebsiella pneumoniae is a predisposing factor for liver abscess in several Asian countries. To determine whether hypervirulent K. pneumoniae in the gut may be transmitted through food, we screened a range of raw and ready-to-eat retail food by culture and recovered K. pneumoniae in 21% (147 of 698) of samples tested. Based on PCR, no K. pneumoniae isolates carried the rmpA gene linked to community-acquired pyogenic liver abscess, providing no evidence of a link between food and liver disease. However, phenotypic resistance to multiple antibiotic classes was seen through disk diffusion tests, and carriage of genetic elements (wcaG and capsule types K1, K2, and K54) associated with increased virulence (8%, 11 of 147) was observed by PCR. Multidrug-resistant isolates were from raw vegetables, chicken or pork liver, and a ready-to-eat poultry dish; one multidrug-resistant K. pneumoniae isolate from raw bean sprouts was resistant to a third-generation cephalosporin (ceftriaxone). Although K. pneumoniae may be present in food without causing harm, we found isolates belonging to the K1 capsular serotype coexisting with the wcaG gene, one also conferring multidrug resistance. K. pneumoniae that carry antibiotic resistance genes, regardless of pathogenicity, may increase the available genetic pool of resistance along the food chain. Hygienic food handling practices are necessary to lower risks of acquiring K. pneumoniae and other opportunistic pathogens. . HIGHLIGHTS
Collapse
Affiliation(s)
- Sri Harminda Pahm Hartantyo
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore.,National Centre for Food Science, Singapore Food Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore
| | - Man Ling Chau
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore.,National Centre for Food Science, Singapore Food Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Academia Diagnostics Tower, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Min Yap
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore
| | - Tseng Yi
- Food Science & Technology Programme, National University of Singapore, Block S14 level 5, 2 Science Drive 2 Lower Kent Ridge Road, Singapore 117542, Singapore
| | - Delphine Yan Hong Cao
- Department of Microbiology, Academia Diagnostics Tower, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Ramona Alikiiteaga GutiÉrrez
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore.,National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #04-03/04, Helios Block, Singapore 138667, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
10
|
Chen Y, Brook TC, Soe CZ, O'Neill I, Alcon-Giner C, Leelastwattanagul O, Phillips S, Caim S, Clarke P, Hall LJ, Hoyles L. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance- and virulence-associated factors. Microb Genom 2020; 6:e000377. [PMID: 32436839 PMCID: PMC7371107 DOI: 10.1099/mgen.0.000377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
Klebsiella spp. are frequently enriched in the gut microbiota of preterm neonates, and overgrowth is associated with necrotizing enterocolitis (NEC), nosocomial infections and late-onset sepsis. Little is known about the genomic and phenotypic characteristics of preterm-associated Klebsiella, as previous studies have focused on the recovery of antimicrobial-resistant isolates or culture-independent molecular analyses. The aim of this study was to better characterize preterm-associated Klebsiella populations using phenotypic and genotypic approaches. Faecal samples from a UK cohort of healthy and sick preterm neonates (n=109) were screened on MacConkey agar to isolate lactose-positive Enterobacteriaceae. Whole-genome sequences were generated for Klebsiella spp., and virulence and antimicrobial resistance genes identified. Antibiotic susceptibility profiling and in vitro macrophage and iron assays were undertaken for the Klebsiella strains. Metapangenome analyses with a manually curated genome dataset were undertaken to examine the diversity of Klebsiella oxytoca and related bacteria in a publicly available shotgun metagenome dataset. Approximately one-tenth of faecal samples harboured Klebsiella spp. (Klebsiella pneumoniae, 7.3 %; Klebsiella quasipneumoniae, 0.9 %; Klebsiella grimontii, 2.8 %; Klebsiella michiganensis, 1.8 %). Isolates recovered from NEC- and sepsis-affected infants and those showing no signs of clinical infection (i.e. 'healthy') encoded multiple β-lactamases. No difference was observed between isolates recovered from healthy and sick infants with respect to in vitro siderophore production (all encoded enterobactin in their genomes). All K. pneumoniae, K. quasipneumoniae, K. grimontii and K. michiganensis faecal isolates tested were able to reside and persist in macrophages, indicating their immune evasion abilities. Metapangenome analyses of published metagenomic data confirmed our findings regarding the presence of K. michiganensis in the preterm gut. There is little difference in the phenotypic and genomic characteristics of Klebsiella isolates recovered from healthy and sick infants. Identification of β-lactamases in all isolates may prove problematic when defining treatment regimens for NEC or sepsis, and suggests that healthy preterm infants contribute to the resistome. Refined analyses with curated sequence databases are required when studying closely related species present in metagenomic data.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Thomas C. Brook
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Cho Zin Soe
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ian O'Neill
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cristina Alcon-Giner
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Onnicha Leelastwattanagul
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian Campus), Bangkok, Thailand
| | - Sarah Phillips
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Shabhonam Caim
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul Clarke
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J. Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lesley Hoyles
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
11
|
Zhong XS, Li YZ, Ge J, Xiao G, Mo Y, Wen YQ, Liu JP, Xiong YQ, Qiu M, Huo ST, Cheng MJ, Chen Q. Comparisons of microbiological characteristics and antibiotic resistance of Klebsiella pneumoniae isolates from urban rodents, shrews, and healthy people. BMC Microbiol 2020; 20:12. [PMID: 31937244 PMCID: PMC6961239 DOI: 10.1186/s12866-020-1702-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The comparisons of molecular characterization and antibiotic resistance of Klebsiella pneumoniae (KP) isolates from humans and other animal hosts are not well studied. Our goal was to compare the molecular epidemiology of KP strains that were isolated from urban rodents, shrews, and healthy people. Results K. pneumoniae (KP) isolates were isolated from fecal samples of rodents, shrews and healthy adults in 2015 in southern China. In total, 465 fecal samples were collected, of which 85 from rodents, 105 from shrews, and 275 from healthy adults. Antimicrobial susceptibility and production of extended-spectrum β-lactamases (ESBL) of the isolates were tested. PCR-based methods were used to detect specific genes, including ESBL genes (blaTEM, blaSHV, and blaCTX-M) in ESBL-producing isolates, capsular serotypes (K1, K2, K5, K20, K54, and K57) in hypervirulent KPs (hvKPs), and virulence genes (magA, wcaG, rmpA, uge, kfu, and aerobactin) in hvKP isolates. Multilocus sequence type (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to exclude the homology of these isolates. The carriage rate of KP in urban rodents and shrews (78.42%) was higher than that in healthy adults (66.18%) (χ2 = 8.206, P = 0.004). The prevalence rates of ESBL-producing isolates among rodents, shrews, and humans were 7.94, 12.79, and 17.03%, respectively. The positive rates of CTX-M, TEM and SHV types in ESBL-producing isolates were 29.79, 27.66, and 17.02%, respectively. Serotype K1, K5, K20, and K57 were detected in both small mammals and humans. PFGE typing revealed thirty-six clusters. PFGE cluster A was clustered by samples of shrews and healthy adult, with a similarity of 88.4%. MLST typing revealed thirty-eight types. ST23 and ST35 were detected in samples of shrews and healthy adults. ST37 was detected in samples of 2 rodents and a healthy adult. Conclusions Overlapping serotypes of hvKP were observed in both the animals and humans. The same PFGE or MLST types were also found in isolates derived humans, rodents and shrews. Therefore, urban rodents and shrews might play a certain role in the transmission of drug-resistant and hypervirulent KP.
Collapse
Affiliation(s)
- Xue-Shan Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ge
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Gang Xiao
- Department of clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Qi Wen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jing-Ping Liu
- Department of clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yi-Quan Xiong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Ting Huo
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ming-Ji Cheng
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Community-acquired liver abscess caused by capsular genotype K2-ST375 hypervirulent Klebsiella pneumoniae isolates. IDCases 2019; 17:e00577. [PMID: 31293894 PMCID: PMC6595073 DOI: 10.1016/j.idcr.2019.e00577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae has been associated with community-acquired liver abscesses in relatively healthy subjects since the 1990s, occasionally accompanied by disseminated disease. While isolates of capsular genotype K1 belonging to sequence type (ST) 23 have been the most prominent causative pathogen of this syndrome, other virulent clones have been implicated sporadically in recent years. A 68-year-old woman with diabetes in Okinawa, Japan suffered from a K. pneumoniae liver abscess, which recurred after a prolonged antibacterial treatment. The clinical course was further complicated with multiple sites of dissemination. Another 45-year-old woman living in Okinawa without underlying conditions was also diagnosed with a community-acquired K. pneumoniae liver abscess, which was cured with antibacterial treatment alone. Both of the causative isolates carried rmpA and aerobactin genes, and were confirmed as capsular genotype K2 and ST375. K. pneumoniae K2-ST375 is a hypervirulent clone of epidemiological significance causing severe community-acquired infections in relatively healthy subjects. More information about clinical characteristics and molecular epidemiology of hypervirulent K. pneumoniae clones other than K1-ST23 should be accumulated.
Collapse
|
13
|
Wang YM, Dong WL, Odah KA, Kong LC, Ma HX. Transcriptome Analysis Reveals AI-2 Relevant Genes of Multi-Drug Resistant Klebsiella pneumoniae in Response to Eugenol at Sub-MIC. Front Microbiol 2019; 10:1159. [PMID: 31191486 PMCID: PMC6547871 DOI: 10.3389/fmicb.2019.01159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Eugenol, the major active essential oil component of clove, was reported to possess QS (quorum sensing) inhibitory activity. A previous study found that eugenol could bind to quorum sensing receptors of Pseudomonas aeruginosa and down-regulate the expression of Streptococcus mutans virulence genes at sub-MIC (minimum inhibitory concentration) without affecting the bacterial growth. However, the alterations of QS signal molecules at transcription levels was not well understood. To better understand interactions of Klebsiella pneumoniae in response to eugenol and explore molecular regulations, transcriptome sequencing was performed. A total of 5779 differentially expressed genes (DEGs) enriched in a variety of biological processes and pathways were identified. The transcriptional data was validated by qPCR and the results showed that the expression profiles of 4 major genes involved in autoinducers-2 (AI-2) synthesis, including luxS, pfs, and lsrK were consistent with transcriptome analysis except for lsrR, a transcriptional repressor gene of lsr operon, which may repress the expression of following genes responsible for AI-2 signal transmission in vivo. In vitro AI-2 synthesis assay also revealed that eugenol could inhibit AI-2 generation. The results of our study offer insights into the mechanisms of QS inhibitory activity and K. pneumoniae AI-2 alterations after eugenol treatment.
Collapse
Affiliation(s)
- Yi-Ming Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wen-Long Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kokou Ayefounin Odah
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
Wang CH, Lu PL, Liu EYM, Chen YY, Lin FM, Lin YT, Chang FY, Lin JC. Rapid identification of capsular serotype K1/K2 Klebsiella pneumoniae in pus samples from liver abscess patients and positive blood culture samples from bacteremia cases via an immunochromatographic strip assay. Gut Pathog 2019; 11:11. [PMID: 30828389 PMCID: PMC6385414 DOI: 10.1186/s13099-019-0285-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/02/2019] [Indexed: 01/02/2023] Open
Abstract
Background In Asia, serotype K1/K2 Klebsiella pneumoniae are the major capsular serotypes that cause liver abscess or bacteremia in patients. The purpose of this study was to compare novel immunochromatographic strips (ICSs), which can rapidly detect K. pneumoniae serotypes K1/K2 in clinical samples, to conventional capsular serotyping methods. Methods Pus drainage samples from 16 patients with a liver abscess caused by K. pneumoniae, blood samples from 112 positive flagged blood culture bottle and a subsequent single colony in the medium were tested with the ICS. The results were then compared to findings of capsular swelling tests. Samples subjected to the polymerase chain reaction (PCR) analysis were used as reference. Results The identification of K. pneumoniae via the traditional bacterial culture from pus samples took 3.4 days on average (ranging from 2.2 to 5.5 days). Further capsular serotyping of K. pneumoniae by the capsular swelling test of pure isolates lasted 5–10 min, and the PCR method took ~ 4 h. As for ICSs, the time for direct identification of the K. pneumoniae capsular serotype K1/K2 in pus was < 4 min (ranging from 2 to 4 min). The results of ICSs were consistent with capsular swelling tests and PCR methods. Testing of 112 blood culture samples and subsequent single colonies in the medium with ICSs yielded consistent results for most samples. Conclusions This study indicates that ICSs can rapidly detect K. pneumoniae serotypes K1 and K2 in pus or positive flagged blood culture broth samples within 5 min. Their accuracy is comparable to that of the conventional capsular serotyping methods such as a serum agglutination assay or PCR.
Collapse
Affiliation(s)
- Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Po-Liang Lu
- 2Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan, ROC.,3College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Esther Yip-Mei Liu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yih-Yuan Chen
- 4Department of Biochemical Science and Technology, National Chiayi University, Chiai-Yi, Taiwan, ROC
| | - Fu-Mei Lin
- 5Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Yi-Tsung Lin
- 6Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,7School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
15
|
Lee H, Baek JY, Kim SY, Jo H, Kang K, Ko JH, Cho SY, Chung DR, Peck KR, Song JH, Ko KS. Comparison of virulence between matt and mucoid colonies of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 isolated from a single patient. J Microbiol 2018; 56:665-672. [PMID: 30141159 DOI: 10.1007/s12275-018-8130-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022]
Abstract
Nine Klebsiella pneumoniae isolates coproducing NDM-1 and OXA-232 carbapenemases were successively isolated from a single patient. Although they were isolated simultaneously and were isogenic, they presented different colony phenotypes (matt and mucoid). All nine isolates were resistant to most antibiotics except colistin and fosfomycin. In addition, matt-type isolates were resistant to tigecycline. No differences were detected in the cps cluster sequences, except for the insertion of IS5 in the wzb gene of two matt-type isolates. In vitro virulence assays based on production of capsular polysaccharide, biofilm formation, and resistance to human serum indicated that the mucoid-type isolates were significantly more virulent than the matt-type. In addition, mucoid-type isolates showed higher survival rates than the matt-type ones in infection experiments in the fruit fly, suggesting a higher virulence of K. pneumoniae isolates with a mucoid phenotype. To our knowledge, this is the first report of K. pneumoniae colonies with different phenotypes being isolated from the same sample. In addition, we show that virulence varies with colony phenotype. Dissemination of K. pneumoniae isolates expressing both antibiotic resistance and high virulence would constitute a great threat.
Collapse
Affiliation(s)
- Haejeong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin Yang Baek
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea
| | - So Yeon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - HyunJi Jo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Doo Ryeon Chung
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae-Hoon Song
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea.
| |
Collapse
|
16
|
Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: More Than a New Bacterial Toxin. Toxins (Basel) 2018; 10:toxins10040151. [PMID: 29642622 PMCID: PMC5923317 DOI: 10.3390/toxins10040151] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
Cyclomodulins are bacterial toxins that interfere with the eukaryotic cell cycle. A new cyclomodulin called colibactin, which is synthetized by the pks genomic island, was discovered in 2006. Despite many efforts, colibactin has not yet been purified, and its structure remains elusive. Interestingly, the pks island is found in members of the family Enterobacteriaceae (mainly Escherichia coli and Klebsiella pneumoniae) isolated from different origins, including from intestinal microbiota, septicaemia, newborn meningitis, and urinary tract infections. Colibactin-producing bacteria induce chromosomal instability and DNA damage in eukaryotic cells, which leads to senescence of epithelial cells and apoptosis of immune cells. The pks island is mainly observed in B2 phylogroup E. coli strains, which include extra-intestinal pathogenic E. coli strains, and pksE. coli are over-represented in biopsies isolated from colorectal cancer. In addition, pksE. coli bacteria increase the number of tumours in diverse colorectal cancer mouse models. Thus, colibactin could have a major impact on human health. In the present review, we will focus on the biological effects of colibactin, the distribution of the pks island, and summarize what is currently known about its synthesis and its structure.
Collapse
Affiliation(s)
- Tiphanie Faïs
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| | - Richard Bonnet
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Guillaume Dalmasso
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
17
|
Harada S, Ishii Y, Saga T, Aoki K, Tateda K. Molecular epidemiology of Klebsiella pneumoniae K1 and K2 isolates in Japan. Diagn Microbiol Infect Dis 2018; 91:354-359. [PMID: 29678299 DOI: 10.1016/j.diagmicrobio.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/03/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Although severe infections caused by hypervirulent Klebsiella pneumoniae isolates, such as K1 isolates belonging to sequence type (ST) 23, have been a significant problem in Asian countries, epidemiology of these isolates in Japan remains unclear. We performed a nationwide molecular epidemiological study of K. pneumoniae K1 and K2 isolates in Japan. Of the 259K. pneumoniae isolates collected, 14 and 16 isolates were identified as capsular genotypes K1 and K2, respectively. All K1 isolates were ST23 or its closely related clones and showed high genetic similarity by pulsed-field gel electrophoresis (PFGE) and the DiversiLab system (DL). K2 isolates, belonging to ST14, ST25, ST65, ST86, and ST110, were more genetically diverse than K1 isolates. Isolates belonging to a specific ST showed identical virulence gene profiles with a few exceptions. PFGE and DL results using K1 and K2 isolates were generally in agreement.
Collapse
Affiliation(s)
- Sohei Harada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan; Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku 135-8550, Tokyo, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| | - Tomoo Saga
- Central Laboratory Division, Akita University Hospital 1-1-1 Hondo, Akita 010-8543, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| |
Collapse
|
18
|
Klebsiella Phage ΦK64-1 Encodes Multiple Depolymerases for Multiple Host Capsular Types. J Virol 2017; 91:JVI.02457-16. [PMID: 28077636 DOI: 10.1128/jvi.02457-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022] Open
Abstract
The genome of the multihost bacteriophage ΦK64-1, capable of infecting Klebsiella capsular types K1, K11, K21, K25, K30, K35, K64, and K69, as well as new capsular types KN4 and KN5, was analyzed and revealed that 11 genes (S1-1, S1-2, S1-3, S2-1, S2-2, S2-3, S2-4, S2-5, S2-6, S2-7, and S2-8) encode proteins with amino acid sequence similarity to tail fibers/spikes or lyases. S2-5 previously was shown to encode a K64 capsule depolymerase (K64dep). Specific capsule-degrading activities of an additional eight putative capsule depolymerases (S2-4 against K1, S1-1 against K11, S1-3 against K21, S2-2 against K25, S2-6 against K30/K69, S2-3 against K35, S1-2 against KN4, and S2-1 against KN5) was demonstrated by expression and purification of the recombinant proteins. Consistent with the capsular type-specific depolymerization activity of these gene products, phage mutants of S1-2, S2-2, S2-3, or S2-6 lost infectivity for KN4, K25, K35, or K30/K69, respectively, indicating that capsule depolymerase is crucial for infecting specific hosts. In conclusion, we identified nine functional capsule depolymerase-encoding genes in a bacteriophage and correlated activities of the gene products to all ten hosts of this phage, providing an example of type-specific host infection mechanisms in a multihost bacteriophage.IMPORTANCE We currently identified eight novel capsule depolymerases in a multihost Klebsiella bacteriophage and correlated the activities of the gene products to all hosts of this phage, providing an example of carriage of multiple depolymerases in a phage with a wide capsular type host spectrum. Moreover, we also established a recombineering system for modification of Klebsiella bacteriophage genomes and demonstrated the importance of capsule depolymerase for infecting specific hosts. Based on the powerful tool for modification of phage genome, further studies can be conducted to improve the understanding of mechanistic details of Klebsiella phage infection. Furthermore, the newly identified capsule depolymerases will be of great value for applications in capsular typing.
Collapse
|
19
|
Shahraki-Zahedani S, Rigi S, Bokaeian M, Ansari-Moghaddam A, Moghadampour M. First report of TEM-104-, SHV-99-, SHV-108-, and SHV-110-producing Klebsiella pneumoniae from Iran. Rev Soc Bras Med Trop 2017; 49:441-5. [PMID: 27598630 DOI: 10.1590/0037-8682-0114-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Extended-spectrum beta-lactamases (ESBLs) are bacterial enzymes capable of hydrolyzing beta-lactams. The aim of this study was to describe the prevalence of TEM- and SHV-type ESBL-producing Klebsiella pneumoniae strains in Zahedan, Southeast Iran. METHODS A total of 170 non-repetitive K. pneumoniae strains were collected from patients referred to three teaching hospitals of Zahedan. Antibiotic susceptibility testing was determined for 17 antibiotics using the Kirby-Bauer disc diffusion method. The frequency of ESBL-producing strains was calculated, and minimum inhibitory concentrations of ESBL-producing strains were determined for cefotaxime, ceftazidime, ceftriaxone, and cefpodoxime. The presence of bla TEM and bla SHV genes was tested in all ESBL-producing strains using polymerase chain reaction and DNA sequencing. RESULTS Among the 170 K. pneumoniae clinical isolates, 55 (32.4%) were ESBL producers; 92.7% (n=51) and 72.7% (n=40) of the isolates carried the bla SHV and bla TEM genes, respectively, and 67.3% (n=37) carried both genes. The sequencing results showed that all bla TEM types were bla TEM-1, except for two isolates that were bla TEM-104. The bla SHV types were bla SHV-1, bla SHV-11, bla SHV-12, bla SHV-99, bla SHV-108, and bla SHV-110. CONCLUSIONS The percentage of bla TEM and bla SHV among ESBL-producing K. pneumoniae isolates from Zahedan is relatively high, indicating the need for further surveillance and consideration in antibiotic use. To the best of our knowledge, this is the first report of TEM-104-, SHV-99-, SHV-108-, and SHV-110-type ESBLs among clinical isolates of K. pneumoniae from Iran, and TEM-1, SHV-1, SHV-11, and SHV-12 appear to be the dominant ESBLs in this region.
Collapse
Affiliation(s)
- Shahram Shahraki-Zahedani
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahnaz Rigi
- Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Bokaeian
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mehdi Moghadampour
- Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
20
|
Development of a Colloidal Gold-Based Immunochromatographic Strip for Rapid Detection of Klebsiella pneumoniae Serotypes K1 and K2. J Clin Microbiol 2016; 54:3018-3021. [PMID: 27707941 DOI: 10.1128/jcm.01608-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022] Open
Abstract
In this study, a novel colloidal gold-based immunochromatographic strip (ICS) containing anti-Klebsiella pneumoniae capsular polysaccharide polyclonal antibodies was developed to specifically detect K. pneumoniae serotypes K1 and K2. Capsular polysaccharide K1 and K2 antigens were first used to produce polyclonal anti-K1 and anti-K2 antibodies. Reference strains with different serotypes, nontypeable K. pneumoniae strains, and other bacterial species were then used to assess the sensitivity and specificity of these test strips. The detection limit was found to be 105 CFU, and the ICSs were stable for 6 months when stored at room temperature. No false-positive or false-negative results were observed, and equivalent results were obtained compared to those of more conventional test methods, such as PCR or serum agglutination. In conclusion, the ICS developed here requires no technical expertise and allows for the specific, rapid, and simultaneous detection of K. pneumoniae serotypes K1 and K2.
Collapse
|
21
|
Intravitreal colistin for multidrug resistant acute endophthalmitis following Descemet-stripping endothelial keratoplasty due to Klebsiella pneumoniae. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jcro.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, Thomson NR. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom 2016; 2:e000073. [PMID: 28348868 PMCID: PMC5320592 DOI: 10.1099/mgen.0.000073] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes.
Collapse
Affiliation(s)
| | - Eva Heinz
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Kelly L. Wyres
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Kathryn E. Holt
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
23
|
Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015; 5:15573. [PMID: 26493302 PMCID: PMC4616057 DOI: 10.1038/srep15573] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 09/28/2015] [Indexed: 11/15/2022] Open
Abstract
A total of 79 capsular types have been reported in Klebsiella spp., whereas capsular polysaccharide synthesis (cps) regions were available in only 22 types. Due to the limitations of serotyping, complete repertoire of cps will be helpful for capsular genotyping. We therefore resolved the rest 57 cps and conducted comparative analysis. Clustering results of 1,515 predicted proteins from cps loci categorized proteins which share similarity into homology groups (HGs) revealing that 77 Wzy polymerases were classified into 56 HGs, which indicate the high specificity of wzy between different types. Accordingly, wzy-based capsular genotyping could differentiate capsule types except for those lacking wzy (K29 and K50), those sharing identical wzy (K22 vs. K37); and should be carefully applied in those exhibited high similarity (K12 vs. K41, K2 vs. K13, K74 vs. K80, K79 vs. KN1 and K30 vs. K69). Comparison of CPS structures in several capsular types that shared similarity in their gene contents implies possible functions of glycosyltransferases. Therefore, our results provide complete set of cps in various types of Klebsiella spp., which enable the understandings of relationship between genes and CPS structures and are useful for identification of documented or new capsular types.
Collapse
|
24
|
Ani AARMA, Elzouki AN, Rahil A, Al-Ani F. Endogenous endophthalmitis and liver abscess syndrome secondary due to Klebsiella pneumoniae: report of three cases from Qatar. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Monié M, Drieux L, Nzili B, Dicko M, Goursot C, Greffard S, Decré D, Mézière A. Klebsiella pneumoniae necrotizing fasciitis of the leg in an elderly French woman. Clin Interv Aging 2014; 9:1171-4. [PMID: 25071368 PMCID: PMC4111645 DOI: 10.2147/cia.s60812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Klebsiella pneumoniae necrotizing fasciitis is a rare infection in regions outside of Asia. Here, we present a case of necrotizing fasciitis of the leg caused by K. pneumoniae in a 92-year-old French woman hospitalized in a geriatric rehabilitation unit. The patient initially presented with dermohypodermitis of the leg that developed from a dirty wound following a fall. A few hours later, this painful injury extended to the entire lower limb, with purplish discoloration of the skin, bullae, and necrosis. Septic shock rapidly appeared and the patient died 9 hours after the onset of symptoms. The patient was Caucasian, with no history of travel to Asia or any underlying disease. Computed tomography revealed no infectious metastatic loci. Blood cultures showed growth of capsular serotype K2 K. pneumoniae strains with virulence factors RmpA, yersiniabactin and aerobactin. This rare and fatal case of necrotizing fasciitis caused by a virulent strain of K. pneumoniae occurred in a hospitalized elderly woman without risk factors. Clinicians and geriatricians in particular should be aware of this important albeit unusual differential diagnosis.
Collapse
Affiliation(s)
- Marguerite Monié
- Assistance Publique-Hôpitaux de Paris (AP-HP), GHU Pitié Salpêtrière-Charles Foix, site Charles Foix, Service de Soins de Suite et Réadaptation orthogériatrique et polyvalent, Fondation d’Heur et Chemin Delatour, Ivry s/Seine, Paris, France
| | - Laurence Drieux
- Assistance Publique-Hôpitaux de Paris, Hôpital Charles-Foix, Bactériologie-Hygiène, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology), Paris, France
- INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology), Paris, France
| | - Bernadette Nzili
- Assistance Publique-Hôpitaux de Paris (AP-HP), GHU Pitié Salpêtrière-Charles Foix, site Charles Foix, Service de Soins de Suite et Réadaptation orthogériatrique et polyvalent, Fondation d’Heur et Chemin Delatour, Ivry s/Seine, Paris, France
| | - Michèle Dicko
- AP-HP, GHU Henri Mondor, Département de Médecine Interne et Gériatrie, Créteil, France
| | - Catherine Goursot
- Assistance Publique-Hôpitaux de Paris (AP-HP), GHU Pitié Salpêtrière-Charles Foix, site Charles Foix, Service de Soins de Suite et Réadaptation orthogériatrique et polyvalent, Fondation d’Heur et Chemin Delatour, Ivry s/Seine, Paris, France
| | - Sandrine Greffard
- AP-HP, GHU Pitié Salpêtrière-Charles Foix, site Pitié Salpêtrière, Service de Médecine Gériatrique, Paris, France
| | - Dominique Decré
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology), Paris, France
- INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology), Paris, France
- AP-HP, Hôpital Saint-Antoine, Bactériologie-Hygiène, Paris, France
| | - Anthony Mézière
- Assistance Publique-Hôpitaux de Paris (AP-HP), GHU Pitié Salpêtrière-Charles Foix, site Charles Foix, Service de Soins de Suite et Réadaptation orthogériatrique et polyvalent, Fondation d’Heur et Chemin Delatour, Ivry s/Seine, Paris, France
| |
Collapse
|
26
|
Lin JC, Koh TH, Lee N, Fung CP, Chang FY, Tsai YK, Ip M, Siu LK. Genotypes and virulence in serotype K2 Klebsiella pneumoniae from liver abscess and non-infectious carriers in Hong Kong, Singapore and Taiwan. Gut Pathog 2014; 6:21. [PMID: 24987462 PMCID: PMC4076766 DOI: 10.1186/1757-4749-6-21] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
In Klebsiella pneumoniae liver abscess (KP-LA), K. pneumoniae K2 is the most frequently isolated serotype after K1, but this serotype has been much less studied. In the present study, the molecular types sequences type (MLST) of serotype K2 isolates from three different regions in Asia were identified and the virulence of these isolates was investigated. Eight different MLSTs were found among 26 isolates (ST 65, 66, 86, 373, 374, 375, 380, and 434). There were two major MLST groups, ST-65-like (42%) and ST86-like (46%). No isolates contained allS while all isolates contained rmpA. The prevalence of aerobactin gene and kfu were 25/26 (96%) and 3/26 (11.5%) respectively. Although liver abscess isolates were generally more resistant (11/15 isolates) to serum killing, there was no specific distribution of serum killing resistant or susceptible ST types between stool carriage and liver abscess isolates. Neutrophil phagocytosis showed that the liver abscess and carriage isolates varied in their susceptibility to phagocytosis. Strains with resistance to both neutrophil phagocytosis and serum killing were generally hypervirulent with lethality at LD50 < 103 colony forming units by intraperitoneal injection. In conclusion, Anti-phagocytosis and resistance to serum killing are two parameters that most predict hyperviurlence in serotype K2 isolates. Unlike serotype K1 KP-LA that mainly belong to ST-23, ST-65-like and −86-like are the two major MLST types among serotype K2 isolates from Singapore, Hong Kong and Taiwan.
Collapse
Affiliation(s)
- Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tse Hsien Koh
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Nelson Lee
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Chang-Phone Fung
- Department of Medicine, Section of Infectious Diseases, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kuo Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - L Kristopher Siu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan ; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Lai YC, Lin AC, Chiang MK, Dai YH, Hsu CC, Lu MC, Liau CY, Chen YT. Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One 2014; 9:e96292. [PMID: 24852749 PMCID: PMC4031060 DOI: 10.1371/journal.pone.0096292] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/07/2014] [Indexed: 01/19/2023] Open
Abstract
Background Colibactin is a nonribosomal peptide-polyketide synthesized by multi-enzyme complexes encoded by the pks gene cluster. Colibactin-producing Escherichia coli have been demonstrated to induce host DNA damage and promote colorectal cancer (CRC) development. In Taiwan, the occurrence of pyogenic liver abscess (PLA) has been suggested to correlate with an increasing risk of CRC, and Klebsiella pneumoniae is the predominant PLA pathogen in Taiwan Methodology/Principal Findings At the asn tRNA loci of the newly sequenced K. pneumoniae 1084 genome, we identified a 208-kb genomic island, KPHPI208, of which a module identical to the E. coli pks colibactin gene cluster was recognized. KPHPI208 consists of eight modules, including the colibactin module and the modules predicted to be involved in integration, conjugation, yersiniabactin production, microcin production, and unknown functions. Transient infection of BALB/c normal liver cells with K. pneumoniae 1084 increased the phosphorylation of histone H2AX, indicating the induction of host DNA damage. Colibactin was required for the genotoxicity of K. pneumoniae 1084, as it was diminished by deletion of clbA gene and restored to the wild type level by trans-complementation with a clbA coding plasmid. Besides, BALB/c mice infected with K. pneumoniae 1084 exhibited enhanced DNA damage in the liver parenchymal cells when compared to the isogenic clbA deletion mutant. By PCR detection, the prevalence of pks-positive K. pneumoniae in Taiwan is 25.6%, which is higher than that reported in Europe (3.5%), and is significantly correlated with K1 type, which predominantly accounted for PLA in Taiwan. Conclusions Our knowledge regarding how bacteria contribute to carcinogenesis has just begun. The identification of genotoxic K. pneumoniae and its genetic components will facilitate future studies to elucidate the molecular basis underlying the link between K. pneumoniae, PLA, and CRC.
Collapse
Affiliation(s)
- Yi-Chyi Lai
- Department of Microbiology and Immunology, Chung-Shan Medical University, Taichung City, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung City, Taiwan
- Institute of Microbiology and Immunology, Chung-Shan Medical University, Taichung City, Taiwan
| | - Ann-Chi Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Ming-Ko Chiang
- Department of Life Science, National Chung Cheng University, Chia-Yi County, Taiwan
| | - Yu-Han Dai
- Institute of Microbiology and Immunology, Chung-Shan Medical University, Taichung City, Taiwan
| | - Chih-Chieh Hsu
- Institute of Microbiology and Immunology, Chung-Shan Medical University, Taichung City, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, Chung-Shan Medical University, Taichung City, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung City, Taiwan
- Institute of Microbiology and Immunology, Chung-Shan Medical University, Taichung City, Taiwan
| | - Chun-Yi Liau
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City, Taiwan
| | - Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Pan YJ, Lin TL, Chen YH, Hsu CR, Hsieh PF, Wu MC, Wang JT. Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS One 2013; 8:e80670. [PMID: 24349011 PMCID: PMC3857182 DOI: 10.1371/journal.pone.0080670] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 10/05/2013] [Indexed: 01/03/2023] Open
Abstract
Capsule is an important virulence factor in bacteria. A total of 78 capsular types have been identified in Klebsiella pneumoniae. However, there are limitations in current typing methods. We report here the development of a new genotyping method based on amplification of the variable regions of the wzc gene. Fragments corresponding to the variable region of wzc were amplified and sequenced from 76 documented capsular types of reference or clinical strains. The remaining two capsular types (reference strains K15 and K50) lacked amplifiable wzc genes and were proven to be acapsular. Strains with the same capsular type exhibited ≧94% DNA sequence identity across the variable region (CD1-VR2-CD2) of wzc. Strains with distinct K types exhibited <80% DNA sequence identity across this region, with the exception of three pairs of strains: K22/K37, K9/K45, and K52/K79. Strains K22 and K37 shared identical capsular polysaccharide synthesis (cps) genes except for one gene with a difference at a single base which resulted in frameshift mutation. The wzc sequences of K9 and K45 exhibited high DNA sequence similarity but possessed different genes in their cps clusters. K52 and K79 exhibited 89% wzc DNA sequence identity but were readily distinguished from each other at the DNA level; in contrast, strains with the same capsular type as K52 exhibited 100% wzc sequence identity. A total of 29 strains from patients with bacteremia were typed by the wzc system. wzc DNA sequences confirmed the documented capsular type for twenty-eight of these clinical isolates; the remaining strain likely represents a new capsular type. Thus, the wzc genotyping system is a simple and useful method for capsular typing of K. pneumoniae.
Collapse
Affiliation(s)
- Yi-Jiun Pan
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Hua Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ru Hsu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Chuan Wu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Inhibition of Klebsiella pneumoniae Growth and Capsular Polysaccharide Biosynthesis by Fructus mume. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:621701. [PMID: 24062785 PMCID: PMC3770061 DOI: 10.1155/2013/621701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/17/2013] [Indexed: 12/26/2022]
Abstract
Klebsiella pneumoniae is the predominant pathogen isolated from liver abscess of diabetic patients in Asian countries. With the spread of multiple-drug-resistant K. pneumoniae, there is an increasing need for the development of alternative bactericides and approaches to block the production of bacterial virulence factors. Capsular polysaccharide (CPS), especially from the K1 and K2 serotypes, is considered the major determinant for K. pneumoniae virulence. We found that extracts of the traditional Chinese medicine Fructus mume inhibited the growth of K. pneumoniae strains of both serotypes. Furthermore, Fructus mume decreased the mucoviscosity, and the CPS produced in a dose-dependent manner, thus reducing bacterial resistance to serum killing. Quantitative reverse transcription polymerase chain reaction analyses showed that Fructus mume downregulated the mRNA levels of cps biosynthesis genes in both serotypes, possibly by increasing the intracellular iron concentration in K. pneumoniae. Moreover, citric acid, a major organic acid in Fructus mume extracts, was found to have an inhibitory effect on growth and CPS biosynthesis in K. pneumoniae. Taken together, our results indicate that Fructus mume not only possesses antibacterial activity against highly virulent K. pneumoniae strains but also inhibits bacterial CPS biosynthesis, thereby facilitating pathogen clearance by the host immune system.
Collapse
|
30
|
Hsu CR, Lin TL, Pan YJ, Hsieh PF, Wang JT. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One 2013; 8:e70092. [PMID: 23936379 PMCID: PMC3732264 DOI: 10.1371/journal.pone.0070092] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the major pathogens causing hospital-acquired multidrug-resistant infections. The capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. With 78 capsular types discovered thus far, an association between capsular type and the pathogenicity of K. pneumoniae has been observed. METHODOLOGY/PRINCIPAL FINDINGS To investigate an initially non-typeable K. pneumoniae UTI isolate NTUH-K1790N, the cps gene region was sequenced. By NTUH-K1790N cps-PCR genotyping, serotyping and determination using a newly isolated capsular type-specific bacteriophage, we found that NTUH-K1790N and three other isolates Ca0507, Ca0421 and C1975 possessed a new capsular type, which we named KN2. Analysis of a KN2 CPS(-) mutant confirmed the role of capsule as the target recognized by the antiserum and the phage. A newly described lytic phage specific for KN2 K. pneumoniae, named 0507-KN2-1, was isolated and characterized using transmission electron microscopy. Whole-genome sequencing of 0507-KN2-1 revealed a 159 991 bp double-stranded DNA genome with a G+C content of 46.7% and at least 154 open reading frames. Based on its morphological and genomic characteristics, 0507-KN2-1 was classified as a member of the Myoviridae phage family. Further analysis of this phage revealed a 3738-bp gene encoding a putative polysaccharide depolymerase. A recombinant form of this protein was produced and assayed to confirm its enzymatic activity and specificity to KN2 capsular polysaccharides. KN2 K. pneumoniae strains exhibited greater sensitivity to this depolymerase than these did to the cognate phage, as determined by spot analysis. CONCLUSIONS/SIGNIFICANCE Here we report that a group of clinical strains possess a novel Klebsiella capsular type. We identified a KN2-specific phage and its polysaccharide depolymerase, which could be used for efficient capsular typing. The lytic phage and depolymerase also have potential as alternative therapeutic agents to antibiotics for treating K. pneumoniae infections, especially against antibiotic-resistant strains.
Collapse
Affiliation(s)
- Chun-Ru Hsu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Lin CT, Chen YC, Jinn TR, Wu CC, Hong YM, Wu WH. Role of the cAMP-dependent carbon catabolite repression in capsular polysaccharide biosynthesis in Klebsiella pneumoniae. PLoS One 2013; 8:e54430. [PMID: 23408939 PMCID: PMC3569464 DOI: 10.1371/journal.pone.0054430] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/11/2012] [Indexed: 12/11/2022] Open
Abstract
K. pneumoniae is the predominant pathogen isolated from liver abscesses of diabetic patients in Asian countries. Although elevated blood glucose levels cause various immune problems, its effects on K. pneumoniae virulence are unknown. This study investigated the regulation of capsular polysaccharide (CPS) biosynthesis, a major determinant for K. pneumoniae virulence, in response to exogenous glucose. We found that K. pneumoniae produce more CPS in glucose-rich medium via reduction in cyclic AMP (cAMP) levels. Individual deletion of cyaA or crp, which respectively encode adenylate cyclase and cAMP receptor protein in K. pneumoniae, markedly increased CPS production, while deletion of cpdA, which encodes cAMP phosphodiesterase, decreased CPS production. These results indicate that K. pneumoniae CPS biosynthesis is controlled by the cAMP-dependent carbon catabolite repression (CCR). To investigate the underlying mechanism, quantitative real-time PCR and promoter-reporter assays were used to verify that the transcription of CPS biosynthesis genes, which are organized into 3 transcription units (orf1-2, orf3-15, and orf16-17), were activated by the deletion of crp. Sequence analysis revealed putative CRP binding sites located on Porf3-15 and Porf16-17, suggesting direct CRP-cAMP regulation on the promoters. These results were then confirmed by electrophoretic mobility shift assay. In addition, we found putative CRP binding sites located in the promoter region of rcsA, which encodes a cps transcriptional activator, demonstrating a direct repression of CRP-cAMP and PrcsA. The deletion of rcsA in mutation of crp partially reduced CPS biosynthesis and the transcription of orf1-2 but not of orf3-15 or orf16-17. These results suggest that RcsA participates in the CRP-cAMP regulation of orf1-2 transcription and influences CPS biosynthesis. Finally, the effect of glucose and CCR proteins on CPS biosynthesis also reflects bacterial resistance to serum killing. We here provide evidence that K. pneumoniae increases CPS biosynthesis for successful infection in response to exogenous glucose via cAMP-dependent CCR.
Collapse
Affiliation(s)
- Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan. Republic of China.
| | | | | | | | | | | |
Collapse
|
32
|
Klebsiella pneumoniae K1 liver abscess and septic endophthalmitis in a U.S. resident. J Clin Microbiol 2013; 51:1049-51. [PMID: 23303492 DOI: 10.1128/jcm.02853-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae K1 is a major agent of hepatic abscess with metastatic disease in East Asia, with sporadic reports originating elsewhere. We report a case of abscess complicated by septic endophthalmitis caused by a wzyAKpK1-positive Klebsiella strain in a U.S. resident, raising concern for global emergence.
Collapse
|
33
|
Huang SH, Wang CK, Peng HL, Wu CC, Chen YT, Hong YM, Lin CT. Role of the small RNA RyhB in the Fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in Klebsiella pneumoniae. BMC Microbiol 2012; 12:148. [PMID: 22827802 PMCID: PMC3423075 DOI: 10.1186/1471-2180-12-148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The capsular polysaccharide (CPS) and iron acquisition systems are important determinants of Klebsiella pneumoniae infections, and we have previously reported that the ferric uptake repressor (Fur) can play dual role in iron acquisition and CPS biosynthesis. In many bacteria, Fur negatively controls the transcription of the small non-coding RNA RyhB to modulate cellular functions and virulence. However, in K. pneumoniae, the role played by RyhB in the Fur regulon has not been characterised. This study investigated Fur regulation of ryhB transcription and the functional role of RyhB in K. pneumoniae. RESULTS Deletion of fur from K. pneumoniae increased the transcription of ryhB; the electric mobility shift assay and the Fur-titration assay revealed that Fur could bind to the promoter region of ryhB, suggesting that Fur directly represses ryhB transcription. Additionally, in a Δfur strain with elevated CPS production, deletion of ryhB obviously reduced CPS production. The following promoter-reporter assay and quantitative real-time PCR of cps genes verified that RyhB activated orf1 and orf16 transcription to elevate CPS production. However, deletion of ryhB did not affect the mRNA levels of rcsA, rmpA, or rmpA2. These results imply that Fur represses the transcription of ryhB to mediate the biosynthesis of CPS, which is independent of RcsA, RmpA, and RmpA2. In addition, the Δfur strain's high level of serum resistance was attenuated by the deletion of ryhB, indicating that RyhB plays a positive role in protecting the bacterium from serum killing. Finally, deletion of ryhB in Δfur reduced the expression of several genes corresponding to 3 iron acquisition systems in K. pneumoniae, and resulted in reduced siderophore production. CONCLUSIONS The regulation and functional role of RyhB in K. pneumoniae is characterized in this study. RyhB participates in Fur regulon to modulate the bacterial CPS biosynthesis and iron acquisition systems in K. pneumoniae.
Collapse
Affiliation(s)
- Su-Hua Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Ahmad TA, El-Sayed LH, Haroun M, Hussein AA, El Ashry ESH. Development of immunization trials against Klebsiella pneumoniae. Vaccine 2011; 30:2411-20. [PMID: 22100884 DOI: 10.1016/j.vaccine.2011.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/18/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae is the most common cause of nosocomial respiratory tract and premature intensive care infections, and the second most frequent cause of Gram-negative bacteraemia and urinary tract infections. Drug resistant isolates remain an important hospital-acquired bacterial pathogen, add significantly to hospital stays, and are especially problematic in high impact medical areas such as intensive care units. Many investigations worldwide proved the increasing resistance of such pathogen, resulting in an average rate of 1.63 outbreak every year. A variety of preventive measures were applied to reduce such incidences. Immunotherapy and passive immunization researches as well found their way to the treatment of Klebsiella. During the last 40 years, many trials for constructing effective vaccines were followed. This up-to-date review classifies such trials and documents them in a progressive way. A following comment discusses each group benefits and defects.
Collapse
Affiliation(s)
- Tarek A Ahmad
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
35
|
Mita N, Narahara H, Okawa M, Hinohara H, Kunimoto F, Haque A, Saito S, Oshima K. Necrotizing fasciitis following psoas muscle abscess caused by hypermucoviscous Klebsiella pneumoniae. J Infect Chemother 2011; 18:565-8. [PMID: 22065090 DOI: 10.1007/s10156-011-0338-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/20/2011] [Indexed: 11/27/2022]
Abstract
A 59-year-old Japanese diabetic woman was admitted to a small private hospital with general malaise, fever, and a 1-month history of low back pain. A computed tomography scan of the abdomen revealed left abdominal necrotizing fasciitis with suspected left psoas muscle abscess. She was transferred to Gunma University Hospital, received antibiotic therapy, and underwent debridement of the infected subcutaneous tissue, fascia, and necrotic left psoas muscle. She was transferred to the intensive care unit to receive mechanical ventilation and inotropic support. Blood culture showed growth of Klebsiella pneumoniae, from which hypermucoviscosity was detected by the string test. She was extubated on day 5 of hospitalization and transferred to a general ward on day 14. Free skin grafting was performed on day 76, and she was discharged on day 134 without any complications.
Collapse
Affiliation(s)
- Norikatsu Mita
- Department of Anesthesiology, Saitama Cardiovascular and Respiratory Disease Center, 1696 Itai, Kumagaya, Saitama, 360-0105, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liao CH, Huang YT, Lai CC, Chang CY, Chu FY, Hsu MS, Hsu HS, Hseuh PR. Klebsiella pneumoniae bacteremia and capsular serotypes, Taiwan. Emerg Infect Dis 2011; 17:1113-5. [PMID: 21749784 DOI: 10.3201/eid/1706.100811] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Capsular serotypes of 225 Klebsiella pneumoniae isolates in Taiwan were identified by using PCR. Patients infected with K1 serotypes (41 isolates) had increased community-onset bacteremia, more nonfatal diseases and liver abscesses, lower Pittsburgh bacteremia scores and mortality rates, and fewer urinary tract infections than patients infected with non-K1/K2 serotypes (147 isolates).
Collapse
|
37
|
Liao CH, Huang YT, Lai CC, Chang CY, Chu FY, Hsu MS, Hsu HS, Hseuh PR. Klebsiella pneumoniae bacteremia and capsular serotypes, Taiwan. Emerg Infect Dis 2011. [PMID: 21749784 PMCID: PMC3358187 DOI: 10.3201/eid1706.100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Capsular serotypes of 225 Klebsiella pneumoniae isolates in Taiwan were identified by using PCR. Patients infected with K1 serotypes (41 isolates) had increased community-onset bacteremia, more nonfatal diseases and liver abscesses, lower Pittsburgh bacteremia scores and mortality rates, and fewer urinary tract infections than patients infected with non–K1/K2 serotypes (147 isolates).
Collapse
|
38
|
Ho JY, Lin TL, Li CY, Lee A, Cheng AN, Chen MC, Wu SH, Wang JT, Li TL, Tsai MD. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044. PLoS One 2011; 6:e21664. [PMID: 21765903 PMCID: PMC3134468 DOI: 10.1371/journal.pone.0021664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/05/2011] [Indexed: 11/24/2022] Open
Abstract
The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide) locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA) K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively), which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.
Collapse
Affiliation(s)
- Jin-Yuan Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Yen Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Arwen Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Ning Cheng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Chuan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| |
Collapse
|
39
|
Familial spread of a virulent clone of Klebsiella pneumoniae causing primary liver abscess. J Clin Microbiol 2011; 49:2354-6. [PMID: 21490191 DOI: 10.1128/jcm.00034-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsule-forming Klebsiella pneumoniae K1 caused primary liver abscess in two household members of a family. The causative isolates had identical pulsed-field gel electrophoresis patterns and were determined to be sequence type 23. An additional member of the family was found to carry the same strain without clinical manifestation.
Collapse
|
40
|
Do neutrophils play a role in establishing liver abscesses and distant metastases caused by Klebsiella pneumoniae? PLoS One 2010; 5:e15005. [PMID: 21151499 PMCID: PMC2994827 DOI: 10.1371/journal.pone.0015005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/05/2010] [Indexed: 12/04/2022] Open
Abstract
Serotype K1 Klebsiella pneumoniae is a major cause of liver abscesses and endophthalmitis. This study was designed to identify the role of neutrophils in the development of distant metastatic complications that were caused by serotype K1 K. pneumoniae. An in vitro cellular model was used to assess serum resistance and neutrophil-mediated killing. BALB/c mice were injected with neutrophils containing phagocytosed K. pneumoniae. Serotype K1 K. pneumoniae was significantly more resistant to serum killing, neutrophil-mediated phagocytosis and intra-cellular killing than non-K1 isolates (p<0.01). Electron microscopic examination had similar findings as in the bioassay findings. Intraperitoneal injection of neutrophils containing phagocytosed serotype K1 K. pneumoniae led to abscess formation in multiple sites including the subcutaneous tissue, lung, and liver, whereas no abscess formation was observed in mice injected with non-K1 isolates. The resistance of serotype K1 K. pneumoniae to complement- and neutrophil-mediated intracellular killing results in the dissemination of K. pneumoniae via the bloodstream. Escape from neutrophil intracellular killing may contribute to the dissemination and establishment of distant metastases. Thus, neutrophils play a role as a vehicle for helping K. pneumoniae and contributing to the establishment of liver abscess and distant metastatic complications.
Collapse
|
41
|
Protective efficacy of DNA vaccines encoding outer membrane protein A and OmpK36 of Klebsiella pneumoniae in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:82-8. [PMID: 21048001 DOI: 10.1128/cvi.00275-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunogenicity of DNA vaccines expressing outer membrane proteins as antigens was evaluated in this study. DNA vaccines consisting of vector pVAX1 expressing either outer membrane protein A or OmpK36 were injected into mice by either the intradermal or the intramuscular route. Antibodies elicited were shown to be specifically reactive to OmpA and OmpK36 by immunoblotting. The immunoglobulin G (IgG) antibodies elicited by both vaccines included IgG1, IgG2a, IgG2b, and IgG3. Immunized mice exhibited a predominance of IgG1 over IgG2a, therefore indicating a stronger humoral response. Mice receiving either of the DNA vaccines produced high levels of interleukin-12 (IL-12) and IL-10 and low levels of gamma interferon, suggesting the induction of a mixed Th1 and Th2 response. Sera from DNA vaccine-immunized mice had significantly higher opsonic activity in opsonophagocytic assays than did sera from the control mice. The level of protection afforded by pOmpK36 DNA injected intradermally into mice was the highest. These results suggest that both OmpA and OmpK36 are excellent candidates for use in future studies of vaccination against infections caused by Klebsiella pneumoniae. This is the first study which established the efficacy of protection afforded by DNA vaccines based on outer membrane proteins against K. pneumoniae infections.
Collapse
|
42
|
Nath RK, Dasgupta S, Ghosh S, Mitra A, Panda AK. Spectral Studies on the Binding Behavior of Cationic Dyes and Surfactants with Bacterial Polysaccharide ofKlebsiellaK43. J DISPER SCI TECHNOL 2010. [DOI: 10.1080/01932690903269586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Lin YT, Chen TL, Siu LK, Hsu SF, Fung CP. Clinical and microbiological characteristics of community-acquired thoracic empyema or complicated parapneumonic effusion caused by Klebsiella pneumoniae in Taiwan. Eur J Clin Microbiol Infect Dis 2010; 29:1003-10. [PMID: 20505967 DOI: 10.1007/s10096-010-0961-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Klebsiella pneumoniae is the major cause of community-acquired pyogenic infections in Taiwan and is becoming an increasing problem in acute thoracic empyema. This study evaluated the clinical and microbiological characteristics of community-acquired thoracic empyema or complicated parapneumonic effusion caused by K. pneumoniae in Taiwanese adults treated during the period 2001-2008 at a tertiary medical center. All clinical isolates were examined for capsular serotypes K1/K2, and pulsed-field gel electrophoresis (PFGE) was performed on strains of the same serotype. K. pneumoniae was the most frequent cause of community-acquired thoracic empyema or complicated parapneumonic effusion. It was associated with high mortality (32.4%) and was an independent risk factor for fatal outcome. Diabetes mellitus, liver cirrhosis, and bronchogenic carcinoma were independent risk factors for K. pneumoniae infection. Serotypes K1 (9/37, 24.3%) and K2 (13/37, 35.1%) were the prevalent strains but did not predispose patients to poor outcome compared with other non-K1/K2 serotypes. There was no major cluster of isolates found among serotype K1/K2 strains. In summary, physicians should be aware of the risk factors for thoracic empyema or complicated parapneumonic effusion caused by K. pneumoniae and the associated high mortality, and monitor these patients more closely.
Collapse
Affiliation(s)
- Y-T Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, No. 201 Sec. 2 Shih-Pai Road 112, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
44
|
Chen KJ, Hwang YS, Wang NK, Chao AN. Endogenous Klebsiella pneumoniae endophthalmitis with renal abscess: Report of two cases. Int J Infect Dis 2010; 14:e429-32. [DOI: 10.1016/j.ijid.2009.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/21/2009] [Accepted: 05/19/2009] [Indexed: 11/30/2022] Open
|
45
|
K2 serotype Klebsiella pneumoniae causing a liver abscess associated with infective endocarditis. J Clin Microbiol 2009; 48:639-41. [PMID: 20007381 DOI: 10.1128/jcm.01779-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae primary liver abscess (KPLA) is an emerging disease that is associated with distant septic complications. We report the first case of KPLA associated with infective endocarditis. The K. pneumoniae strain was a hypermucoid K2 serotype carrying the rmpA virulence-associated gene.
Collapse
|
46
|
Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. MICROBIOLOGY-SGM 2009; 155:4170-4183. [PMID: 19744990 DOI: 10.1099/mic.0.029017-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is an enteric pathogen causing community-acquired and hospital-acquired infections in humans. Epidemiological studies have revealed significant diversity in capsular polysaccharide (CPS) type and clinical manifestation of K. pneumoniae infection in different geographical areas of the world. We have sequenced the capsular polysaccharide synthesis (cps) region of seven clinical isolates and compared the sequences with the publicly available cps sequence data of five strains: NTUH-K2044 (K1 serotype), Chedid (K2 serotype), MGH78578 (K52 serotype), A1142 (K57 serotype) and A1517. Among all strains, six genes at the 5' end of the cps clusters that encode proteins for CPS transportation and processing at the bacterial surface are highly similar to each other. The central region of the cps gene clusters, which encodes proteins for polymerization and assembly of the CPS subunits, is highly divergent. Based on the collected sequence, we found that either the wbaP gene or the wcaJ gene exists in a given K. pneumoniae strain, suggesting that there is a major difference in the CPS biosynthesis pathway and that the K. pneumoniae strains can be classified into at least two distinct groups. All isolates contain gnd, encoding gluconate-6-phosphate dehydrogenase, at the 3' end of the cps gene clusters. The rmlBADC genes were found in CPS K9-positive, K14-positive and K52-positive strains, while manC and manB were found in K1, K2, K5, K14, K62 and two undefined strains. Our data indicate that, while overall genomic organization is similar between different pathogenic K. pneumoniae strains, the genetic variation of the sugar moiety and polysaccharide linkage generate the diversity in CPS molecules that could help evade host immune attack.
Collapse
Affiliation(s)
- Hung-Yu Shu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Bioscience Technology, Chang Jung Christian University, Tainan County, Taiwan, ROC
| | - Chang-Phone Fung
- Institute of Tropical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ming Liu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Keh-Ming Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ying-Tsong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ling-Hui Li
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ralph Kirby
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
47
|
Chen KJ, Hwang YS, Chen YP, Lai CC, Chen TL, Wang NK. Endogenous Klebsiella endophthalmitis associated with Klebsiella pneumoniae pneumonia. Ocul Immunol Inflamm 2009; 17:153-9. [PMID: 19585357 DOI: 10.1080/09273940902752250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the management, bacterial strains, antibiotic sensitivities, and visual outcomes in patients with Klebsiella pneumoniae pneumonia and endogenous Klebsiella endophthalmitis. METHODS Data were collected for treatments, antibiotic sensitivity patterns, and final visual outcomes. RESULTS The study included 10 eyes of 9 patients with a median age of 42 years (range, 0-86 years). Diabetes mellitus was the most common comorbid risk factor (n = 5, 56%). Nine eyes (90%) were treated with intravitreal antibiotics, and one with pars plana vitrectomy and intravitreal antibiotics. One eye achieved a favorable visual acuity of 20/20; however, 6 eyes developed vision of no light perception, including 2 of evisceration. Two nosocomial K. pneumoniae isolates were extended-spectrum-beta-lactamase-producing strains, which demonstrated the resistance to amikacin and ceftazidime. CONCLUSIONS Ophthalmologists and physicians should be aware of Klebsiella pneumonia as a possible cause of endogenous endophthalmitis, and endogenous Klebsiella endophthalmitis usually causes poor visual outcomes.
Collapse
Affiliation(s)
- Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kwei-Shan, Taoyuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
48
|
Recurrent Klebsiella pneumoniae liver abscess: clinical and microbiological characteristics. J Clin Microbiol 2009; 47:3336-9. [PMID: 19692563 DOI: 10.1128/jcm.00918-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recurrent Klebsiella pneumoniae liver abscesses (KLAs) are rarely reported. Six cases of recurrent KLAs are characterized. Most of the patients had diabetes and K1 serotype KLAs. All of the isolates were uniformly susceptible to cefazolin. Distinct molecular fingerprints were found for the strains isolated from both primary and recurrent KLAs.
Collapse
|
49
|
Klebsiella pneumoniae Necrotizing Fasciitis Associated With Lung Abscess. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2009. [DOI: 10.1097/ipc.0b013e3181730804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Clements A, Gaboriaud F, Duval JFL, Farn JL, Jenney AW, Lithgow T, Wijburg OLC, Hartland EL, Strugnell RA. The major surface-associated saccharides of Klebsiella pneumoniae contribute to host cell association. PLoS One 2008; 3:e3817. [PMID: 19043570 PMCID: PMC2583945 DOI: 10.1371/journal.pone.0003817] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/31/2008] [Indexed: 12/05/2022] Open
Abstract
Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces.
Collapse
Affiliation(s)
- Abigail Clements
- Australian Bacterial Pathogenesis Program, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|