1
|
Shiels A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes (Basel) 2024; 15:785. [PMID: 38927721 PMCID: PMC11202810 DOI: 10.3390/genes15060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait-often with an early or pediatric onset-with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes-including those for lens crystallins, connexins, and transcription factors-recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged-providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Zhao Z, Chen J, Yuan W, Jiang Y, Lu Y. Association between single nucleotide polymorphisms in exon 3 of the alpha-A-crystallin gene and susceptibility to age-related cataract. Ophthalmic Genet 2023; 44:127-132. [PMID: 36380611 DOI: 10.1080/13816810.2022.2092757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The mutations in the αA-crystallin (CRYAA) gene may contribute to the development of age-related cataract (ARC). In this study, we searched for single nucleotide polymorphisms (SNP) in exons of CRYAA and investigated the associations between the identified SNPs and the subtypes of ARC. MATERIALS AND METHODS Peripheral venous blood was collected for the extraction of genomic DNA. Three exons of CRYAA were sequenced to detect SNPs. The frequency distributions of alleles and genotypes were compared between the ARC and control groups. RESULTS There were 618 patients with various subtypes of ARC (nuclear cataract [NC], cortical cataract [CC], posterior subcapsular cataract [PSC]). The control group comprised 236 patients. The incidence of early-onset cataract was significantly greater in PSC patients (P = .002 for NC; P = .036 for CC). One SNP was detected in exon 3 of CRYAA (rs76740365 G>A). When the distribution of rs76740365 was compared among the ARC subtypes, only the difference between the PSC group and the control group was statistically significant (allele frequency: P = .000057, OR 2.945; genotype distribution frequency: P = .000458). The heterozygote genotype (GA) carried a significantly greater risk than the homozygous wild-type genotype (GG) by 1.742 times for all types of cataracts and 2.369 times for the PSC subtype. CONCLUSIONS The SNP rs76740365 G>A in exon 3 of the CRYAA gene is associated with greater susceptibility of ARC, particularly the PSC subtype. Individuals carrying the SNP rs76740365 G>A may be more likely to develop PSC at a younger age than other subtypes.
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiahui Chen
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Wenyi Yuan
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
3
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
4
|
Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old. Exp Eye Res 2021; 209:108662. [PMID: 34126080 PMCID: PMC8595562 DOI: 10.1016/j.exer.2021.108662] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Cataract(s) is the clinical equivalent of lens opacity and is caused by light scattering either by high molecular weight protein aggregates in lens cells or disruption of the lens microarchitecture itself. Genetic mutations underlying inherited cataract can provide insight into the biological processes and pathways critical for lens homeostasis and transparency, classically including the lens crystallins, connexins, membrane proteins or components, and intermediate filament proteins. More recently, cataract genes have been expanded to include newly identified biological processes such as chaperone or protein degradation components, transcription or growth factors, channels active in the lens circulation, and collagen and extracellular matrix components. Cataracts can be classified by age, and in general congenital cataracts are caused by severe mutations resulting in major damage to lens proteins, while age related cataracts are associated with variants that merely destabilize proteins thereby increasing susceptibility to environmental insults over time. Thus there might be separate pathways to opacity for congenital and age-related cataracts whereby congenital cataracts induce the unfolded protein response (UPR) and apoptosis to destroy the lens microarchitecture, while in age related cataract high molecular weight (HMW) aggregates formed by denatured crystallins bound by α-crystallin result in light scattering without severe damage to the lens microarchitecture.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1860, USA.
| |
Collapse
|
5
|
Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147231. [PMID: 34299682 PMCID: PMC8303577 DOI: 10.3390/ijerph18147231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
The Mayan population of Guatemala is understudied within eye and vision research. Studying an observational homogenous, geographically isolated population of individuals seeking eye care may identify unique clinical, demographic, environmental and genetic risk factors for blinding eye disease that can inform targeted and effective screening strategies to achieve better and improved health care distribution. This study served to: (a) identify the ocular health needs within this population; and (b) identify any possible modifiable risk factors contributing to disease pathophysiology within this population. We conducted a cross-sectional study with 126 participants. Each participant completed a comprehensive eye examination, provided a blood sample for genetic analysis, and received a structured core baseline interview for a standardized epidemiological questionnaire at the Salama Lions Club Eye Hospital in Salama, Guatemala. Interpreters were available for translation to the patients’ native dialect, to assist participants during their visit. We performed a genome-wide association study for ocular disease association on the blood samples using Illumina’s HumanOmni2.5-8 chip to examine single nucleotide polymorphism SNPs in this population. After implementing quality control measures, we performed adjusted logistic regression analysis to determine which genetic and epidemiological factors were associated with eye disease. We found that the most prevalent eye conditions were cataracts (54.8%) followed by pseudoexfoliation syndrome (PXF) (24.6%). The population with both conditions was 22.2%. In our epidemiological analysis, we found that eye disease was significantly associated with advanced age. Cataracts were significantly more common among those living in the 10 districts with the least resources. Furthermore, having cataracts was associated with a greater likelihood of PXF after adjusting for both age and sex. In our genetic analysis, the SNP most nominally significantly associated with PXF lay within the gene KSR2 (p < 1 × 10−5). Several SNPs were associated with cataracts at genome-wide significance after adjusting for covariates (p < 5 × 10−8). About seventy five percent of the 33 cataract-associated SNPs lie within 13 genes, with the majority of genes having only one significant SNP (5 × 10−8). Using bioinformatic tools including PhenGenI, the Ensembl genome browser and literature review, these SNPs and genes have not previously been associated with PXF or cataracts, separately or in combination. This study can aid in understanding the prevalence of eye conditions in this population to better help inform public health planning and the delivery of quality, accessible, and relevant health and preventative care within Salama, Guatemala.
Collapse
|
6
|
Banford S, McCorvie TJ, Pey AL, Timson DJ. Galactosemia: Towards Pharmacological Chaperones. J Pers Med 2021; 11:jpm11020106. [PMID: 33562227 PMCID: PMC7914515 DOI: 10.3390/jpm11020106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Galactosemia is a rare inherited metabolic disease resulting from mutations in the four genes which encode enzymes involved in the metabolism of galactose. The current therapy, the removal of galactose from the diet, is inadequate. Consequently, many patients suffer lifelong physical and cognitive disability. The phenotype varies from almost asymptomatic to life-threatening disability. The fundamental biochemical cause of the disease is a decrease in enzymatic activity due to failure of the affected protein to fold and/or function correctly. Many novel therapies have been proposed for the treatment of galactosemia. Often, these are designed to treat the symptoms and not the fundamental cause. Pharmacological chaperones (PC) (small molecules which correct the folding of misfolded proteins) represent an exciting potential therapy for galactosemia. In theory, they would restore enzyme function, thus preventing downstream pathological consequences. In practice, no PCs have been identified for potential application in galactosemia. Here, we review the biochemical basis of the disease, identify opportunities for the application of PCs and describe how these might be discovered. We will conclude by considering some of the clinical issues which will affect the future use of PCs in the treatment of galactosemia.
Collapse
Affiliation(s)
- Samantha Banford
- South Eastern Health and Social Care Trust, Downpatrick BT30 6RL, UK;
| | - Thomas J. McCorvie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
7
|
Ngqaneka T, Khoza S, Magwebu ZE, Chauke CG. Mutational analysis of BFSP1, CRYBB1, GALK1, and GJA8 in captive-bred vervet monkeys (Chlorocebus aethiops). J Med Primatol 2020; 49:79-85. [PMID: 31975409 DOI: 10.1111/jmp.12455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Congenital cataract has been reported in a colony of captive-bred vervet monkeys (Chlorocebus aethiops). METHODS Molecular tools such as genotyping and gene expression were used to identify mutations associated with congenital cataract in this vervet colony. Beaded filament structural protein 1 (BFSP1), beta-crystallin B1 (CRYBB1), galactokinase1 (GALK1), and gap junction alpha-8 protein (GJA8) were screened, sequenced, and analyzed for mutations in 24 vervet monkeys (control and cataract). RESULTS Five missense sequence variants were identified (V147E, A167P, L212F, N55K, and T247A), three of which were found to be potentially disease-causing. Furthermore, downregulation was observed in BFSP1, CRYBB1, and GALK1 genes. CONCLUSION This study reports two cases of incomplete penetrance and/or uniparental disomy (L212F and T247A) in BSFP1. Mutations in BSFP1 together with three mutations in GALK1 and GJA8 were predicted to be disease-causing.
Collapse
Affiliation(s)
- Thobile Ngqaneka
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa
| | - Sanele Khoza
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa
| | - Zandisiwe E Magwebu
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa
| | - Chesa G Chauke
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
8
|
Abstract
Cataract, the clinical correlate of opacity or light scattering in the eye lens, is usually caused by the presence of high-molecular-weight (HMW) protein aggregates or disruption of the lens microarchitecture. In general, genes involved in inherited cataracts reflect important processes and pathways in the lens including lens crystallins, connexins, growth factors, membrane proteins, intermediate filament proteins, and chaperones. Usually, mutations causing severe damage to proteins cause congenital cataracts, while milder variants increasing susceptibility to environmental insults are associated with age-related cataracts. These may have different pathogenic mechanisms: Congenital cataracts induce the unfolded protein response and apoptosis. By contrast, denatured crystallins in age-related cataracts are bound by α-crystallin and form light-scattering HMW aggregates. New therapeutic approaches to age-related cataracts use chemical chaperones to solubilize HMW aggregates, while attempts are being made to regenerate lenses using endogenous stem cells to treat congenital cataracts.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1860, USA;
| |
Collapse
|
9
|
Weatherbee BAT, Barton JR, Siddam AD, Anand D, Lachke SA. Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Exp Eye Res 2019; 188:107787. [PMID: 31479653 DOI: 10.1016/j.exer.2019.107787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Cataract-associated gene discovery in human and animal models have informed on key aspects of human lens development, homeostasis and pathology. Additionally, in vitro models such as the culture of permanent human lens epithelium-derived cell lines (LECs) have also been utilized to understand the molecular biology of lens cells. However, these resources remain uncharacterized, specifically regarding their global gene expression and suitability to model lens cell biology. Therefore, we sought to molecularly characterize gene expression in the human LEC, SRA01/04, which is commonly used in lens studies. We first performed short tandem repeat (STR) analysis and validated SRA01/04 LEC for its human origin, as recommended by the eye research community. Next, we used Illumina HumanHT-12 v3.0 Expression BeadChip arrays to gain insights into the global gene expression profile of SRA01/04. Comparative analysis of SRA01/04 microarray data was performed using other resources such as the lens expression database iSyTE (integrated Systems Tool for Eye gene discovery), the cataract gene database Cat-Map and the published lens literature. This analysis showed that SRA01/04 significantly expresses >40% of the top iSyTE lens-enriched genes (313 out of 749) across different developmental stages. Further, SRA01/04 also significantly expresses ~53% (168 out of 318) of cataract-associated genes in Cat-Map. We also performed comparative gene expression analysis between SRA01/04 cells and the previously validated mouse LEC 21EM15. To gain insight into whether SRA01/04 reflects epithelial or fiber cell characteristics, we compared its gene expression profile to previously reported differentially expressed genes in isolated mouse lens epithelial and fiber cells. This analysis suggests that SRA01/04 has reduced expression of several fiber cell-enriched genes. In agreement with these findings, cell culture analysis demonstrates that SRA01/04 has reduced potential to initiate spontaneous lentoid body formation compared to 21EM15 cells. Next, to independently validate SRA01/04 microarray gene expression, we subjected several candidate genes to RT-PCR and RT-qPCR assays. This analysis demonstrates that SRA01/04 supports expression of many key genes associated with lens development and cataract, including CRYAB, CRYBB2, CRYGS, DKK3, EPHA2, ETV5, GJA1, HSPB1, INPPL1, ITGB1, PAX6, PVRL3, SFRP1, SPARC, TDRD7, and VIM, among others, and therefore can be relevant for understanding the mechanistic basis of these factors. At the same time, SRA01/04 cells do not exhibit robust expression of several genes known to be important to lens biology and cataract such as ALDH1A1, COL4A6, CP, CRYBA4, FOXE3, HMX1, HSF4, MAF, MEIS1, PITX3, PRX, SIX3, and TRPM3, among many others. Therefore, the present study offers a rich transcript-level resource for case-by-case evaluation of the potential advantages and limitations of SRA01/04 cells prior to their use in downstream investigations. In sum, these data show that the human LEC, SRA01/04, exhibits lens epithelial cell-like character reflected in the expression of several lens-enriched and cataract-associated genes, and therefore can be considered as a useful in vitro resource when combined with in vivo studies to gain insight into specific aspects of human lens epithelial cells.
Collapse
Affiliation(s)
| | - Joshua R Barton
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverría J, Vodnar D, Szabo B, Crişan G. Medicinal Plants and Natural Products Used in Cataract Management. Front Pharmacol 2019; 10:466. [PMID: 31263410 PMCID: PMC6585469 DOI: 10.3389/fphar.2019.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023] Open
Abstract
Cataract is the leading reason of blindness worldwide and is defined by the presence of any lens opacities or loss of transparency. The most common symptoms of cataract are impaired vision, decreased contrast sensitivity, color disturbance, and glare. Oxidative stress is among the main mechanisms involved in the development of age-related cataract. Surgery through phacoemulsification and intraocular lens implantation is the most effective method for cataract treatment, however, there are chances of serious complications and irreversible loss of vision associated with the surgery. Natural compounds consisting of antioxidant or anti-inflammatory secondary metabolites can serve as potential leads for anticataract agents. In this review, we tried to document medicinal plants and plant-based natural products used for cataract treatment worldwide, which are gathered from available ethnopharmacological/ethnobotanical data. We have extensively explored a number of recognized databases like Scifinder, PubMed, Science Direct, Google Scholar, and Scopus by using keywords and phrases such as “cataract”, “blindness”, “traditional medicine”, “ethnopharmacology”, “ethnobotany”, “herbs”, “medicinal plants”, or other relevant terms, and summarized the plants/phytoconstituents that are evaluated in different models of cataract and also tabulated 44 plants that are traditionally used in cataract in various folklore medical practices. Moreover, we also categorized the plants according to scientific studies carried out in different cataract models with their mechanisms of action.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ovidiu Samoilă
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gocan
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cadmiel Moldovan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Dan Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Anatomy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Cataractogenic load – A concept to study the contribution of ionizing radiation to accelerated aging in the eye lens. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:68-81. [DOI: 10.1016/j.mrrev.2019.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
12
|
Cho SY, Kim S, Chung SK. Bilateral Corneal Opacities with Galactokinase Deficiency and Spinal Muscular Atrophy. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2019. [DOI: 10.3341/jkos.2019.60.12.1318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Soon Young Cho
- Department of Ophthalmology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Sangbum Kim
- Department of Ophthalmology, Dongguk University College of Medicine, Gyeongju, Korea
| | | |
Collapse
|
13
|
P S, Ebrahimi EA, Ghazala SA, D TK, R S, Priya Doss C G, Zayed H. Structural analysis of missense mutations in galactokinase 1 (GALK1) leading to galactosemia type-2. J Cell Biochem 2018; 119:7585-7598. [PMID: 29893426 DOI: 10.1002/jcb.27097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
Galactosemia type 2 is an autosomal recessive disorder characterized by the deficiency of galactokinase (GALK) enzyme due to missense mutations in GALK1 gene, which is associated with various manifestations such as hyper galactosemia and formation of cataracts. GALK enzyme catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of α-d-galactose to galactose-1-phosphate. We searched 4 different literature databases (Google Scholar, PubMed, PubMed Central, and Science Direct) and 3 gene-variant databases (Online Mendelian Inheritance in Man, Human Gene Mutation Database, and UniProt) to collect all the reported missense mutations associated with GALK deficiency. Our search strategy yielded 32 missense mutations. We used several computational tools (pathogenicity and stability, biophysical characterization, and physiochemical analyses) to prioritize the most significant mutations for further analyses. On the basis of the pathogenicity and stability predictions, 3 mutations (P28T, A198V, and L139P) were chosen to be tested further for physicochemical characterization, molecular docking, and simulation analyses. Molecular docking analysis revealed a decrease in interaction between the protein and ATP in all the 3 mutations, and molecular dynamic simulations of 50 ns showed a loss of stability and compactness in the mutant proteins. As the next step, comparative physicochemical changes of the native and the mutant proteins were carried out using essential dynamics. Overall, P28T and A198V were predicted to alter the structure and function of GALK protein when compared to the mutant L139P. This study demonstrates the power of computational analysis in variant classification and interpretation and provides a platform for developing targeted therapeutics.
Collapse
Affiliation(s)
- Sneha P
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Elaheh Ahmad Ebrahimi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Sara Ahmed Ghazala
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Thirumal Kumar D
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Siva R
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - George Priya Doss C
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways. Sci Rep 2017; 7:9992. [PMID: 28855599 PMCID: PMC5577203 DOI: 10.1038/s41598-017-10117-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
To identify possible genetic variants influencing expression of EPHA2 (Ephrin-receptor Type-A2), a tyrosine kinase receptor that has been shown to be important for lens development and to contribute to both congenital and age related cataract when mutated, the extended promoter region of EPHA2 was screened for variants. SNP rs6603883 lies in a PAX2 binding site in the EPHA2 promoter region. The C (minor) allele decreased EPHA2 transcriptional activity relative to the T allele by reducing the binding affinity of PAX2. Knockdown of PAX2 in human lens epithelial (HLE) cells decreased endogenous expression of EPHA2. Whole RNA sequencing showed that extracellular matrix (ECM), MAPK-AKT signaling pathways and cytoskeleton related genes were dysregulated in EPHA2 knockdown HLE cells. Taken together, these results indicate a functional non-coding SNP in EPHA2 promoter affects PAX2 binding and reduces EPHA2 expression. They further suggest that decreasing EPHA2 levels alters MAPK, AKT signaling pathways and ECM and cytoskeletal genes in lens cells that could contribute to cataract. These results demonstrate a direct role for PAX2 in EPHA2 expression and help delineate the role of EPHA2 in development and homeostasis required for lens transparency.
Collapse
|
15
|
Patel R, Zenith RK, Chandra A, Ali A. Novel Mutations in the Crystallin Gene in Age-Related Cataract Patients from a North Indian Population. Mol Syndromol 2017; 8:179-186. [PMID: 28690483 DOI: 10.1159/000471992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Cataract is the most prevalent leading cause of visual impairment and blindness worldwide. In comparison to congenital cataract, which affects relatively few individuals, age-related cataract is responsible for slightly half of all cases of blindness worldwide. Although significant work has been done, the genetic aspect of age-related cataract is still in its infancy. The current study was performed to analyze the mutations and polymorphisms in the CRYAA, CRYAB, CRYBB1, and GJA8 genes in 40 unrelated age-related cataract patients. Mutational analysis of the above-mentioned genes in 40 cataract cases revealed 14 different substitutions of which 8 variants were novel and 6 were reported SNPs. Two disease-causing mutations, g.44590631G>A (p.R65Q) and g.44592224G>A (p.R119H), were also observed in the CRYAA gene. The disease-causing variants mildly affect the stability, functionality, and localization of crystallin, and, with progressing age, a small change in the microenvironment of the crystallin lens occurs. This change in combination with a mutation may significantly alter the functionality of the crystallin protein, leading to age-related cataract.
Collapse
Affiliation(s)
- Rashmi Patel
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ravish K Zenith
- Department of Ophthalmology, Sir Sunderlal Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res 2017; 156:95-102. [PMID: 27334249 PMCID: PMC5538314 DOI: 10.1016/j.exer.2016.06.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/06/2023]
Abstract
The crystalline lens plays an important role in the refractive vision of vertebrates by facilitating variable fine focusing of light onto the retina. Loss of lens transparency, or cataract, is a frequently acquired cause of visual impairment in adults and may also present during childhood. Genetic studies have identified mutations in over 30 causative genes for congenital or other early-onset forms of cataract as well as several gene variants associated with age-related cataract. However, the pathogenic mechanisms resulting from genetic determinants of cataract are only just beginning to be understood. Here, we briefly summarize current concepts pointing to differences in the molecular mechanisms underlying congenital and age-related forms of cataract.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1860, USA.
| |
Collapse
|
17
|
Abstract
Galactokinase catalyses the first committed step of the Leloir pathway, i.e. the ATP-dependent phosphorylation of α-D-galactose at C1-OH. Reduced galactokinase activity results in the inherited metabolic disease type II galactosaemia. However, inhibition of galactokinase is considered a viable approach to treating more severe forms of galactosaemia (types I and III). Considerable progress has been made in the identification of high affinity, selective inhibitors. Although the structure of galactokinase from a variety of species is known, its catalytic mechanism remains uncertain. Although the bulk of evidence suggests that the reaction proceeds via an active site base mechanism, some experimental and theoretical studies contradict this. The enzyme has potential as a biocatalyst in the production of sugar 1-phosphates. This potential is limited by its high specificity. A variety of approaches have been taken to identify galactokinase variants which are more promiscuous. These have broadened galactokinase's specificity to include a wide range of D- and L-sugars. Initial studies suggest that some of these alterations result in increased flexibility at the active site. It is suggested that modulation of protein flexibility is at least as important as structural modifications in determining the success or failure of enzyme engineering.
Collapse
|
18
|
Abstract
Lens opacities or cataract(s) represent a universally important cause of visual impairment and blindness. Typically, cataract is acquired with aging as a complex disorder involving environmental and genetic risk factors. Cataract may also be inherited with an early onset either in association with other ocular and/or systemic abnormalities or as an isolated lens phenotype. Here we briefly review recent advances in gene discovery for inherited and age-related forms of cataract that are providing new insights into lens development and aging.
Collapse
|
19
|
Ritchie MD, Verma SS, Hall MA, Goodloe RJ, Berg RL, Carrell DS, Carlson CS, Chen L, Crosslin DR, Denny JC, Jarvik G, Li R, Linneman JG, Pathak J, Peissig P, Rasmussen LV, Ramirez AH, Wang X, Wilke RA, Wolf WA, Torstenson ES, Turner SD, McCarty CA. Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Mol Vis 2014; 20:1281-95. [PMID: 25352737 PMCID: PMC4168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/17/2014] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Cataract is the leading cause of blindness in the world, and in the United States accounts for approximately 60% of Medicare costs related to vision. The purpose of this study was to identify genetic markers for age-related cataract through a genome-wide association study (GWAS). METHODS In the electronic medical records and genomics (eMERGE) network, we ran an electronic phenotyping algorithm on individuals in each of five sites with electronic medical records linked to DNA biobanks. We performed a GWAS using 530,101 SNPs from the Illumina 660W-Quad in a total of 7,397 individuals (5,503 cases and 1,894 controls). We also performed an age-at-diagnosis case-only analysis. RESULTS We identified several statistically significant associations with age-related cataract (45 SNPs) as well as age at diagnosis (44 SNPs). The 45 SNPs associated with cataract at p<1×10(-5) are in several interesting genes, including ALDOB, MAP3K1, and MEF2C. All have potential biologic relationships with cataracts. CONCLUSIONS This is the first genome-wide association study of age-related cataract, and several regions of interest have been identified. The eMERGE network has pioneered the exploration of genomic associations in biobanks linked to electronic health records, and this study is another example of the utility of such resources. Explorations of age-related cataract including validation and replication of the association results identified herein are needed in future studies.
Collapse
Affiliation(s)
- Marylyn D. Ritchie
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Shefali S. Verma
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Molly A. Hall
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Robert J. Goodloe
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN
| | - Richard L. Berg
- Biomedical Informatics Research Center, Biostatistics, Marshfield Clinic Research Foundation, Marshfield, WI
| | | | | | - Lin Chen
- Ophthalmology, Marshfield Clinic Research Foundation, Marshfield, WI
| | - David R. Crosslin
- Division of Medical Genetics, University of Washington, Seattle, WA,Department of Biostatistics, University of Washington, Seattle, WA
| | - Joshua C. Denny
- Departments of Biomedical Informatics, Vanderbilt University, Nashville, TN,Department of Medicine, Vanderbilt University, Nashville, TN
| | - Gail Jarvik
- Division of Medical Genetics, University of Washington, Seattle, WA,Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA
| | - Rongling Li
- Office of Population Genomics, National Human Genome Research Institute, Bethesda, MD
| | - James G. Linneman
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI
| | - Jyoti Pathak
- Department of Biomedical Informatics, Mayo Clinic College of Medicine, Rochester, MN
| | - Peggy Peissig
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI
| | - Luke V. Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL
| | | | - Xiaoming Wang
- Departments of Biomedical Informatics, Vanderbilt University, Nashville, TN
| | - Russell A. Wilke
- Departments of Biomedical Informatics, Vanderbilt University, Nashville, TN,IMAGENETICS at Sanford Medical Center, Fargo, ND and Department of Internal Medicine, University of North Dakota, Fargo, ND
| | - Wendy A. Wolf
- Division of Genetics and Genomics, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Eric S. Torstenson
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN
| | | | | |
Collapse
|
20
|
Gupta VB, Rajagopala M, Ravishankar B. Etiopathogenesis of cataract: an appraisal. Indian J Ophthalmol 2014; 62:103-10. [PMID: 24618482 PMCID: PMC4005220 DOI: 10.4103/0301-4738.121141] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/06/2012] [Indexed: 11/04/2022] Open
Abstract
Natural eye lens is a crystalline substance to produce a clear passage for light. Cataract is opacity within the clear lens of the eye and is the dominant cause of socio-medical problem i.e., blindness worldwide. The only available treatment of cataract is surgery. However, insufficient surgical facilities in poor and developing countries and post-operative complications inspire researchers to find out other modes of treatment for cataract. In this review, an attempt has been made to appraise various etiological factors of cataract to make their perception clear to build up counterpart treatment. Present study is an assortment of various available literatures and electronic information in view of cataract etiopathogenesis. Various risk factors have been identified in development of cataracts. They can be classified in to genetic factors, ageing (systemic diseases, nutritional and trace metals deficiencies, smoking, oxidative stress etc.), traumatic, complicated (inflammatory and degenerative diseases of eye), metabolic (diabetes, galactosemia etc.), toxic substances including drugs abuses, alcohol etc., radiation (ultraviolet, electromagnetic waves etc.) are implicated as significant risk factors in the development of cataract.
Collapse
Affiliation(s)
- Varun B Gupta
- Research Associate, Ayurgenomics-TRISUTRA Project, Gujarat Ayurved University, Jamnagar, India
| | - Manjusha Rajagopala
- Department of Panchakarma, IPGT & RA, Gujarat Ayurved University, Jamnagar, India
| | - Basavaiah Ravishankar
- Director, SDM Center for Research in Ayurveda and Allied Sciences, Udupi, Karnataka, India
| |
Collapse
|
21
|
Puk O, de Angelis MH, Graw J. Lens density tracking in mice by Scheimpflug imaging. Mamm Genome 2013; 24:295-302. [DOI: 10.1007/s00335-013-9470-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022]
|
22
|
Shiels A, Hejtmancik JF. Genetics of human cataract. Clin Genet 2013; 84:120-7. [PMID: 23647473 PMCID: PMC3991604 DOI: 10.1111/cge.12182] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 12/15/2022]
Abstract
The pathogenesis of inherited cataracts of all kinds recapitulates the developmental and cell biology of the lens. Just as each novel mutation provides additional information about the structural or functional biology of the affected gene, each newly identified gene provides insight into the developmental and cellular biology of the lens. The set of genes currently known to be associated with cataract is far from complete, especially for age-related cataract, and there is much additional information to be discovered through further genetic studies.
Collapse
Affiliation(s)
- A Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
23
|
Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. Mol Vis 2013; 19:1572-9. [PMID: 23882136 PMCID: PMC3718490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Age-related cataract (ARC) is a complex multifactorial disorder, including genetic and environmental factors. Ezrin (EZR), a member of the ezrin/radixin/moesin (ERM) protein family, plays a crucial role in the development of the lens as a plasma membrane-cytoskeleton linker. We conducted this study to investigate the role of genetic variations of ezrin and the relationship between single nucleotide polymorphisms (SNPs) in EZR and susceptibility to ARC in a Chinese population. METHODS A total of 205 sporadic age-related cataract patients and 218 unrelated random healthy controls participated in our study. Genomic DNA was extracted from peripheral blood leukocytes. All exons of EZR were sequenced after being amplified with polymerase chain reaction. The functional consequences of the mutations were analyzed using PolyPhen2. SNP statistical analysis was performed using SNPstats. RESULTS We found three novel variations in 205 patients. None presented in the 218 controls, including c.441C>G, c.924G>C, and c.1503G>A. PolyPhen2 predicted that the c.924G>C mutation probably had pathogenicity. Compared with the healthy controls, the rs5881286 -/GT genotype and - allele frequencies (p=0.0012; odds ratio [OR]=3.37; 95% confidence interval [CI]=1.70-6.70; p=3.96e-5; χ(2)=18.98, respectively), rs2242318 T/C genotype and C allele frequencies (p=0.0045; OR=3.40; 95% CI=1.70-6.79; p=8.82e-6; χ(2)=21.86, respectively), and rs144581330 A/G genotype and G allele frequencies (p=0.0472; OR=14.46; 95% CI=1.29-162.43; p=0.0244, χ(2)=6.99, respectively) were higher in the patients with age-related cataract. SNP rs144581330 in exon 2 was also predicted to be probably damaging by PolyPhen2. Haplotype association including the - allele of rs5881286, C allele of rs2242318, and A allele of rs144581330 exhibited significantly higher distribution in the patients with ARC (p=8.0e-4; OR=3.38; 95% CI=1.66-6.87). CONCLUSIONS This study suggests that the genetic variations and SNPs in the gene EZR possibly contribute to the development of age-related cataracts in the Chinese population.
Collapse
|
24
|
Bennett TM, Maraini G, Jin C, Sun W, Hejtmancik JF, Shiels A. Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract. Mol Vis 2013; 19:835-44. [PMID: 23592921 PMCID: PMC3626299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/09/2013] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Cataract is a clinically and genetically heterogeneous disorder of the ocular lens and an important cause of visual impairment. The aim of this study was to map and identify the gene underlying autosomal dominant cataract segregating in a four-generation family, determine the lens expression profile of the identified gene, and test for its association with age-related cataract in a case-control cohort. METHODS Genomic DNA was prepared from blood leukocytes, and genotyping was performed by means of single-nucleotide polymorphism markers and microsatellite markers. Linkage analyses were performed using the GeneHunter and MLINK programs, and mutation detection was achieved by dideoxy cycle sequencing. Lens expression studies were performed using reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization. RESULTS Genome-wide linkage analysis with single nucleotide polymorphism markers in the family identified a likely disease-haplotype interval on chromosome 19q (rs888861-[~17Mb]-rs8111640) that encompassed the microsatellite marker D19S879 (logarithm of the odds score [Z]=2.03, recombination distance [θ]=0). Mutation profiling of positional-candidate genes detected a heterozygous, noncoding G-to-T transversion (c.-168G>T) located in the iron response element (IRE) of the gene coding for ferritin light chain (FTL) that cosegregated with cataract in the family. Serum ferritin levels were found to be abnormally elevated (~fourfold), without evidence of iron overload, in an affected family member; this was consistent with a diagnosis of hereditary hyperferritinemia-cataract syndrome. No sequence variations located within the IRE were detected in a cohort of 197 cases with age-related cataract and 102 controls with clear lenses. Expression studies of human FTL, and its mouse counterpart FTL1, in the lens detected RT-PCR amplicons containing full-length protein-coding regions, and strong in situ localization of FTL1 transcripts to the lens equatorial epithelium and peripheral cortex. CONCLUSIONS The data are consistent with robust transcription of FTL in the lens, and suggest that whereas variations clustered in the IRE of the FTL gene are directly associated with hereditary hyperferritinemia-cataract syndrome, such IRE variations are unlikely to play a significant role in the genetic etiology of age-related cataract.
Collapse
Affiliation(s)
- Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | | | - Chongfei Jin
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wenmin Sun
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
25
|
Lin HJ, Huang YC, Lin JM, Liao WL, Wu JY, Chen CH, Chou YC, Chen LA, Lin CJ, Tsai FJ. Novel susceptibility genes associated with diabetic cataract in a Taiwanese population. Ophthalmic Genet 2012; 34:35-42. [PMID: 23137000 DOI: 10.3109/13816810.2012.736590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To identify genetic variants that predispose to type 2 diabetes (T2D) with cataract. PATIENTS AND METHODS Genome-wide association study (GWAS) of T2D patients with cataract, as graded by Lens Opacities Classification System (LOCS). A total of 109 T2D patients with cataract score equal to or above 10 designated as the study group, 649 T2D patients with cataract score equal to or below 3 as the control group. Single nucleotide polymorphisms (SNPs) with p-values < 10(-5) were considered to be putatively associated with the diabetic cataract. RESULTS Fifteen SNPs were found to be putatively associated with diabetic cataract. These variants were located near the following genes: PPARD, CCDC102A, GBA3, NEDD9, GABRR1/2, RPS6KA2, tcag7.1163, TAC1, GALNTL1 and KIAA1671. We defined haplotype 1 to haplotype 4 from the alternative alleles of related polymorphisms. Distribution of haplotype 2 on chromosome 4 and haplotype 4 on chromosome 7 revealed significant differences (OR = 1.86 and 1.69, respectively; 95% confidence interval were 1.26-2.76 and 1.23-2.31, respectively). CONCLUSIONS The 15 loci coded on chromosomes 4, 6, 7, 14, 16 and 22 were associated with diabetic cataract. Gene functions are either with mechanisms of regulating blood sugar or formation of cataract. High linkage disequilibrium appeared on chromosome 4p15.31 and chromosome 7q21.3.
Collapse
Affiliation(s)
- Hui-Ju Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Singh R, Ram J, Kaur G, Prasad R. Galactokinase deficiency induced cataracts in Indian infants: identification of 4 novel mutations in GALK gene. Curr Eye Res 2012; 37:949-54. [PMID: 22632133 DOI: 10.3109/02713683.2012.688162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To establish the incidence and molecular basis of type II galactosemia in Indian infants presenting with congenital cataracts. METHODS 200 infants with congenital cataracts were screed for galactokinase (GALK) enzyme deficiency. GALK enzyme activity was measured using radioactive galactose-1-(14)C and mutations were studied using polymerase chain reaction (PCR), single strand conformational polymorphism (SSCP) and subsequent DNA sequencing. RESULTS 16 (8%) out of 200 infants with congenital cataracts were found to be GALK deficient with male: female:: 9:7. A significantly reduced GALK activity of 0.13 ± 0.04 µmoles/h/mL was observed in the galactosemia patients compared to 0.232 ± 0.07 µmoles/h/mL in the normal controls. A total of 5 distinct mutations were identified in GALK gene in five different patients out of which four were novel mutations viz. S79F, S79Y, S205S and F275Y. The functional significance of the mutations and splicing defects associated with them were investigated using different computer based applications. CONCLUSION The study highlighted the importance of GALK gene analysis in diagnosis of galactosemia in Indian population. It also revealed that the mutational profile of Indian GALK patients differs significantly from other populations studied. Low mutation detection rate observed in this study may be due to the fact that SSCP is a quite indirect and non-fullproof method of mutation detection.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
27
|
Merath KM, Chang B, Dubielzig R, Jeannotte R, Sidjanin DJ. A spontaneous mutation in Srebf2 leads to cataracts and persistent skin wounds in the lens opacity 13 (lop13) mouse. Mamm Genome 2011; 22:661-73. [PMID: 21858719 PMCID: PMC3251904 DOI: 10.1007/s00335-011-9354-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 08/01/2011] [Indexed: 01/19/2023]
Abstract
Lens opacity 13 (lop13) is a spontaneous, autosomal recessive mouse mutant that exhibits nuclear cataracts. Histological analysis revealed swollen lens fiber cells and the presence of bladder cells within the lens cortex, as well as morgagnian globules and liquefied material at the lens posterior. At 3 months of age, in addition to cataracts, lop13 mice also develop persistent skin wounds. Linkage analysis assigned the lop13 locus to a 1.1-Mb region on mouse Chr 15, encompassing 19 candidate genes. Sequence analysis identified a C3112T mutation in exon 18 of Sterol Regulatory Element Binding-Transcription Factor 2 (Srebf2) resulting in the R1038C substitution of a highly conserved arginine within the Srebf2 regulatory domain. Srebf2 belongs to a family of membrane-bound basic helix-loop-helix leucine zipper transcription factors that control the expression of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. The lack of complementation observed in Srebf2 ( lop13/GT ) compound heterozygotes carrying the Srebf2 gene trapped allele (Srebf2 ( GT )) provides genetic evidence that the identified C3112T substitution in Srebf2 is responsible for the lop13 phenotype. Gas chromatography analysis identified lower levels of cholesterol in the lop13 brain, liver, and lens when compared to wild-type mice. These findings suggest that lop13 is a hypomorphic mutation in Srebf2. As such, the lop13 mouse presents an invaluable in vivo model for studying the contribution of Srebf2 and cholesterol to maintaining the homeostasis of the lens and skin.
Collapse
Affiliation(s)
- Kate M. Merath
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Richard Dubielzig
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard Jeannotte
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, USA
| | - Duska J. Sidjanin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
28
|
Zhou Z, Wang B, Luo Y, Zhou G, Hu S, Zhang H, Ma X, Qi Y. Major intrinsic protein (MIP) polymorphism is associated with age-related cataract in Chinese. Mol Vis 2011; 17:2292-6. [PMID: 21921980 PMCID: PMC3171496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/19/2011] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Age-related cataract (ARC) is a complex multi-factorial disorder involving several genetic and environmental factors. The major intrinsic protein of lens fiber gene (MIP) encodes the most abundant junctional membrane protein in the mature lens and plays a critical role in maintainace of lens normal structure and internal circulation. To determine the relationship between single nucleotide polymorphisms (SNPs) in MIP and the susceptibility to ARC in a Chinese population, we conducted this case-control study. METHODS A total of 164 unrelated ARC patients and 132 normal controls were involved in the study. All participants completed full physical and ophthalmic examinations and provided a blood sample for DNA extraction. Seven SNPs (rs2269348, rs61759527, c.-4T>C, rs77163805, rs74641138, rs35033450, and rs36032520) in MIP were amplified by polymerase chain reaction (PCR) and then sequenced. Statistical analysis was performed using SNPstats. RESULTS Polymorphisms rs61759527, rs77163805, rs35033450, and rs36032520 were not detected in all 296 subjects. There were no statistical differences in genotype or allele frequency of rs2269348 and rs74641138 between ARC cases and controls. But in c.-4C>T, cataract patients had a higher TC genotype and C allele frequencies (p=0.0018 and p=0.017, respectively) compared to healthy controls. The haplotype CCG of rs2269348, c.-4T>C and rs74641138 also exhibited a significantly higher distribution in cases than controls (OR=8.83, p=0.0024). CONCLUSIONS Our findings indicate that the genotype TC in polymorphism c.-4T>C and haplotype CCG of rs2269348, c.-4T>C, and rs74641138 in MIP may attach an additional genetic risk factor for ARC in Chinese. This is the first association study about SNPs in MIP and susceptibility to ARC in Chinese population.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binbin Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yongfeng Luo
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangkai Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Hu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhang
- 2007 Clinical Medicine, Harbin Medical University, Harbin, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yanhua Qi
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Churchill A, Graw J. Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond B Biol Sci 2011; 366:1234-49. [PMID: 21402583 DOI: 10.1098/rstb.2010.0227] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cataracts (opacities of the lens) are frequent in the elderly, but rare in paediatric practice. Congenital cataracts (in industrialized countries) are mainly caused by mutations affecting lens development. Much of our knowledge about the underlying mechanisms of cataractogenesis has come from the genetic analysis of affected families: there are contributions from genes coding for transcription factors (such as FoxE3, Maf, Pitx3) and structural proteins such as crystallins or connexins. In addition, there are contributions from enzymes affecting sugar pathways (particularly the galactose pathway) and from a quite unexpected area: axon guidance molecules like ephrins and their receptors. Cataractous mouse lenses can be identified easily by visual inspection, and a remarkable number of mutant lines have now been characterized. Generally, most of the mouse mutants show a similar phenotype to their human counterparts; however, there are some remarkable differences. It should be noted that many mutations affect genes that are expressed not only in the lens, but also in tissues and organs outside the eye. There is increasing evidence for pleiotropic effects of these genes, and increasing consideration that cataracts may act as early and readily detectable biomarkers for a number of systemic syndromes.
Collapse
|
30
|
Tan W, Hou S, Jiang Z, Hu Z, Yang P, Ye J. Association of EPHA2 polymorphisms and age-related cortical cataract in a Han Chinese population. Mol Vis 2011; 17:1553-8. [PMID: 21686326 PMCID: PMC3115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/04/2011] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The gene for Eph-receptor tyrosinekinase-type A2 (EPHA2) has been shown to be involved in the pathogenesis of age-related cataract (ARC). The aim of this study was to examine whether EPHA2 polymorphisms were associated with the susceptibility to age-related cortical cataract in a Han Chinese population. METHODS Five single-nucleotide polymorphisms (SNPs)-rs3768293, rs3754334, rs7548209, rs707455, and rs477558-in the EPHA2 gene were genotyped in 422 Han Chinese patients with age-related cortical cataract and 317 age-, sex-, and ethnically matched healthy controls using a PCR restriction fragment length polymorphism (PCR-RFLP) assay. Data were analyzed by χ(2) analysis. RESULTS The results showed that the five analyzed polymorphisms in EPHA2 were in Hardy-Weinberg equilibrium both in the patients and in the controls. The frequency of the rs477558 AA genotype was significantly increased in ARC patients compared with controls (χ(2)=8.649, pc=0.045, odds ratio [OR] 1.555, 95% CI 1.158 to 2.089). The frequency of the rs477558 AG genotype was significantly decreased in ARC patients compared with controls (χ(2)=9.281, pc=0.030, OR 0.626, 95% CI 0.463 to 0.847). Significantly higher frequencies of the GG genotype and the G allele of rs7548209 were observed in ARC patients compared with controls (χ(2)=10.430, pc=0.015, OR 1.660, 95% CI 1.219 to 2.261 and χ(2)=8.537, pc=0.015, OR 1.486, 95% CI 1.138 to 1.940, respectively). On the other hand, significantly decreased frequencies of the rs7548209 CG genotype and the C allele were observed in ARC patients compared with controls (χ(2)=9.999, pc=0.030, OR 0.603, 95% CI 0.440 to 0.826 and χ(2)=8.537, pc=0.015, OR 0.673, 95% CI 0.515 to 0.879, respectively). There was no difference in the frequencies of the genotype and allele of the rs3768293, rs3754334, and rs707455 SNPs between the patients with ARC and the controls. CONCLUSIONS Our study suggests that both SNP rs477558 and SNP rs7548209 of EPHA2 are associated with age-related cortical cataract in a Han Chinese population.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, Research Institute of Field Surgery, Da Ping Hospital, Third Military Medical University, Chongqing, P.R. China,Chongqing Key Laboratory of Ophthalmology, Chongqing, P.R. China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China,Chongqing Key Laboratory of Ophthalmology, Chongqing, P.R. China
| | - Zhengxuan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China,Chongqing Key Laboratory of Ophthalmology, Chongqing, P.R. China
| | - Zheng Hu
- Department of Ophthalmology, Research Institute of Field Surgery, Da Ping Hospital, Third Military Medical University, Chongqing, P.R. China,Chongqing Key Laboratory of Ophthalmology, Chongqing, P.R. China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China,Chongqing Key Laboratory of Ophthalmology, Chongqing, P.R. China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Field Surgery, Da Ping Hospital, Third Military Medical University, Chongqing, P.R. China,Chongqing Key Laboratory of Ophthalmology, Chongqing, P.R. China
| |
Collapse
|
31
|
Hennermann JB, Schadewaldt P, Vetter B, Shin YS, Mönch E, Klein J. Features and outcome of galactokinase deficiency in children diagnosed by newborn screening. J Inherit Metab Dis 2011; 34:399-407. [PMID: 21290184 DOI: 10.1007/s10545-010-9270-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
Galactokinase deficiency (GALK-D), an autosomal recessive disorder in the Leloir pathway, results in accumulation of galactose, galactitol, and galactonate and leads to early onset of juvenile bilateral cataract. Highest incidence of GALK-D is found in Romani populations. The migration wave due to the Yugoslavian civil war has changed the spectrum of inborn errors of metabolism within Europe. Hence, newborn screening (NBS) in the Berlin region, performed from 1991 until 2010 in 683,675 neonates, revealed an increased incidence of GALK-D of 1:40,000, comparable to that of galactose-1-phosphate-uridyltransferase deficiency. A total of 44% of GALK-D patients were of Romani origin. All patients of Bosnian or Serbian origin were homozygous for the Romani founder mutation p.P28T. Detection of GALK-D by NBS and early start of galactose-restricted diet resulted in regression or prevention of cataracts. Slight cataracts without visual impairment occurred in 50% of the patients, 56% of whom were noncompliant. Further clinical symptoms, e.g., hypoglycemia, mental retardation, microcephaly, and failure to thrive, were associated with noncompliance. With treatment, galactose in blood decreased from 8,892 ± 5,243 to 36.5 ± 49.3 μmol/l, galactose in urine from 31,820 ± 32,103 to 30.0 ± 36.1 μmol/mmol creatinine, galactitol in RBC from 1,584 ± 584 to 12.3 ± 9.4 μmol/l, and galactitol in urine from 11,724 ± 4,496 to 236 ± 116 μmol/mmol creatinine. This is the first presentation of outcome and clinical features in GALK-D patients diagnosed by NBS. As our data suggest, GALK-D should be considered for inclusion in NBS in populations expected to have substantial numbers of GALK-D carriers, e.g., Yugoslavian immigrants.
Collapse
Affiliation(s)
- Julia B Hennermann
- Department of Pediatrics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Zhou Z, Wang B, Hu S, Zhang C, Ma X, Qi Y. Genetic variations in GJA3, GJA8, LIM2, and age-related cataract in the Chinese population: a mutation screening study. Mol Vis 2011; 17:621-6. [PMID: 21386927 PMCID: PMC3049737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/15/2011] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate the role of genetic variations in three known cataract-associated genes, gap junction protein α3 (GJA3), gap junction protein α8 (GJA8), lens intrinsic membrane protein 2 (LIM2), encoding lens fiber cell membrane proteins in the development of age-related cataracts. METHODS One hundred and forty-five sporadic age-related cataract patients and one hundred and fifty-six unrelated random healthy controls participated in this study. Genomic DNA was extracted from peripheral blood leukocytes. All exons of GJA3, GJA8, and LIM2 were sequenced after being amplified by polymerase chain reaction (PCR). The functional consequences of the mutations were analyzed using PolyPhen. RESULTS We found five novel variations in 145 patients and none of them presented in the 156 controls. There are two variations in GJA3 (c.-39C>G, c. 415G>A); one in GJA8 (c. 823G>A), and two in LIM2 (c.57G>A, c.67A>C). PolyPhen predicted that the LIM2 c.67A>C mutation may have potential pathogenicity. CONCLUSIONS The genetic mutation in GJA3, GJA8, and LIM2 may slightly contribute to the development of age-related cataracts. This study showed a potential relationship between lens fiber cell membrane protein genes and the development of age-related cataracts in the Chinese population.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binbin Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Shanshan Hu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunmei Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yanhua Qi
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis 2010; 16:2007-15. [PMID: 21042563 PMCID: PMC2965572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/04/2010] [Indexed: 11/07/2022] Open
Abstract
Lens opacities, or cataract(s), may be inherited as a classic Mendelian disorder usually with early-onset or, more commonly, acquired with age as a multi-factorial or complex trait. Many genetic forms of cataract have been described in mice and other animal models. Considerable progress has been made in mapping and identifying the genes and mutations responsible for inherited forms of cataract, and genetic determinants of age-related cataract are beginning to be discovered. To provide a convenient and accurate summary of current information focused on the increasing genetic complexity of Mendelian and age-related cataract we have created an online chromosome map and reference database for cataract in humans and mice (Cat-Map).
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| |
Collapse
|
34
|
Zuercher J, Neidhardt J, Magyar I, Labs S, Moore AT, Tanner FC, Waseem N, Schorderet DF, Munier FL, Bhattacharya S, Berger W, Kloeckener-Gruissem B. Alterations of the 5'untranslated region of SLC16A12 lead to age-related cataract. Invest Ophthalmol Vis Sci 2010; 51:3354-61. [PMID: 20181839 PMCID: PMC2904002 DOI: 10.1167/iovs.10-5193] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. Knowledge of genetic factors predisposing to age-related cataract is very limited. The aim of this study was to identify DNA sequences that either lead to or predispose for this disease. METHODS. The candidate gene SLC16A12, which encodes a solute carrier of the monocarboxylate transporter family, was sequenced in 484 patients with cataract (134 with juvenile cataract, 350 with age-related cataract) and 190 control subjects. Expression studies included luciferase reporter assay and RT-PCR experiments. RESULTS. One patient with age-related cataract showed a novel heterozygous mutation (c.-17A>G) in the 5'untranslated region (5'UTR). This mutation is in cis with the minor G-allele of the single nucleotide polymorphism (SNP) rs3740030 (c.-42T/G), also within the 5'UTR. Using a luciferase reporter assay system, a construct with the patient's haplotype caused a significant upregulation of luciferase activity. In comparison, the SNP G-allele alone promoted less activity, but that amount was still significantly higher than the amount of the common T-allele. Analysis of SLC16A12 transcripts in surrogate tissue demonstrated striking allele-specific differences causing 5'UTR heterogeneity with respect to sequence and quantity. These differences in gene expression were mirrored in an allele-specific predisposition to age-related cataract, as determined in a Swiss population (odds ratio approximately 2.2; confidence intervals, 1.23-4.3). CONCLUSIONS. The monocarboxylate transporter SLC16A12 may contribute to age-related cataract. Sequences within the 5'UTR modulate translational efficiency with pathogenic consequences.
Collapse
Affiliation(s)
- Jurian Zuercher
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - John Neidhardt
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Istvan Magyar
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Stephan Labs
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anthony T. Moore
- Moorfields Eye Hospital London, London, United Kingdom
- UCL-Institute of Ophthalmology, London, United Kingdom
| | - Felix C. Tanner
- the Department of Cardiology, Cardiovascular Center, University of Zurich, Zurich, Switzerland
| | | | - Daniel F. Schorderet
- IRO-Institute for Research in Ophthalmology, EPFL-École polytechnique fédérale of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Francis L. Munier
- Jules Gonin Eye Hospital, Faculté de Biologie et Médecine de L'Université de Lausanne, Switzerland; and
| | | | - Wolfgang Berger
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Barbara Kloeckener-Gruissem
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- the Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Liu Y, Ke M, Yan M, Guo S, Mothobi ME, Chen Q, Zheng F. Association between gap junction protein-alpha 8 polymorphisms and age-related cataract. Mol Biol Rep 2010; 38:1301-7. [PMID: 20582632 DOI: 10.1007/s11033-010-0230-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/11/2010] [Indexed: 01/27/2023]
Abstract
GJA8 plays an important role in lens growth and transparency. Therefore, we hypothesized that two single nucleotide polymorphisms (SNPs) in GJA8 might be associated with age-related cataract. We investigated the SNPs rs1495960 and rs9437983 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing, in 96 age-related cataract patients, and 208 gender- and age-matched healthy controls. No significant differences between cases and controls were seen in genotype or allele distributions of rs1495960 (P > 0.05). The allele distribution of rs9437983 was different between cases and controls, but no difference was detected in its genotype distribution. Cataract patients had a significantly lower G-G haplotype frequency (4.9% vs. 15.5%, P = 0.0001), and a significantly higher G-A haplotype frequency (45.6% vs. 36.4%, P = 0.030) than controls. Limiting to nuclear cataract cases significantly increased the differences between cases and controls for G-G and G-A haplotypes. These results support that the GJA8 gene may be a novel susceptibility gene for age-related cataracts.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In most organisms, productive utilization of galactose requires the highly conserved Leloir pathway of galactose metabolism. Yet, if this metabolic pathway is perturbed due to congenital deficiencies of the three associated enzymes, or an overwhelming presence of galactose, this monosaccharide which is abundantly present in milk and many non-dairy foodstuffs, will become highly toxic to humans and animals. Despite more than four decades of intense research, little is known about the molecular mechanisms of galactose toxicity in human patients and animal models. In this contemporary review, we take a unique approach to present an overview of galactose toxicity resulting from the three known congenital disorders of galactose metabolism and from experimental hypergalactosemia. Additionally, we update the reader about research progress on animal models, as well as advances in clinical management and therapies of these disorders.
Collapse
Affiliation(s)
- Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
37
|
|
38
|
Common variants on chromosome 2 and risk of primary open-angle glaucoma in the Afro-Caribbean population of Barbados. Proc Natl Acad Sci U S A 2009; 106:17105-10. [PMID: 19805132 DOI: 10.1073/pnas.0907564106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of blindness worldwide. Although a number of genetic loci have shown association or genetic linkage to monogenic forms of POAG, the identified genes and loci do not appear to have a major role in the common POAG phenotype. We seek to identify genetic loci that appear to be major risk factors for POAG in the Afro-Caribbean population of Barbados, West Indies. We performed linkage analyses in 146 multiplex families ascertained through the Barbados Family Study of Glaucoma (BFSG) and identified a strong linkage signal on chromosome 2p (logarithm of odds score = 6.64 at = 0 with marker D2S2156). We subsequently performed case-control analyses using unrelated affected individuals and unaffected controls. A set of SNPs on chromosome 2p was evaluated in two independent groups of BFSG participants, a discovery group (130 POAG cases, 65 controls) and a replication group (122 POAG cases, 65 controls), and a strong association was identified with POAG and rs12994401 in both groups (P < 3.34 E-09 and P < 1.21E-12, respectively). The associated SNPs form a common disease haplotype. In summary, we have identified a locus with a major impact on susceptibility to the common POAG phenotype in an Afro-Caribbean population in Barbados. Our approach illustrates the merit of using an isolated population enriched with common disease variants as an efficient method to identify genetic underpinning of POAG.
Collapse
|
39
|
Jun G, Guo H, Klein BEK, Klein R, Wang JJ, Mitchell P, Miao H, Lee KE, Joshi T, Buck M, Chugha P, Bardenstein D, Klein AP, Bailey-Wilson JE, Gong X, Spector TD, Andrew T, Hammond CJ, Elston RC, Iyengar SK, Wang B. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet 2009; 5:e1000584. [PMID: 19649315 PMCID: PMC2712078 DOI: 10.1371/journal.pgen.1000584] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/02/2009] [Indexed: 12/13/2022] Open
Abstract
Age-related cataract is a major cause of blindness worldwide, and cortical cataract is the second most prevalent type of age-related cataract. Although a significant fraction of age-related cataract is heritable, the genetic basis remains to be elucidated. We report that homozygous deletion of Epha2 in two independent strains of mice developed progressive cortical cataract. Retroillumination revealed development of cortical vacuoles at one month of age; visible cataract appeared around three months, which progressed to mature cataract by six months. EPHA2 protein expression in the lens is spatially and temporally regulated. It is low in anterior epithelial cells, upregulated as the cells enter differentiation at the equator, strongly expressed in the cortical fiber cells, but absent in the nuclei. Deletion of Epha2 caused a significant increase in the expression of HSP25 (murine homologue of human HSP27) before the onset of cataract. The overexpressed HSP25 was in an underphosphorylated form, indicating excessive cellular stress and protein misfolding. The orthologous human EPHA2 gene on chromosome 1p36 was tested in three independent worldwide Caucasian populations for allelic association with cortical cataract. Common variants in EPHA2 were found that showed significant association with cortical cataract, and rs6678616 was the most significant in meta-analyses. In addition, we sequenced exons of EPHA2 in linked families and identified a new missense mutation, Arg721Gln, in the protein kinase domain that significantly alters EPHA2 functions in cellular and biochemical assays. Thus, converging evidence from humans and mice suggests that EPHA2 is important in maintaining lens clarity with age. Cataract is the leading cause of blindness. Cataract may form at any age, but the peak incidence is bimodal—in the perinatal period or later than 50 years of age. The early onset forms follow Mendelian inheritance patterns and are rare. Age-related cataract accounts for 18 million cases of blindness and 59 million cases of reduced vision worldwide. Among three types of age-related cataract, cortical cataract is known to be highly heritable, although few genes have been linked to its etiology. We report here that EPHA2 is associated with cortical cataract. EPHA2 is expressed in mouse and human cortical lens fiber cells, and homozygous deletion of Epha2 in two independent strains of mice led to development of cataract that progressed with age. Common and rare variants including a missense mutation in the EPHA2 gene were associated for cortical cataract in three different Caucasian populations. Our study identified EPHA2 as a gene for human age-related cataract and established Epha2 knockout mice as a model for progressive cortical cataract.
Collapse
MESH Headings
- Age Factors
- Aged
- Animals
- Cataract/genetics
- Cataract/metabolism
- Cataract/pathology
- Chromosomes, Human, Pair 1/genetics
- Cohort Studies
- Disease Models, Animal
- Female
- Humans
- Lens, Crystalline/chemistry
- Lens, Crystalline/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Molecular Sequence Data
- Mutation
- Polymorphism, Single Nucleotide
- Protein Structure, Tertiary
- Receptor, EphA2/chemistry
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Sequence Alignment
- Visual Cortex/chemistry
- Visual Cortex/metabolism
- White People/genetics
Collapse
Affiliation(s)
- Gyungah Jun
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Hong Guo
- Rammelkamp Center for Research, Department of Pharmacology and Ireland Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jie Jin Wang
- Centre for Vision Research, Westmead Millennium Institute, Westmead Hospital, Department of Ophthalmology, University of Sydney, Sydney, Australia
- Centre for Eye Research Australia and Department of Ophthalmology, University of Melbourne, Melbourne, Australia
| | - Paul Mitchell
- Centre for Vision Research, Westmead Millennium Institute, Westmead Hospital, Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Hui Miao
- Rammelkamp Center for Research, Department of Pharmacology and Ireland Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Kristine E. Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Tripti Joshi
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Preeti Chugha
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - David Bardenstein
- Ocular Oncology Service, Department of Ophthalmology and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Alison P. Klein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joan E. Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley/University of California San Francisco Joint Bioengineering Graduate Program, University of California Berkeley, Berkeley, California, United States of America
| | - Tim D. Spector
- King's College London, St Thomas' Hospital Campus, Twin Research and Genetic Epidemiology Unit, London, United Kingdom
| | - Toby Andrew
- King's College London, St Thomas' Hospital Campus, Twin Research and Genetic Epidemiology Unit, London, United Kingdom
| | - Christopher J. Hammond
- King's College London, St Thomas' Hospital Campus, Twin Research and Genetic Epidemiology Unit, London, United Kingdom
| | - Robert C. Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (SKI); (BW)
| | - Bingcheng Wang
- Rammelkamp Center for Research, Department of Pharmacology and Ireland Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (SKI); (BW)
| |
Collapse
|
40
|
Chu X, Li N, Liu X, Li D. Functional studies of rat galactokinase. J Biotechnol 2009; 141:142-6. [PMID: 19433218 DOI: 10.1016/j.jbiotec.2009.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/05/2009] [Accepted: 03/16/2009] [Indexed: 11/18/2022]
Abstract
Galactokinase is an ATP-dependent enzyme that catalyzes the phosphorylation of galactose to form galactose-1-phosphate. The defect in human galactokinase can result in the disease of galactosemia. On the other hand, the control of galactose-1-phosphate production by inhibiting galactokinase is a potential therapy for another disease referred to as classic galactosemia. Many pharmaceutically important compounds derive from carbohydrate-containing natural products, and glycorandomization is one of the most efficient approaches for complex secondary metabolites. Therefore, it is important to further understand the interaction between galactokinase and its substrate or substrate analogs. In the present study, we cloned and purified both N- and C-terminal His-tagged rat galactokinase. We then constructed and purified a variety of variant enzymes, which were studied using kinetics with galactose and its analogs as substrates. We found that the binding of the ATP may induce conformational change to the enzyme so that the enzyme can bind galactose specifically. Asp186 was found to be a possible catalytic residue. The mutants were incubated with fluorescent trinitrophenyl-ATP for the characterization of their ATP binding sites. Various other substrate analogs, aminoglycosides and flavanoids were also tested and found to be competitive inhibitors of rat galactokinase.
Collapse
Affiliation(s)
- Xiusheng Chu
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
41
|
The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis 2008; 14:2042-55. [PMID: 19005574 PMCID: PMC2582197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/07/2008] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Cataracts are a clinically and genetically heterogeneous disorder affecting the ocular lens, and the leading cause of treatable vision loss and blindness worldwide. Here we identify a novel gene linked with a rare autosomal dominant form of childhood cataracts segregating in a four generation pedigree, and further show that this gene is likely associated with much more common forms of age-related cataracts in a case-control cohort. METHODS Genomic DNA was prepared from blood leukocytes, and genotyping was performed by means of single nucleotide polymorphism (SNP) markers, and short tandem repeat (STR) markers. Linkage analyses were performed with the GeneHunter and MLINK programs, and association analyses were performed with the Haploview and Exemplar programs. Mutation detection was achieved by PCR amplification of exons and di-deoxy cycle-sequencing. RESULTS Genome-wide linkage analysis with SNP markers, identified a likely disease-haplotype interval on chromosome 1p (rs707455-[approximately 10 Mb]-rs477558). Linkage to chromosome 1p was confirmed using STR markers D1S2672 (LOD score [Z]=3.56, recombination distance [theta]=0), and D1S2697 (Z=2.92, theta=0). Mutation profiling of positional-candidate genes detected a heterozygous transversion (c.2842G>T) in exon 17 of the gene coding for Eph-receptor type-A2 (EPHA2) that cosegregated with the disease. This missense change was predicted to result in the non-conservative substitution of a tryptophan residue for a phylogenetically conserved glycine residue at codon 948 (p.G948W), within a conserved cytoplasmic domain of the receptor. Candidate gene association analysis further identified SNPs in the EPHA2 region of chromosome 1p that were suggestively associated with age-related cataracts (p=0.007 for cortical cataracts, and p=0.01 for cortical and/or nuclear cataracts). CONCLUSIONS These data provide the first evidence that EPHA2, which functions in the Eph-ephrin bidirectional signaling pathway of mammalian cells, plays a vital role in maintaining lens transparency.
Collapse
|
42
|
Unal M, Güven M, Batar B, Ozaydin A, Sarici A, Devranoğlu K. Polymorphisms of DNA repair genes XPD and XRCC1 and risk of cataract development. Exp Eye Res 2007; 85:328-34. [PMID: 17637462 DOI: 10.1016/j.exer.2007.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
The association between oxidative or ultraviolet (UV) light induced DNA damage in the lens epithelium and the development of lens opacities, and the existence of DNA repair in lens epithelial cells have been reported. Polymorphisms of DNA repair enzymes may affect repair efficiency. In this study, we aimed to determine the frequency of polymorphisms in two DNA repair enzyme genes, xeroderma pigmentosum complementation group D (XPD) codon 751 and X-ray cross-complementing group 1 (XRCC1) codon 399, in a sample of Turkish patients with maturity onset cataract. By using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), we analysed XRCC1-Arg399Gln and XPD-Lys751Gln polymorphisms in 195 patients with cataract (75 patients with cortical, 53 with nuclear, 37 with posterior subcapsular, and 30 with mixed type) and in 194 otherwise healthy control group of similar age. There was a significant difference between frequencies for XPD-751 Gln/Gln genotype in cataract patients (12%) and healthy controls (20%) (P=0.008, OR=0.40, 95% CI=0.20-0.81). After stratification by the cataract subtypes, XPD-751 Gln/Gln genotype was found to be significantly different in patients with cortical (4%) type cataract in respect to control subjects (20%) (P=0.038, OR=0.16, 95% CI=0.04-0.64). In addition, the allele frequency of the C (Gln)-allele of XPD-Lys751Gln was found to be significantly different in mixed type cataract group (P=0.008, OR=0.48, 95% CI: 0.26-0.90). No statistically significant difference was found for the genotypic and allelic distributions of the polymorphisms in XRCC1 gene between the groups. These findings suggest that polymorphism in XPD codon 751 may be associated with the development of maturity onset cataract.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Ophthalmology, Akdeniz University Medical Faculty, Antalya, Turkey.
| | | | | | | | | | | |
Collapse
|
43
|
Wolf N, Penn P, Pendergrass W, Van Remmen H, Bartke A, Rabinovitch P, Martin GM. Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Exp Eye Res 2005; 81:276-85. [PMID: 16129095 DOI: 10.1016/j.exer.2005.01.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/23/2022]
Abstract
Five mouse models with known alterations of resistance to oxidative damage were compared by slit lamp examination for the presence and degree of advancement of age-related cataract in young adult and old animals along with wild type controls. A group of young and old normal C57BL/6Jax mice were examined first to constitute a standard, and they were found to exhibit age-related cataract development. Following this, four models on the C57BL/6 background with imposed genetic alterations affecting anti-oxidant enzyme presence or activity, and one outbred model in which a deletion blocked the growth hormone/IGF-1 axis, were similarly examined. There was no evidence of foetal or juvenile cataract development in any of these models, and an age-related severity for lens opacities was shown between young adult and old mice in all groups. Model 1, mice null for the anti-oxidant gene glutathione peroxidase-1 (GPX1) had significantly advanced cataracts in older mice vs. same age controls. In mouse model 2 hemizygous knockout of SOD2 (MnSOD) did not affect age-related cataract development. In model 3 combining the GPX1 and SOD2 deficiencies in the same animal did not advance cataract development beyond that of the GPX1 null alone. In model 4 the addition of anti-oxidant protection in the lens by transfection of human catalase targeted only to the mitochondria resulted in a significant delay in cataract development. The 5th model, growth hormone receptor knockout (GHR-/-) mice, also demonstrated a significant reduction in age-related cataract development, as well as dwarfism. These findings, in general, support the oxidative theory of age-related cataract development. The exception, the partial deletion of SOD2 in the hemizygous KO model, probably did not represent a sufficiently severe deprivation of anti-oxidant protection to produce pathologic changes in the lens.
Collapse
Affiliation(s)
- Norman Wolf
- Department of Pathology, University of Washington School of Medicine, Box 3557470, University of Washington, Seattle, WA 98195-7470, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cataract, a leading cause of blindness worldwide, is a multifactorial eye disease. In developing countries the incidence of cataract among young generations is not uncommon due to malnutrition, excess exposure to ultraviolet radiation and so on. In developed countries, age-related cataract affecting the population over 65 years of age is a major concern. Oxidative stress was suggested to inflict damage to the lens and induce opacification, and a variety of antioxidant nutrients were tested for the prevention or delay of cataract development. Although promising results were obtained in animal studies of various antioxidants, epidemiological studies on human populations do not seem to support their protective effects unequivocally. It is unlikely that age-related cataract in man, similar to the ageing process itself, will be prevented or delayed by therapeutic drugs in the foreseeable future. At present, keeping a health-conscious life style (i.e., no smoking) may be the most effective and least expensive strategy to prevent the onset of age-related cataract.
Collapse
Affiliation(s)
- Hitoshi Shichi
- Kresge Eye Institute, Department of Ophthalmology, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
45
|
Congdon N, Broman KW, Lai H, Munoz B, Bowie H, Gilbert D, Wojciechowski R, West SK. Cortical, but not posterior subcapsular, cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. Ophthalmology 2005; 112:73-7. [PMID: 15629823 PMCID: PMC3102010 DOI: 10.1016/j.ophtha.2004.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/01/2004] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To quantify the risk for age-related cortical cataract and posterior subcapsular cataract (PSC) associated with having an affected sibling after adjusting for known environmental and personal risk factors. DESIGN Sibling cohort study. PARTICIPANTS Participants in the ongoing Salisbury Eye Evaluation (SEE) study (n = 321; mean age, 78.1+/-4.2 years) and their locally resident siblings (n = 453; mean age, 72.6+/-7.4 years) were recruited at the time of Rounds 3 and 4 of the SEE study. INTERVENTION/TESTING METHODS: Retroillumination photographs of the lens were graded for the presence of cortical cataract and PSC with the Wilmer grading system. The residual correlation between siblings' cataract grades was estimated after adjustment for a number of factors (age; gender; race; lifetime exposure to ultraviolet-B light; cigarette, alcohol, estrogen, and steroid use; serum antioxidants; history of diabetes; blood pressure; and body mass index) suspected to be associated with the presence of cataract. RESULTS The average sibship size was 2.7 per family. Multivariate analysis revealed the magnitude of heritability (h(2)) for cortical cataract to be 24% (95% CI, 6%-42%), whereas that for PSC was not statistically significant (h(2) 4%; 95% CI, 0%-11%) after adjustment for the covariates. The model revealed that increasing age, female gender, a history of diabetes, and black race increased the odds of cortical cataract, whereas higher levels of provitamin A were protective. A history of diabetes and steroid use increased the odds for PSC. CONCLUSIONS This study is consistent with a significant genetic effect for age-related cortical cataract but not PSC.
Collapse
Affiliation(s)
- Nathan Congdon
- The Johns Hopkins University Schools of Medicine and Public Health, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Manson FDC, Trump D, Read AP, Black GCM. Inherited eye disease: cause and late effect. Trends Mol Med 2005; 11:449-55. [PMID: 16153893 DOI: 10.1016/j.molmed.2005.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/12/2005] [Accepted: 08/16/2005] [Indexed: 01/14/2023]
Abstract
Molecular genetics has provided relatively few insights into late-onset eye disorders, but epidemiological data indicate that genetic factors are important in some late-onset eye disorders that cause major health burdens. Much clinical genetic research is based on the belief that developmental and late-onset disorders are not necessarily the result of defects in different genes, but are often caused by different mutations in the same collection of genes. Thus, mutations that either abolish or radically change gene function might cause early-onset disorders, whereas more-subtle changes in gene expression might underlie late-onset diseases. We present arguments and examples that indicate that this principle might be a fruitful guide to investigating the causes of late-onset eye disorders.
Collapse
Affiliation(s)
- Forbes D C Manson
- Academic Unit of Eye and Vision Science, Manchester Royal Eye Hospital, School of Medicine, University of Manchester, Oxford Road, Manchester M13 9WH, UK
| | | | | | | |
Collapse
|
47
|
Thoden JB, Timson DJ, Reece RJ, Holden HM. Molecular structure of human galactokinase: implications for type II galactosemia. J Biol Chem 2004; 280:9662-70. [PMID: 15590630 DOI: 10.1074/jbc.m412916200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galactokinase functions in the Leloir pathway for galactose metabolism by catalyzing the MgATP-dependent phosphorylation of the C-1 hydroxyl group of alpha-D-galactose. The enzyme is known to belong to the GHMP superfamily of small molecule kinases and has attracted significant research attention for well over 40 years. Approximately 20 mutations have now been identified in human galactokinase, which result in the diseased state referred to as Type II galactosemia. Here we report the three-dimensional architecture of human galactokinase with bound alpha-D-galactose and Mg-AMPPNP. The overall fold of the molecule can be described in terms of two domains with the active site wedged between them. The N-terminal domain is dominated by a six-stranded mixed beta-sheet whereas the C-terminal motif contains six alpha-helices and two layers of anti-parallel beta-sheet. Those residues specifically involved in sugar binding include Arg37, Glu43, His44, Asp46, Gly183, Asp186, and Tyr236. The C-1 hydroxyl group of alpha-D-galactose sits within 3.3 A of the gamma-phosphorus of the nucleotide and 3.4 A of the guanidinium group of Arg37. The carboxylate side chain of Asp186 lies within approximately 3.2 A of the C-2 hydroxyl group of alpha-D-galactose and the guanidinium group of Arg37. Both Arg37 and Asp186 are strictly conserved among both prokaryotic and eukaryotic galactokinases. In addition to providing molecular insight into the active site geometry of the enzyme, the model also provides a structural framework upon which to more fully understand the consequences of the those mutations known to give rise to Type II galactosemia.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
48
|
Hejtmancik JF, Kantorow M. Molecular genetics of age-related cataract. Exp Eye Res 2004; 79:3-9. [PMID: 15183095 PMCID: PMC1351356 DOI: 10.1016/j.exer.2004.03.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/05/2004] [Indexed: 12/26/2022]
Abstract
Advances in molecular biological and genetic technology have greatly accelerated elucidation of the genetic contribution to age-related cataract. Epidemiological studies have documented tendencies for cataracts to occur more frequently in relatives of cataract patients than in the general population, genetic studies have demonstrated contributory roles of some specific genes in age related cataract in small populations, and molecular studies have shown changes in expression of specific genes in cataractous lenses. Together, these studies are beginning to provide a conceptual framework for understanding age-related cataracts.
Collapse
Affiliation(s)
- J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Kantorow
- Department of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, P.O. Box 3091, Boca Raton, FL 33431-0991, USA
- * Corresponding author. E-mail address: (M. Kantorow)
| |
Collapse
|
49
|
Congdon N, Broman KW, Lai H, Munoz B, Bowie H, Gilber D, Wojciechowski R, Alston C, West SK. Nuclear cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. Invest Ophthalmol Vis Sci 2004; 45:2182-6. [PMID: 15223793 PMCID: PMC3092733 DOI: 10.1167/iovs.03-1163] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To quantify the association between siblings in age-related nuclear cataract, after adjusting for known environmental and personal risk factors. METHODS All participants (probands) in the Salisbury Eye Evaluation (SEE) project and their locally resident siblings underwent digital slit lamp photography and were administered a questionnaire to assess risk factors for cataract including: age, gender, lifetime sun exposure, smoking and diabetes history, and use of alcohol and medications such as estrogens and steroids. In addition, blood pressure, body mass index, and serum antioxidants were measured in all participants. Lens photographs were graded by trained observers masked to the subjects' identity, using the Wilmer Cataract Grading System. The odds ratio for siblings for affectedness with nuclear cataract and the sibling correlation of nuclear cataract grade, after adjusting for covariates, were estimated with generalized estimating equations. RESULTS Among 307 probands (mean age, 77.6 +/- 4.5 years) and 434 full siblings (mean age, 72.4 +/- 7.4 years), the average sibship size was 2.7 per family. After adjustment for covariates, the probability of development of nuclear cataract was significantly increased (odds ratio [OR] = 2.07, 95% confidence interval [CI], 1.30-3.30) among individuals with a sibling with nuclear cataract (nuclear grade > or = 3.0). The final fitted model indicated a magnitude of heritability for nuclear cataract of 35.6% (95% CI: 21.0%-50.3%) after adjustment for the covariates. CONCLUSIONS Findings in this study are consistent with a genetic effect for age-related nuclear cataract, a common and clinically significant form of lens opacity.
Collapse
Affiliation(s)
- Nathan Congdon
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 2004; 11:784-93. [PMID: 14512969 DOI: 10.1038/sj.ejhg.5201046] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hereditary cataract is a clinically and genetically heterogeneous lens disease that accounts for a significant proportion of visual impairment and blindness in childhood. The alphaA-crystallin (CRYAA) gene (CRYAA) encodes a member of the small-heat-shock protein (sHSP) family of molecular chaperones and is primarily and abundantly expressed in the ocular lens. Here, we have used linkage analysis to identify a novel missense mutation in CRYAA that underlies an autosomal dominant form of 'nuclear' cataract segregating in a four-generation Caucasian family. A maximum two-point LOD score (Z(max)) of 2.19 (maximum recombination fraction, theta(max)=0) and multipoint Z(max) of 3.3 (theta(max)=0) was obtained at marker D21S1885. Haplotype analysis indicated that the disease gene lay in the approximately 2.7 Mb physical interval between D21S1912 and D21S1260 flanking CRYAA on 21q22.3. Sequence analysis identified a C --> T transition in exon 1 of CRYAA from affected individuals that was predicted to result in the nonconservative substitution of cysteine for arginine at codon 49 (R49C). Transfection studies of lens epithelial cells revealed that, unlike wild-type CRYAA, the R49C mutant protein was abnormally localized to the nucleus and failed to protect from staurosporine-induced apoptotic cell death. This study has identified the first dominant cataract mutation in CRYAA located outside the phylogenetically conserved 'alpha-crystallin core domain' of the sHSP family.
Collapse
MESH Headings
- Alleles
- Apoptosis
- Cell Death
- Cell Nucleus/metabolism
- Cell Separation
- Cells, Cultured
- Chromosomes, Human, Pair 21
- Cryoelectron Microscopy
- DNA Mutational Analysis
- DNA Primers/genetics
- DNA, Complementary/metabolism
- Exons
- Female
- Flow Cytometry
- Genes, Dominant
- Genetic Linkage
- Genotype
- Haplotypes
- Humans
- Immunoblotting
- Introns
- Lod Score
- Male
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Mutation, Missense
- Pedigree
- Protein Structure, Tertiary
- Staurosporine/pharmacology
- Transfection
- alpha-Crystallin A Chain/genetics
Collapse
Affiliation(s)
- Donna S Mackay
- Department of Ophthalmology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|