1
|
Garro-Núñez D, Picado-Martínez MJ, Espinoza-Campos E, Ugalde-Araya D, Macaya G, Raventós H, Chavarría-Soley G. Systematic exploration of a decade of publications on psychiatric genetics in Latin America. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32960. [PMID: 37860990 DOI: 10.1002/ajmg.b.32960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Psychiatric disorders have a great impact in terms of mortality, morbidity, and disability across the lifespan. Considerable effort has been devoted to understanding their complex and heterogeneous genetic architecture, including diverse ancestry populations. Our aim was to review the psychiatric genetics research published with Latin American populations from 2010 to 2019, and classify it according to country of origin, type of analysis, source of funding, and other variables. We found that most publications came from Brazil, Mexico, and Colombia. Also, local funds are generally not large enough for genome-wide studies in Latin America, with the exception of Brazil and Mexico; larger studies are often done in collaboration with international partners, mostly funded by US agencies. In most of the larger studies, the participants are individuals of Latin American ancestry living in the United States, which limits the potential for exploring the complex gene-environment interaction. Family studies, traditionally strong in Latin America, represent about 30% of the total research publications. Scarce local resources for research in Latin America have probably been an important limitation for conducting bigger and more complex studies, contributing to the reduced representation of these populations in global psychiatric genetics studies. Increasing diversity must be a goal to improve generalizability and applicability in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Daniela Ugalde-Araya
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Macaya
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Henriette Raventós
- Biology School, Universidad de Costa Rica, San José, Costa Rica
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Chavarría-Soley
- Biology School, Universidad de Costa Rica, San José, Costa Rica
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Genetic substrates of bipolar disorder risk in Latino families. Mol Psychiatry 2023; 28:154-167. [PMID: 35948660 DOI: 10.1038/s41380-022-01705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Genetic studies of bipolar disorder (BP) have been conducted in the Latin American population, to date, in several countries, including Mexico, the United States, Costa Rica, Colombia, and, to a lesser extent, Brazil. These studies focused primarily on linkage-based designs utilizing families with multiplex cases of BP. Significant BP loci were identified on Chromosomes 18, 5 and 8, and fine mapping suggested several genes of interest underlying these linkage peaks. More recently, studies in these same pedigrees yielded significant linkage loci for BP endophenotypes, including measures of activity, sleep cycles, and personality traits. Building from findings in other populations, candidate gene association analyses in Latinos from Mexican and Central American ancestry confirmed the role of several genes (including CACNA1C and ANK3) in conferring BP risk. Although GWAS, methylation, and deep sequencing studies have only begun in these populations, there is evidence that CNVs and rare SNPs both play a role in BP risk of these populations. Large segments of the Latino populations in the Americas remain largely unstudied regarding BP genetics, but evidence to date has shown that this type of research can be successfully conducted in these populations and that the genetic underpinnings of BP in these cohorts share at least some characteristics with risk genes identified in European and other populations.
Collapse
|
3
|
Lesmana MHS, Le NQK, Chiu WC, Chung KH, Wang CY, Irham LM, Chung MH. Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants. Biomedicines 2022; 10:biomedicines10081947. [PMID: 36009493 PMCID: PMC9405592 DOI: 10.3390/biomedicines10081947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
From inadequate prior antidepressants that targeted monoamine neurotransmitter systems emerged the discovery of alternative drugs for depression. For instance, drugs targeted interleukin 6 receptor (IL6R) in inflammatory system. Genomic analysis-based drug repurposing using single nucleotide polymorphism (SNP) inclined a promising method for several diseases. However, none of the diseases was depression. Thus, we aimed to identify drug repurposing candidates for depression treatment by adopting a genomic-analysis-based approach. The 5885 SNPs obtained from the machine learning approach were annotated using HaploReg v4.1. Five sets of functional annotations were applied to determine the depression risk genes. The STRING database was used to expand the target genes and identify drug candidates from the DrugBank database. We validated the findings using the ClinicalTrial.gov and PubMed databases. Seven genes were observed to be strongly associated with depression (functional annotation score = 4). Interestingly, IL6R was auspicious as a target gene according to the validation outcome. We identified 20 drugs that were undergoing preclinical studies or clinical trials for depression. In addition, we identified sarilumab and satralizumab as drugs that exhibit strong potential for use in the treatment of depression. Our findings indicate that a genomic-analysis-based approach can facilitate the discovery of drugs that can be repurposed for treating depression.
Collapse
Affiliation(s)
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Lalu Muhammad Irham
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia
- Correspondence: (L.M.I.); (M.-H.C.); Tel.: +62-851-322-55-414 (L.M.I.); +886-02-2736-1661 (M.-H.C.)
| | - Min-Huey Chung
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nursing, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (L.M.I.); (M.-H.C.); Tel.: +62-851-322-55-414 (L.M.I.); +886-02-2736-1661 (M.-H.C.)
| |
Collapse
|
4
|
Sul JH, Service SK, Huang AY, Ramensky V, Hwang SG, Teshiba TM, Park Y, Ori APS, Zhang Z, Mullins N, Olde Loohuis LM, Fears SC, Araya C, Araya X, Spesny M, Bejarano J, Ramirez M, Castrillón G, Gomez-Makhinson J, Lopez MC, Montoya G, Montoya CP, Aldana I, Escobar JI, Ospina-Duque J, Kremeyer B, Bedoya G, Ruiz-Linares A, Cantor RM, Molina J, Coppola G, Ophoff RA, Macaya G, Lopez-Jaramillo C, Reus V, Bearden CE, Sabatti C, Freimer NB. Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates. Transl Psychiatry 2020; 10:74. [PMID: 32094344 PMCID: PMC7039961 DOI: 10.1038/s41398-020-0758-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants.
Collapse
Affiliation(s)
- Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Susan K Service
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - Alden Y Huang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Vasily Ramensky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Federal State Institution "National Medical Research Center for Preventive Medicine" of the Ministry of Healthcare of the Russian Federation. Petroverigskiy lane 10, Moscow, 101990, Russia
| | - Sun-Goo Hwang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Terri M Teshiba
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - YoungJun Park
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anil P S Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Niamh Mullins
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Carmen Araya
- Cell and Molecular Biology Research Center, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501, Costa Rica
| | - Xinia Araya
- Cell and Molecular Biology Research Center, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501, Costa Rica
| | - Mitzi Spesny
- Division of Pediatric Pulmonology, Hospital Nacional de Nin ̃os, San Jose, Costa Rica
| | - Julio Bejarano
- Cell and Molecular Biology Research Center, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501, Costa Rica
| | - Margarita Ramirez
- Cell and Molecular Biology Research Center, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501, Costa Rica
| | - Gabriel Castrillón
- Instituto de Alta Tecnologia Medica, Medellín, Antioquia, Colombia
- Department of Neuroradiology, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Juliana Gomez-Makhinson
- Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Departamento de Psiquiatría Facultad de Medicina, Universidad de Antioquia, Medellín, 050011, Colombia
| | - Maria C Lopez
- Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Departamento de Psiquiatría Facultad de Medicina, Universidad de Antioquia, Medellín, 050011, Colombia
| | - Gabriel Montoya
- Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Departamento de Psiquiatría Facultad de Medicina, Universidad de Antioquia, Medellín, 050011, Colombia
| | - Claudia P Montoya
- Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Departamento de Psiquiatría Facultad de Medicina, Universidad de Antioquia, Medellín, 050011, Colombia
| | - Ileana Aldana
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Javier I Escobar
- Department of Psychiatry and Family Medicine, Rutgers-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jorge Ospina-Duque
- Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Departamento de Psiquiatría Facultad de Medicina, Universidad de Antioquia, Medellín, 050011, Colombia
| | - Barbara Kremeyer
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Gabriel Bedoya
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellín, 050010, Colombia
| | - Andres Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Rita M Cantor
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Roel A Ophoff
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gabriel Macaya
- Cell and Molecular Biology Research Center, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501, Costa Rica
| | - Carlos Lopez-Jaramillo
- Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Departamento de Psiquiatría Facultad de Medicina, Universidad de Antioquia, Medellín, 050011, Colombia
- Mood Disorders Program, Hospital San Vicente Fundacion, Medellín, 050011, Colombia
| | - Victor Reus
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94143, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chiara Sabatti
- Department of Health Research and Policy, Division of Biostatistics, Stanford University, Stanford, CA, 94305, USA
| | - Nelson B Freimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Viñas-Jornet M, Esteba-Castillo S, Baena N, Ribas-Vidal N, Ruiz A, Torrents-Rodas D, Gabau E, Vilella E, Martorell L, Armengol L, Novell R, Guitart M. High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behav Genet 2018; 48:323-336. [PMID: 29882083 PMCID: PMC6028865 DOI: 10.1007/s10519-018-9902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services.
Collapse
Affiliation(s)
- Marina Viñas-Jornet
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.,Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Neus Baena
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - David Torrents-Rodas
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Pediatry-Clinical Genetics Service, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lluís Armengol
- Research and Development Department, qGenomics Laboratory, Barcelona, Spain
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Míriam Guitart
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.
| |
Collapse
|
6
|
Somers M, Olde Loohuis LM, Aukes MF, Pasaniuc B, de Visser KCL, Kahn RS, Sommer IE, Ophoff RA. A Genetic Population Isolate in The Netherlands Showing Extensive Haplotype Sharing and Long Regions of Homozygosity. Genes (Basel) 2017; 8:E133. [PMID: 28471380 PMCID: PMC5448007 DOI: 10.3390/genes8050133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Genetic isolated populations have features that may facilitate genetic analyses and can be leveraged to improve power of mapping genes to complex traits. Our aim was to test the extent to which a population with a former history of geographic isolation and religious endogamy, and currently with one of the highest fertility rates in The Netherlands, shows signs of genetic isolation. For this purpose, genome-wide genotype data was collected of 72 unrelated individuals from this population as well as in a sample of 104 random control subjects from The Netherlands. Additional reference data from different populations and population isolates was available through HapMap and the Human Genome Diversity Project. We performed a number of analyses to compare the genetic structure between these populations: we calculated the pairwise genetic distance between populations, examined the extent of identical-by-descent (IBD) sharing and estimated the effective population size. Genetic analysis of this population showed consistent patterns of a population isolate at all levels tested. We confirmed that this population is most closely related to the Dutch control subjects, and detected high levels of IBD sharing and runs of homozygosity at equal or even higher levels than observed in previously described population isolates. The effective population size of this population was estimated to be several orders of magnitude smaller than that of the Dutch control sample. We conclude that the geographic isolation of this population combined with rapid population growth has resulted in a genetic isolate with great potential value for future genetic studies.
Collapse
Affiliation(s)
- Metten Somers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Maartje F Aukes
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Kees C L de Visser
- Department of General Practice, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherland.
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Iris E Sommer
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Peskin VA, Ordóñez A, Mackin RS, Delucchi K, Monge S, McGough JJ, Chavira DA, Berrocal M, Cheung E, Fournier E, Badner JA, Herrera LD, Mathews CA. Neuropsychological and dimensional behavioral trait profiles in Costa Rican ADHD sib pairs: Potential intermediate phenotypes for genetic studies. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:247-57. [PMID: 25832558 PMCID: PMC4437811 DOI: 10.1002/ajmg.b.32305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/12/2015] [Indexed: 01/19/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is associated with substantial functional impairment in children and in adults. Many individuals with ADHD have clear neurocognitive deficits, including problems with visual attention, processing speed, and set shifting. ADHD is etiologically complex, and although genetic factors play a role in its development, much of the genetic contribution to ADHD remains unidentified. We conducted clinical and neuropsychological assessments of 294 individuals (269 with ADHD) from 163 families (48 multigenerational families created using genealogical reconstruction, 78 affected sib pair families, and 37 trios) from the Central Valley of Costa Rica (CVCR). We used principal components analysis (PCA) to group neurocognitive and behavioral variables using the subscales of the Child Behavior Checklist (CBCL) and 15 neuropsychological measures, and created quantitative traits for heritability analyses. We identified seven cognitive and two behavioral domains. Individuals with ADHD were significantly more impaired than their unaffected siblings on most behavioral and cognitive domains. The verbal IQ domain had the highest heritability (92%), followed by auditory attention (87%), visual processing speed and problem solving (85%), and externalizing symptoms (81%). The quantitative traits identified here have high heritabilities, similar to the reported heritability of ADHD (70-90%), and may represent appropriate alternative phenotypes for genetic studies. The use of multigenerational families from a genetically isolated population may facilitate the identification of ADHD risk genes in the face of phenotypic and genetic heterogeneity.
Collapse
Affiliation(s)
- Viviana A. Peskin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| | - Anna Ordóñez
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland
| | - R. Scott Mackin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| | - Kevin Delucchi
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| | - Silvia Monge
- Department of Psychiatry, Hospital CIMA, San José, Costa Rica
| | - James J. McGough
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA
| | - Denise A. Chavira
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Monica Berrocal
- Department of Psychiatry, Hospital CIMA, San José, Costa Rica
| | - Erika Cheung
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| | | | - Judith A. Badner
- Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, Illinois
| | | | - Carol A. Mathews
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
9
|
The frequency of HLA-B(∗)57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Hum Immunol 2014; 75:1092-6. [PMID: 25286002 DOI: 10.1016/j.humimm.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/05/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022]
Abstract
HLA-B(∗)57:01 is a well-known and cost-effective pharmacogenetic marker for abacavir hypersensitivity. As with other HLA alleles, there is widespread variation in its frequency across populations. The Costa Rica Central Valley Population (CCVP) is the major population in this country. The frequency of HLA-B(∗)57:01 in this population has not been described yet. Thus, our aim was to determine the frequency of this allele in the CCVP. 200 unrelated healthy volunteer donors born in the CCVP were typed. HLA-B(∗)57-positive samples identified by HLA intermediate resolution typing methods were further typed by SBT to high resolution. An HLA-B(∗)57:01 carrier frequency of 5.00% was determined in this sample. This frequency is relatively high in comparison to reports from other populations in Latin America. These results suggest that there is a considerable frequency of HLA-B(∗)57:01 in the CCVP and that pharmacogenetic testing for HIV+ patients who are going to receive abacavir-based treatment should be considered in this country.
Collapse
|
10
|
Fears SC, Service SK, Kremeyer B, Araya C, Araya X, Bejarano J, Ramirez M, Castrillón G, Gomez-Franco J, Lopez MC, Montoya G, Montoya P, Aldana I, Teshiba TM, Abaryan Z, Al-Sharif NB, Ericson M, Jalbrzikowski M, Luykx JJ, Navarro L, Tishler TA, Altshuler L, Bartzokis G, Escobar J, Glahn DC, Ospina-Duque J, Risch N, Ruiz-Linares A, Thompson PM, Cantor RM, Lopez-Jaramillo C, Macaya G, Molina J, Reus VI, Sabatti C, Freimer NB, Bearden CE. Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees. JAMA Psychiatry 2014; 71:375-87. [PMID: 24522887 PMCID: PMC4045237 DOI: 10.1001/jamapsychiatry.2013.4100] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), but its pathogenesis remains poorly understood. A focus on measuring multisystem quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that affect BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomical phenotypes that appear heritable and associated with severe BP (bipolar I disorder [BP-I]) and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN, SETTING, AND PARTICIPANTS Multigenerational pedigree study in 2 closely related, genetically isolated populations: the Central Valley of Costa Rica and Antioquia, Colombia. A total of 738 individuals, all from Central Valley of Costa Rica and Antioquia pedigrees, participated; among them, 181 have BP-I. MAIN OUTCOMES AND MEASURES Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging, and diffusion tensor imaging phenotypes. RESULTS Of 169 phenotypes investigated, 126 (75%) were significantly heritable and 53 (31%) were associated with BP-I. About one-quarter of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions as well as volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE To our knowledge, this is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I association within families that is consistent with expectations from case-control studies. Together, these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder.
Collapse
Affiliation(s)
- Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Susan K Service
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | | | - Carmen Araya
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Xinia Araya
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Julio Bejarano
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Margarita Ramirez
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | | | - Juliana Gomez-Franco
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria C Lopez
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriel Montoya
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Patricia Montoya
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ileana Aldana
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Terri M Teshiba
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Zvart Abaryan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Noor B Al-Sharif
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Marissa Ericson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Maria Jalbrzikowski
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Jurjen J Luykx
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles6Department of Psychiatry, ZNA Stuivenberg, Antwerp, Belgium
| | - Linda Navarro
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Todd A Tishler
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Lori Altshuler
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Javier Escobar
- Department of Psychiatry and Family Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, Connecticut9Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Jorge Ospina-Duque
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution, and Environment, University College London, London, England
| | - Paul M Thompson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rita M Cantor
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Carlos Lopez-Jaramillo
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia12Mood Disorders Program, Hospital San Vicente Fundacion, Medellín, Colombia
| | - Gabriel Macaya
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Julio Molina
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles13BioCiencias Lab, Guatemala, Guatemala
| | - Victor I Reus
- Department of Psychiatry, University of California, San Francisco
| | - Chiara Sabatti
- Department of Health Research and Policy, Stanford University, Stanford, California
| | - Nelson B Freimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
11
|
Targeted deletion of the mouse α2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors. J Neurosci 2013; 33:7728-41. [PMID: 23637165 DOI: 10.1523/jneurosci.4731-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2(-/-) mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2(-/-) mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2(-/-) mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.
Collapse
|
12
|
Kim SH, Song JY, Joo EJ, Lee KY, Ahn YM, Kim YS. EGR3 as a potential susceptibility gene for schizophrenia in Korea. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1355-60. [PMID: 20687139 DOI: 10.1002/ajmg.b.31115] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early growth response (EGR) genes play critical roles in signal transduction in the brain, which is involved in neuronal activation, brain development, and synaptic plasticity. EGR genes, including EGR2, EGR3, and EGR4, showed significant association with schizophrenia in Japanese schizophrenic pedigrees. In particular, EGR3, which resides at the chromosomal location 8p21.3, was suggested to be a potential susceptibility gene in schizophrenia based on a study of Japanese cases. However, this requires further replication with an independent sample set. We investigated the association of the EGR3 and EGR2 genes, which were suggested as potential susceptibility genes for schizophrenia supported by both genetic association and postmortem brain expression studies, with schizophrenia in Korean patients. Along with 350 healthy individuals, 244 schizophrenic patients were analyzed. Among the four examined single-nucleotide polymorphisms (SNPs) of EGR3 (rs1008949, rs7009708, rs35201266, and rs3750192), SNP rs35201266 in intron 1 of the EGR3 gene showed a significant association with schizophrenia (P = 0.0008, χ(2) = 11.156, OR = 1.493), which withstands multiple testing correction. In addition, the "T-G-C-G" haplotype of EGR3 was under-represented in the patients with schizophrenia (P = 0.0073, χ(2) = 7.188, OR = 0.697). However, an association between the SNPs of EGR2 (rs2295814 and rs2297488) and schizophrenia was not found. These findings are consistent with the previous genetic association of the EGR3 gene in Japanese cohorts, which is the first replication concerning the association of EGR3 with schizophrenia in an independent cohort. Taken together, EGR3 could be suggested as a compelling susceptibility gene in schizophrenia.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Del Zompo M, Severino G, Ardau R, Chillotti C, Piccardi M, Dib C, Muzard G, Soubigou S, Derock M, Fournel R, Vaubien Y, Roche S, Bowen-Squires L, Génin E, Cousin E, Deleuze JF, Biguet NF, Mallet J, Meloni R. Genome-scan for bipolar disorder with sib-pair families in the Sardinian population: a new susceptibility locus on chromosome 1p22-p21? Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1200-8. [PMID: 20468074 DOI: 10.1002/ajmg.b.31092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The discovery of the genetic factors implicated in the predisposition to complex diseases may greatly profit from genetic studies in isolated populations. In this perspective, we performed a genome-wide scan using 507 microsatellite markers, with an average interval size of 7.6 cM, on a sample of 88 nuclear families with at least two affected sibs with bipolar disorder recruited in the Sardinian population. An initial analysis yielded non-parametric linkage exceeding 3.4 with P-values <0.0003 at two adjacent markers, D1S206 and D1S435 in the 1p22-p21 chromosomal region. Moreover, positive linkage ranging between 2.0 and 3.0 was obtained for other loci in several cases in regions that have already been linked to predisposition to bipolar disorder, such as 5p15.33, 8q24.13, and 11q14.3. A subsequent analysis of the 1p22-p21 region using the same set of families and a dense panel of 20 new microsatellite markers, spaced at 1.2 cM on average, reinforced the finding of suggestive linkage for this region. Interestingly, NPL values above 2.1 and P-values <0.02 were obtained for a cluster of 10 markers comprising D1S435. Thus, this study suggests that the 1p22-p21 region may contain a new locus participating to the genetic susceptibility to bipolar disorder and reproduces positive linkage for several other loci already implicated in this pathology. Since the Sardinian population presents a peculiar genetic homogeneity, these results may pave the way to further studies for replication in this population contributing to the rapid discovery of the genetic factors predisposing to bipolar disorder.
Collapse
Affiliation(s)
- Maria Del Zompo
- Center of Clinical Psychopharmacology, Department of Neurosciences B.B. Brodie, University of Cagliari, Via Ospedale 46, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
An association study of the neuregulin 1 gene, bipolar affective disorder and psychosis. Psychiatr Genet 2009; 19:113-6. [DOI: 10.1097/ypg.0b013e32832a4f69] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
16
|
Kaneva R, Milanova V, Angelicheva D, MacGregor S, Kostov C, Vladimirova R, Aleksiev S, Angelova M, Stoyanova V, Loh A, Hallmayer J, Kalaydjieva L, Jablensky A. Bipolar disorder in the Bulgarian Gypsies: genetic heterogeneity in a young founder population. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:191-201. [PMID: 18444255 DOI: 10.1002/ajmg.b.30775] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the results of follow-up analyses of 12 genomic regions showing evidence of linkage in a genome-wide scan (GWS) of Gypsy families with bipolar affective disorder (BPAD). The Gypsies are a young founder population comprising multiple genetically differentiated sub-isolates with strong founder effect and limited genetic diversity. The BPAD families belong to a single sub-isolate and are connected by numerous inter-marriages, resulting in a super-pedigree with 181 members. We aimed to re-assess the positive GWS findings and search for evidence of a founder susceptibility allele after the addition of newly recruited subjects, some changes in diagnostic assignment, and the use of denser genetic maps. Linkage analysis was conducted with SimWalk2, accommodating the full complexity of pedigree structure and using a conservative narrow phenotype definition (BPAD only). Six regions were rejected, while 1p36, 13q31, 17p11, 17q21, 6q24, and 4q31 produced nominally significant results in both the individual families and the super-pedigree. Haplotypes were reconstructed and joint tests for linkage and association were done for the most promising regions. No common ancestral haplotype was identified by sequencing a strong positional and functional candidate gene (GRM1) and additional STR genotyping in the top GWS region, 6q24. The best supported region was a 12 cM interval on 4q31, also implicated in previous studies, where we obtained significant results in the super-pedigree using both SimWalk2 (P = 0.004) and joint Pseudomarker analysis of linkage and linkage disequilibrium (P = 0.000056). The size of the region and the characteristics of the Gypsy population make it suitable for LD mapping.
Collapse
|
17
|
Walss-Bass C, Soto-Bernardini MC, Johnson-Pais T, Leach RJ, Ontiveros A, Nicolini H, Mendoza R, Jerez A, Dassori A, Chavarria-Siles I, Escamilla MA, Raventos H. Methionine sulfoxide reductase: a novel schizophrenia candidate gene. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:219-25. [PMID: 18506707 PMCID: PMC3781017 DOI: 10.1002/ajmg.b.30791] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Methionine sulfoxide reductase (MSRA) is an antioxidant enzyme implicated in protection against oxidative stress and protein maintenance. We have previously reported the association of marker D8S542, located within the MSRA gene, with schizophrenia in the Central Valley of Costa Rica (CVCR). By performing fine mapping analysis, we have now identified a potential three-marker at risk haplotype within MSRA in the same CVCR sample, with a global P-value slightly above nominal significance (P = 0.0526). By sequencing the MSRA gene in individuals carrying this haplotype, we identified a novel 4-base pair deletion 1,792 bases upstream of the MSRA transcription start site. This deletion was significantly under-transmitted to schizophrenia patients in the CVCR sample (P = 0.0292) using FBAT, and this was replicated in a large independent sample of 321 schizophrenia families from the Hispanic population (P = 0.0367). These findings suggest a protective effect of the deletion against schizophrenia. Further, MSRA mRNA levels were significantly lower in lymphoblastoid cell lines of individuals homozygous for the deletion compared to carriers of the normal allele (P = 0.0135), although significance was only evident when genotypes were collapsed. This suggests that the deleted sequence may play a role in regulating MSRA expression. In conclusion, this work points towards MSRA as a novel schizophrenia candidate gene. Further studies into the mechanisms by which MSRA is involved in schizophrenia pathophysiology may shed light into the biological underpinnings of this disorder.
Collapse
Affiliation(s)
- Consuelo Walss-Bass
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, USA.
| | | | - Teresa Johnson-Pais
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Robin J. Leach
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Alfonso Ontiveros
- Center for Investigation, School of Medicine, Division of the Health Sciences ITESM, Institute of Information for the Investigation in Mental Health, Monterrey N.L., Mexico
| | - Humberto Nicolini
- Medical and Family Research Group, Carracci S.C., Mexico D.F. Mexico
| | - Ricardo Mendoza
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Torrence, California
| | - Alvaro Jerez
- International Center for Affective Illnesses and Addictive Conduct (CITACA), Guatemala, Guatemala
| | - Albana Dassori
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Ivan Chavarria-Siles
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Michael A. Escamilla
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Henriette Raventos
- Center for Investigation of Molecular and Cellular Biology, University of Costa Rica, San Jose, Costa Rica
,Genetics Section, School of Biology, University of Costa Rica, San Jose, Costa Rica
| |
Collapse
|
18
|
Abstract
Bipolar disorder, especially the most severe type (type I), has a strong genetic component. Family studies suggest that a small number of genes of modest effect are involved in this disorder. Family-based studies have identified a number of chromosomal regions linked to bipolar disorder, and progress is currently being made in identifying positional candidate genes within those regions, À number of candidate genes have also shown evidence of association with bipolar disorder, and genome-wide association studies are now under way, using dense genetic maps. Replication studies in larger or combined datasets are needed to definitively assign a role for specific genes in this disorder. This review covers our current knowledge of the genetics of bipolar disorder, and provides a commentary on current approaches used to identify the genes involved in this complex behavioral disorder.
Collapse
Affiliation(s)
- Michael A Escamilla
- University of Texas Health Science Center at San Antonio, South Texas Medical Genetics Research Center, 1214 Schunior St, Edinburg, TX 78539, USA.
| | | |
Collapse
|
19
|
Mechelli A, Prata DP, Fu CHY, Picchioni M, Kane F, Kalidindi S, McDonald C, Demjaha A, Kravariti E, Toulopoulou T, Murray R, Collier DA, McGuire PK. The effects of neuregulin1 on brain function in controls and patients with schizophrenia and bipolar disorder. Neuroimage 2008; 42:817-26. [PMID: 18585932 DOI: 10.1016/j.neuroimage.2008.05.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 12/25/2022] Open
Abstract
Recent studies have identified neuregulin1 as a probable susceptibility gene for schizophrenia and bipolar disorder. However, little is known about how this gene may affect brain function to increase vulnerability to these disorders. The present investigation examined the impact of neuregulin1 genotype on brain function in patients with schizophrenia, patients with bipolar I disorder and healthy volunteers. We used functional magnetic resonance imaging to measure brain responses during a verbal fluency task in a total of 115 subjects comprising 41 patients with schizophrenia, 29 patients with bipolar disorder and 45 healthy volunteers. We then used statistical parametric mapping to estimate the main effects of diagnostic group, the main effect of genotype and their interaction. We tested the hypothesis that the high-risk variant of neuregulin1 would be associated with altered prefrontal function. In all three diagnostic groups, the high-risk variant of neuregulin1 was associated with greater deactivation in the left precuneus. In addition, there was an interaction between diagnosis and genotype in two regions of the prefrontal cortex. The right inferior frontal gyrus expressed increased activation in individuals with the high-risk variant, but only in patients with schizophrenia. Conversely, the right posterior orbital gyrus expressed increased activation in individuals with the high-risk variant, but only in patients with bipolar disorder. Our results suggest that genetic variation in neuregulin1 has a measurable impact on brain function and provide preliminary evidence for a disease-specific pattern of gene action in different regions of the prefrontal cortex.
Collapse
Affiliation(s)
- Andrea Mechelli
- Department of Psychology, Institute of Psychiatry, King's College London, 103 Denmark Hill, London, SE5 8AF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abou Jamra R, Fuerst R, Kaneva R, Orozco Diaz G, Rivas F, Mayoral F, Gay E, Sans S, Gonzalez MJ, Gil S, Cabaleiro F, Del Rio F, Perez F, Haro J, Auburger G, Milanova V, Kostov C, Chorbov V, Stoyanova V, Nikolova-Hill A, Onchev G, Kremensky I, Jablensky A, Schulze TG, Propping P, Rietschel M, Nothen MM, Cichon S, Wienker TF, Schumacher J. The first genomewide interaction and locus-heterogeneity linkage scan in bipolar affective disorder: strong evidence of epistatic effects between loci on chromosomes 2q and 6q. Am J Hum Genet 2007; 81:974-86. [PMID: 17924339 DOI: 10.1086/521690] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 07/13/2007] [Indexed: 11/04/2022] Open
Abstract
We present the first genomewide interaction and locus-heterogeneity linkage scan in bipolar affective disorder (BPAD), using a large linkage data set (52 families of European descent; 448 participants and 259 affected individuals). Our results provide the strongest interaction evidence between BPAD genes on chromosomes 2q22-q24 and 6q23-q24, which was observed symmetrically in both directions (nonparametric LOD [NPL] scores of 7.55 on 2q and 7.63 on 6q; P<.0001 and P=.0001, respectively, after a genomewide permutation procedure). The second-best BPAD interaction evidence was observed between chromosomes 2q22-q24 and 15q26. Here, we also observed a symmetrical interaction (NPL scores of 6.26 on 2q and 4.59 on 15q; P=.0057 and .0022, respectively). We covered the implicated regions by genotyping additional marker sets and performed a detailed interaction linkage analysis, which narrowed the susceptibility intervals. Although the heterogeneity analysis produced less impressive results (highest NPL score of 3.32) and a less consistent picture, we achieved evidence of locus heterogeneity at chromosomes 2q, 6p, 11p, 13q, and 22q, which was supported by adjacent markers within each region and by previously reported BPAD linkage findings. Our results provide systematic insights in the framework of BPAD epistasis and locus heterogeneity, which should facilitate gene identification by the use of more-comprehensive cloning strategies.
Collapse
Affiliation(s)
- Rami Abou Jamra
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blackwood DHR, Pickard BJ, Thomson PA, Evans KL, Porteous DJ, Muir WJ. Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? evidence fromDISC1, GRIK4 andNRG1. Neurotox Res 2007; 11:73-83. [PMID: 17449450 DOI: 10.1007/bf03033484] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is common in patients with schizophrenia and it is well established from family studies that rates of depression are increased among relatives of probands with schizophrenia, making it likely that the phenotypes described under the categories of affective and non-affective psychoses share some genetic risk factors. Family linkage studies have identified several chromosomal regions likely to contain risk genes for schizophrenia and bipolar disorder, suggesting common susceptibility loci. Candidate gene association studies have provided further evidence to suggest that some genes including two of the most studied candidates, Disrupted in Schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1) may be involved in both types of psychosis. We have recently identified another strong candidate for a role in both schizophrenia and affective disorders, GRIK4 a glutamate receptor mapped to chromosome 11q23 [Glutamate Receptor, Ionotropic, Kainate, type 4]. This gene is disrupted by a translocation breakpoint in a patient with schizophrenia, and case control studies show significant association of GRIK4 with both schizophrenia and bipolar disorder. Identifying genes implicated in the psychoses may eventually provide the basis for classification based on biology rather than symptoms, and suggest novel treatment strategies for these complex brain disorders.
Collapse
Affiliation(s)
- Douglas H R Blackwood
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Shoval G, Schoen G, Vardi N, Zalsman G. Suicide in Ethiopian immigrants in Israel: a case for study of the genetic-environmental relation in suicide. Arch Suicide Res 2007; 11:247-53. [PMID: 17558609 DOI: 10.1080/13811110701402603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Immigration is a major life stress event, which has been associated with increased levels of mental health problems. The linkage between immigration and suicide has been studied in various societies, with conflicting results. Extremely high rates of suicide have been found repeatedly among the population of the Ethiopian immigrants in Israel. These rates were significantly higher than other immigrant populations in the country. Possible explanations for this disparity are discussed, and future directions for further study of this area are suggested.
Collapse
Affiliation(s)
- Gal Shoval
- Child and Adolescent Psychiatry Division, Geha Mental Health Center and Tel Aviv University, Israel.
| | | | | | | |
Collapse
|
23
|
Lohoff FW, Dahl JP, Ferraro TN, Arnold SE, Gallinat J, Sander T, Berrettini WH. Variations in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) are associated with bipolar i disorder. Neuropsychopharmacology 2006; 31:2739-47. [PMID: 16936705 PMCID: PMC2507868 DOI: 10.1038/sj.npp.1301196] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) maps to the shared bipolar disorder (BPD)/schizophrenia (SZ) susceptibility locus on chromosome 8p21. Vesicular monoamine transporters are involved in transport of monoamine neurotransmitters which have been postulated to play a relevant role in the etiology of BPD and/or SZ. Variations in the VMAT1 gene might affect transporter function and/or expression and might be involved in the etiology of BPD and/or SZ. Genotypes of 585 patients with BPD type I and 563 control subjects were obtained for three missense single nucleotide polymorphisms (SNPs) (Thr4Pro, Thr98Ser, Thr136Ile) and four non-coding SNPs (rs988713, rs2279709, rs3735835, rs1497020). All cases and controls were of European descent. Allele frequencies differed significantly for the potential functional polymorphism Thr136Ser between BPD patients and controls (p=0.003; df=1; OR=1.34; 95% CI: 1.11-1.62). Polymorphisms in the promoter region (rs988713: p=0.005, df=1; OR=1.31; 95% CI: 1.09-1.59) and intron 8 (rs2279709: p=0.039, df=1; OR=0.84; 95% CI: 0.71-0.99) were also associated with disease. Expression analysis confirmed that VMAT1 is expressed in human brain at the mRNA and protein level. Results suggest that variations in the VMAT1 gene may confer susceptibility to BPD in patients of European descent. Additional studies are necessary to confirm this effect and to elucidate the role of VMAT1 in central nervous system physiology.
Collapse
Affiliation(s)
- Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Background Defining measures of linkage disequilibrium (LD) that have good small sample properties and are applicable to multiallelic markers poses some challenges. The potential of volume measures in this context has been noted before, but their use has been hampered by computational challenges. Results We design a sequential importance sampling algorithm to evaluate volume measures on I × J tables. The algorithm is implemented in a C routine as a complement to exhaustive enumeration. We make the C code available as open source. We achieve fast and accurate evaluation of volume measures in two dimensional tables. Conclusion Applying our code to simulated and real datasets reinforces the belief that volume measures are a very useful tool for LD evaluation: they are not inflated in small samples, their definition encompasses multiallelic markers, and they can be computed with appreciable speed.
Collapse
|
25
|
Walss-Bass C, Montero AP, Armas R, Dassori A, Contreras SA, Liu W, Medina R, Levinson D, Pereira M, Atmella I, NeSmith L, Leach R, Almasy L, Raventos H, Escamilla MA. Linkage disequilibrium analyses in the Costa Rican population suggests discrete gene loci for schizophrenia at 8p23.1 and 8q13.3. Psychiatr Genet 2006; 16:159-68. [PMID: 16829783 DOI: 10.1097/01.ypg.0000218616.27515.67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Linkage studies using multiplex families have repeatedly implicated chromosome 8 as involved in schizophrenia etiology. The reported areas of linkage, however, span a wide chromosomal region. The present study used the founder population of the Central Valley of Costa Rica and phenotyping strategies alternative to DSM-IV classifications in attempts to further delimitate the areas on chromosome 8 that may harbor schizophrenia susceptibility genes. A linkage disequilibrium screen of chromosome 8 was performed using family trios of individuals with a history of psychosis. Four discrete regions showing evidence of association (nominal P values less than 0.05) to the phenotype of schizophrenia were identified: 8p23.1, 8p21.3, 8q13.3 and 8q24.3. The region of 8p23.1 precisely overlaps a region showing strong evidence of linkage disequilibrium for severe bipolar disorder in Costa Rica. The same chromosomal regions were identified when the broader phenotype definition of all individuals with functional psychosis was used for analyses. Stratification of the psychotic sample by history of mania suggests that the 8q13.3 locus may be preferentially associated with non-manic psychosis. These results may be helpful in targeting specific areas to be analyzed in association-based or linkage disequilibrium-based studies, for researchers who have found evidence of linkage to schizophrenia on chromosome 8 within their previous studies.
Collapse
Affiliation(s)
- Consuelo Walss-Bass
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, and Southwest Foundation for Biomedical Research, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Service S, Molina J, Deyoung J, Jawaheer D, Aldana I, Vu T, Araya C, Araya X, Bejarano J, Fournier E, Ramirez M, Mathews CA, Davanzo P, Macaya G, Sandkuijl L, Sabatti C, Reus V, Freimer N. Results of a SNP genome screen in a large Costa Rican pedigree segregating for severe bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:367-73. [PMID: 16652356 DOI: 10.1002/ajmg.b.30323] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have ascertained in the Central Valley of Costa Rica a new kindred (CR201) segregating for severe bipolar disorder (BP-I). The family was identified by tracing genealogical connections among eight persons initially independently ascertained for a genome wide association study of BP-I. For the genome screen in CR201, we trimmed the family down to 168 persons (82 of whom are genotyped), containing 25 individuals with a best-estimate diagnosis of BP-I. A total of 4,690 SNP markers were genotyped. Analysis of the data was hampered by the size and complexity of the pedigree, which prohibited using exact multipoint methods on the entire kindred. Two-point parametric linkage analysis, using a conservative model of transmission, produced a maximum LOD score of 2.78 on chromosome 6, and a total of 39 loci with LOD scores >1.0. Multipoint parametric and non-parametric linkage analysis was performed separately on four sections of CR201, and interesting (nominal P-value from either analysis <0.01), although not statistically significant, regions were highlighted on chromosomes 1, 2, 3, 12, 16, 19, and 22, in at least one section of the pedigree, or when considering all sections together. The difficulties of analyzing genome wide SNP data for complex disorders in large, potentially informative, kindreds are discussed.
Collapse
Affiliation(s)
- Susan Service
- Center for Neurobehavioral Genetics, University of California, Los Angeles, 90095-1761, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Belzen MJ, Heutink P. Genetic analysis of psychiatric disorders in humans. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:25-33. [PMID: 16681798 DOI: 10.1111/j.1601-183x.2006.00223.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Psychiatric disorders place a large burden not only on affected individuals and their families but also on societies and health services. Current treatment is only effective in a proportion of the patients, so considerable effort has been put into the development of new medications. The susceptibility to all major psychiatric disorders is, at least in part, genetic. Knowledge of the genes that underlie this susceptibility may lead to the identification of new drug targets and the development of more effective treatments. Therefore, numerous genetic studies in search for the genes involved in psychiatric disorders have been performed. Although results of both linkage and association studies have been inconsistent, several promising gene regions and candidate genes have been identified recently. In this article, we will review the strategies that proved to be successful in detecting genes for psychiatric disorders and we will provide some recommendations to increase the probability of detecting susceptibility genes in genetic studies of different designs.
Collapse
Affiliation(s)
- M J van Belzen
- Department of Medical Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center and VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Abstract
Common mental disorders such as schizophrenia, bipolar disorder, and severe major depression are highly heritable, but differ from single-gene (Mendelian) diseases in that they are the end products of multiple causes. Although this fact may help explain their prevalence from an evolutionary perspective, the complexity of the causes of these disorders makes identification of disease-promoting genes much more difficult. The "endophenotype" approach is an alternative method for measuring phenotypic variation that may facilitate the identification of susceptibility genes for complexly inherited traits. Here we examine the endophenotype construct in context of psychiatric genetics. We first develop an evolutionary theoretical framework for common mental disorders and differentiate them from simpler, single-gene disorders. We then provide a definition and description of endophenotypes, elucidating several features that will make a proposed endophenotype useful in psychiatric genetic research and evaluating the methods for detecting and validating such endophenotypes. We conclude with a review of recent results in the schizophrenia literature that illustrate the usefulness of endophenotypes in genetic analyses of mental disorders, and discuss implications of these findings for models of disease causation and nosology. Given that in mental disorders as in behavior generally, the pathways from genotypes to phenotypes are circuitous at best, discernment of endophenotypes more proximal to the effects of genetic variation will aid attempts to link genes to disorders.
Collapse
Affiliation(s)
- Tyrone D Cannon
- Department of Psychology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
29
|
Dudbridge F, Gusnanto A, Koeleman BPC. Detecting multiple associations in genome-wide studies. Hum Genomics 2006; 2:310-7. [PMID: 16595075 PMCID: PMC3500180 DOI: 10.1186/1479-7364-2-5-310] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 11/30/2022] Open
Abstract
Recent developments in the statistical analysis of genome-wide studies are reviewed. Genome-wide analyses are becoming increasingly common in areas such as scans for disease-associated markers and gene expression profiling. The data generated by these studies present new problems for statistical analysis, owing to the large number of hypothesis tests, comparatively small sample size and modest number of true gene effects. In this review, strategies are described for optimising the genotyping cost by discarding promising genes at an earlier stage, saving resources for the genes that show a trend of association. In addition, there is a review of new methods of analysis that combine evidence across genes to increase sensitivity to multiple true associations in the presence of many non-associated genes. Some methods achieve this by including only the most significant results, whereas others model the overall distribution of results as a mixture of distributions from true and null effects. Because genes are correlated even when having no effect, permutation testing is often necessary to estimate the overall significance, but this can be very time consuming. Efficiency can be improved by fitting a parametric distribution to permutation replicates, which can be re-used in subsequent analyses. Methods are also available to generate random draws from the permutation distribution. The review also includes discussion of new error measures that give a more reasonable interpretation of genome-wide studies, together with improved sensitivity. The false discovery rate allows a controlled proportion of positive results to be false, while detecting more true positives; and the local false discovery rate and false-positive report probability give clarity on whether or not a statistically significant test represents a real discovery.
Collapse
|
30
|
Abstract
Though Kraepelin's century-old division of major mental illness into mood disorder and schizophrenia remains in place, debate abounds over the most appropriate classification. Although these arguments previously rested solely on clinical grounds, they now are rooted in genetics and neurobiology. This article reviews evidence from the fields of genetic epidemiology, linkage, association, cytogenetics, and gene expression. Taken together, these data suggest some overlap in the genes that predispose to bipolar disorder and schizophrenia. One gene, DAOA (D-amino acid oxidase activator, also known as G72), has been repeatedly implicated as an overlap gene, while DISC1 and others may constitute additional shared susceptibility genes. Further, some evidence implicates syndromes of co-occurring mood and psychotic symptoms in association with the putative risk alleles in overlap genes. From a nosologic perspective, the existence of overlap genes, coupled with the genotype-phenotype correlations discovered to date, supports the reality of the much debated schizoaffective disorder. Potential non-overlap syndromes--such as nonpsychotic bipolar disorder or cyclothymic temperament, on the one hand, and negative symptoms or the deficit syndrome, on the other--could turn out to have their own unique genetic determinants. If genotypes are to be the anchor points of a clinically useful system of classification, they must ultimately be shown to inform prognosis, treatment, and prevention. No gene variants have yet met these tests in bipolar disorder or schizophrenia.
Collapse
Affiliation(s)
- James B Potash
- Mood Disorders Program, Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
31
|
Gericke GS. Chromosomal fragility, structural rearrangements and mobile element activity may reflect dynamic epigenetic mechanisms of importance in neurobehavioural genetics. Med Hypotheses 2006; 66:276-85. [PMID: 16183210 DOI: 10.1016/j.mehy.2005.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 01/07/2023]
Abstract
Advances in human genome analyses have not yet allowed identification of specific genetic mechanisms underlying the expression of human neurobehavioural disorders. There is an increasing awareness that several genes may contribute to behavioural phenotypes and these genes appear to interact in as yet undetermined ways. It has been suggested that the problem needs elucidation from an epigenetic, gene expression perspective. Cytogenetic instability manifesting as chromosomal fragile sites, translocations, duplications, deletions and inversions, when co-occurring with neurobehavioural disorders, may offer a doorway to the investigation of such chromatin level, regulatory region, epigenetic processes. Due to earlier indications of non-specificity of chromosomal aberrations, poor phenotype:genotype correlations and a shift to analysing candidate coding regions on high resolution map level, the only utility of chromosomal breakpoints came to be seen as harbouring possible candidate genes of interest when segregating together with particular neurobehavioural disorders. More recent findings of the expression of highly specific subsets of fragile sites in association with Tourette and Rett syndromes need to be extended to other neurobehavioural disorders to ascertain whether observed patterns can be considered representative of 'chromatin endophenotypes' correlating with discrete sets of neurobehavioural symptoms. Environmental/epigenetic factors could affect the chromatin characteristics of the genome arising through DNA strand breakage, mobile element activity and retroinsertion, establishing new architectural features of regulatory control networks very rapidly in comparison to coding region evolution rates. Microarray-based techniques for the genome-wide mapping of in vivo protein-DNA interactions offer increasingly comprehensive views of genetic and epigenetic regulatory networks. It may be informative to include functionally significant chromatin structural variation analyses when considering candidate genes for neurobehavioural disorders.
Collapse
Affiliation(s)
- G S Gericke
- Genetics Division, Ampath National Pathology Laboratories, P.O. Box 2040, Brooklyn Square, 0075 Pretoria, Gauteng, South Africa.
| |
Collapse
|
32
|
Bahlo M, Stankovich J, Speed TP, Rubio JP, Burfoot RK, Foote SJ. Detecting genome wide haplotype sharing using SNP or microsatellite haplotype data. Hum Genet 2005; 119:38-50. [PMID: 16362347 DOI: 10.1007/s00439-005-0114-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/23/2005] [Indexed: 11/26/2022]
Abstract
Genome wide association studies using high throughput technology are already being conducted despite the significant hurdles that need to be overcome (Nat Rev Genet 6:95-108, 2005; Nat Rev Genet 6:109-118, 2005). Methods for detecting haplotype association signals in genome wide haplotype datasets are as yet very limited. Much methodological research has already been devoted to linkage disequilibrium (LD) fine mapping where the focus is the identification of the disease locus rather than the detection of a disease signal. Applications of these approaches to genome wide scanning are limited by the strong model assumptions of the sharing process, which lead to computational complexity. We describe a new algorithm for the initial identification of disease susceptibility loci in genome wide haplotype association studies. Excess sharing of ancestral haplotypes, which indicates the presence of a disease locus, is detected with a simple, easy to interpret, chi2 based statistic. The method allows genome wide scanning for qualitative traits within reasonable computational timeframes and can serve as a first pass analysis prior to the usage of likelihood based methods, providing candidate regions and inferred susceptibility haplotypes. Our method makes no assumptions regarding the population history or the pattern of background LD. Statistical significance is evaluated with permutation tests. The method is illustrated on simulated and real data where it is applied to simple (cystic fibrosis) and complex disease (multiple sclerosis) examples. The statistic has low type I error and greater power to map disease loci over conventional single marker tests for low to moderate levels of LD.
Collapse
Affiliation(s)
- Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3050 Parkville, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The dog has emerged as a premier species for the study of morphology, behavior, and disease. The recent availability of a high-quality draft sequence lifts the dog system to a new threshold. We provide a primer to use the dog genome by first focusing on its evolutionary history. We overview the relationship of dogs to wild canids and discuss their origin and domestication. Dogs clearly originated from a substantial number of gray wolves and dog breeds define distinct genetic units that can be divided into at least four hierarchical groupings. We review evidence showing that dogs have high levels of linkage disequilibrium. Consequently, given that dog breeds express specific phenotypic traits and vary in behavior and the incidence of genetic disease, genomic-wide scans for linkage disequilibrium may allow the discovery of genes influencing breed-specific characteristics. Finally, we review studies that have utilized the dog to understand the genetic underpinning of several traits, and we summarize genomic resources that can be used to advance such studies. We suggest that given these resources and the unique characteristics of breeds, that the dog is a uniquely valuable resource for studying the genetic basis of complex traits.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
34
|
Lohoff FW, Ferraro TN, McNabb L, Schwebel C, Dahl JP, Doyle GA, Buono RJ, Berrettini WH. No association between common variations in the neuronal nicotinic acetylcholine receptor alpha2 subunit gene (CHRNA2) and bipolar I disorder. Psychiatry Res 2005; 135:171-7. [PMID: 15996750 DOI: 10.1016/j.psychres.2005.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 02/14/2005] [Accepted: 04/12/2005] [Indexed: 11/25/2022]
Abstract
The neuronal nicotinic acetylcholine receptor alpha2 subunit gene (CHRNA2) maps to the bipolar susceptibility locus on chromosome 8p21-22. Given the biological role of the neuronal nicotinic acetylcholine receptors and the substantial comorbidity of nicotine dependence in psychiatric disorders, the CHRNA2 gene is a plausible candidate gene for bipolar disorder (BPD). We tested the hypothesis that variations in the CHRNA2 gene confer susceptibility to bipolar I disorder in a case-control association study. Genotypes of one amino acid substitution polymorphism (Ala125Thr) and five non-coding variations across the CHRNA2 gene were obtained from 345 unrelated bipolar I patients and 273 control samples. Genotypes and allele frequencies were compared between groups using chi-square contingency analysis. Linkage disequilibrium (LD) between markers was calculated, and estimated haplotype frequencies were compared between groups. We observed no statitistically significant difference in genotype and allele frequencies for all six variations between bipolar patients and controls, but we did demonstrate strong LD throughout the gene. Haplotype analysis showed that no combinations of alleles were associated with illness. Our results suggest that common variations in the CHRNA2 gene are unlikely to confer susceptibility to BPD in this sample. Further studies are required to elucidate the susceptibility locus for BPD on chromosome 8p21-22.
Collapse
Affiliation(s)
- Falk W Lohoff
- School of Medicine Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Clinical Research Building, Room 135a, 415 Curie Boulevard, Philadelphia, PA 19104-6140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Stankovich J, Bahlo M, Rubio JP, Wilkinson CR, Thomson R, Banks A, Ring M, Foote SJ, Speed TP. Identifying nineteenth century genealogical links from genotypes. Hum Genet 2005; 117:188-99. [PMID: 15883841 DOI: 10.1007/s00439-005-1279-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 01/24/2005] [Indexed: 11/29/2022]
Abstract
We have developed a likelihood method to identify moderately distant genealogical relationships from genomewide scan data. The aim is to compare the genotypes of many pairs of people and identify those pairs most likely to be related to one another. We have tested the algorithm using the genotypes of 170 Tasmanians with multiple sclerosis recruited into a haplotype association study. It is estimated from genealogical records that approximately 65% of Tasmania's current population of 470,000 are direct descendants of the 13,000 female founders living in this island state of Australia in the mid-nineteenth century. All cases and four to five relatives of each case have been genotyped with microsatellite markers at a genomewide average density of 4 cM. Previous genealogical research has identified 51 pairwise relationships linking 56 of the 170 cases. Testing the likelihood calculation on these known relative pairs, we have good power to identify relationships up to degree eight (e.g. third cousins once removed). Applying the algorithm to all other pairs of cases, we have identified a further 61 putative relative pairs, with an estimated false discovery rate of 10%. The power to identify genealogical links should increase when the new, denser sets of SNP markers are used. Except in populations where there is a searchable electronic database containing virtually all genealogical links in the past six generations, the algorithm should be a useful aid for genealogists working on gene-mapping projects, both linkage studies and association studies.
Collapse
Affiliation(s)
- Jim Stankovich
- Division of Genetics and Bioinformatics, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, Dion C, Lavallée JC, Garneau Y, Gingras N, Nicole L, Pirès A, Ponton AM, Potvin A, Wallot H, Mérette C. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10:486-99. [PMID: 15534619 DOI: 10.1038/sj.mp.4001594] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The goal of this study was to identify susceptibility loci shared by schizophrenia (SZ) and bipolar disorder (BP), or specific to each. To this end, we performed a dense genome scan in a first sample of 21 multigenerational families of Eastern Quebec affected by SZ, BP or both (N=480 family members). This probably constitutes the first genome scan of SZ and BP that used the same ascertainment, statistical and molecular methods for the concurrent study of the two disorders. We genotyped 607 microsatellite markers of which 350 were spaced by 10 cM and 257 others were follow-up markers in positive regions at the 10 cM scan. Lander and Kruglyak thresholds were conservatively adjusted for multiple testings. We maximized the lod scores (mod score) over eight combinations (2 phenotype severity levels x 2 models of transmission x 2 analyses, affected/unaffected vs affected-only). We observed five genomewide significant linkages with mod score >4.0: three for BP (15q11.1, 16p12.3, 18q12-q21) and two for the shared phenotype, that is, the common locus (CL) phenotype (15q26,18q12-q21). Nine mod scores exceeded the suggestive threshold of 2.6: three for BP (3q21, 10p13, 12q23), three for SZ (6p22, 13q13, 18q21) and three for the CL phenotype (2q12.3, 13q14, 16p13). Mod scores >1.9 might represent confirmatory linkages of formerly reported genomewide significant findings such as our finding in 6p22.3 for SZ. Several regions appeared to be shared by SZ and BP. One linkage signal (15q26) appeared novel, whereas others overlapped formerly reported susceptibility regions. Despite the methodological limitations we raised, our data support the following trends: (i) results from several genome scans of SZ and BP in different populations tend to converge in specific genomic regions and (ii) some of these susceptibility regions may be shared by SZ and BP, whereas others may be specific to each. The present results support the relevance of investigating concurrently SZ and BP within the same study and have implications for the modelling of genetic effects.
Collapse
Affiliation(s)
- M Maziade
- Department of Psychiatry, Laval University, Quebec G1J 2G3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu CM, Hwu HG, Fann CSJ, Lin CY, Liu YL, Ou-Yang WC, Lee SFC. Linkage evidence of schizophrenia to loci near neuregulin 1 gene on chromosome 8p21 in Taiwanese families. Am J Med Genet B Neuropsychiatr Genet 2005; 134B:79-83. [PMID: 15704228 DOI: 10.1002/ajmg.b.20161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positive linkage of schizophrenia to chromosome 8p22-21 loci had been reported in the Caucasian samples. This study was designed to replicate this finding by using eleven microsatellite markers on chromosome 8p22-21 in 52 Taiwanese schizophrenic families with at least two affected siblings. Two phenotype models (narrow: DSM-IV schizophrenia only; and broad: including schizophrenia, schizoaffective, and other non-affective psychotic disorders) were used to define the disease phenotype. Maximum non-parametric linkage scores (NPL score) of 2.45 (P = 0.008) and 1.89 (P = 0.02) were obtained for the marker D8S1222 under the broad and narrow models, respectively. Positive linkage was found across about a 4-cM region. The marker D8S1222 was about 400 kbp distal to the exon 1 of glial growth factor 2 (GGF2), an isoform of Neuregulin 1 gene (NRG1), which has been highly suggested to be a candidate gene for schizophrenia. The results provide suggestive linkage evidence of schizophrenia to loci near NRG1 on chromosome 8p21 in an ethnically distinct Taiwanese sample. Further exploration of the candidate gene and nearby chromosome regions is warranted.
Collapse
Affiliation(s)
- Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW While schizophrenia is substantially heritable, the mode of inheritance is complex, involving numerous genes of small effect and a non-trivial environmental component. The 'endophenotype' approach is an alternative method for measuring phenotypic variation that may facilitate the identification of susceptibility genes in the context of complexly inherited traits. Here we review recent studies applying this method to measures of brain structure, physiology, and function in samples of schizophrenia patients and their non-ill first-degree relatives (siblings and co-twins). RECENT FINDINGS The results suggest that there are multiple heritable dimensions of central nervous system pathology in schizophrenia, including disturbances in the structure and functioning of frontal lobe systems involved in working memory and executive processes, temporal lobe systems involved in episodic memory, auditory perception, and language processing, and cortical and sub-cortical systems mediating smooth pursuit eye movements and sensorimotor gating. A number of genetic loci that are suspected to play a role in predisposing to schizophrenia, including the DISC1, COMT, neuregulin, dysbindin, and alpha-7 nicotinic receptor genes, appear to affect quantitative variation on one or more of these indicators. SUMMARY Future work is encouraged to address whether each of these neural system dysfunctions are under the influence of a partially distinct set of genes, to elucidate the manner in which multiple genes may coalesce in determining schizophrenia-promoting dysfunction in each neurobehavioral domain, and to clarify the degree of overlap in these quantitative trait loci-endophenotype relationships with other forms of psychosis, particularly bipolar disorder.
Collapse
Affiliation(s)
- Tyrone D Cannon
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, California 90095-1563, USA.
| |
Collapse
|
39
|
An Autosome-Wide Scan for Linkage Disequilibrium–Based Association in Sporadic Breast Cancer Cases in Eastern Finland: Three Candidate Regions Found. Cancer Epidemiol Biomarkers Prev 2005. [DOI: 10.1158/1055-9965.75.14.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Breast cancer is the most common of cancers among women in industrialized countries. Many of breast cancer risk factors are known, but the majority of the genetic background is still unknown. Linkage disequilibrium–based association is a powerful tool for mapping disease genes and is suitable for mapping complex traits in founder populations. We report the results of a two-stage, autosome-wide scan for LD with breast cancer. Our aim was to identify genetic risk factors for sporadic breast cancer in an eastern Finnish population. Our case-control set is from the province of northern Savo in the late-settlement area of eastern Finland. This population is relatively young and genetically homogeneous. We used 435 autosomal microsatellite markers spaced by an average of 10 cM in a set of 49 breast cancer cases and 50 controls. In the first-stage scan, we found 21 markers in LD with breast cancer (Ps = 0.003-0.046, Fisher's exact test). In the second-stage scan with markers flanking 21 positive loci, four significant markers were found (Ps = 0.013-0.046, Fisher's exact test). Haplotype analysis using global score method with two, three, or four markers also revealed four positive marker combinations (simulated P for global score = 0.003-0.021). Our results suggest breast cancer–associated regions on 3p26, 11q23, and 22q13.1 in an eastern Finnish population.
Collapse
|
40
|
Mathews CA, Reus VI, Bejarano J, Escamilla MA, Fournier E, Herrera LD, Lowe TL, McInnes LA, Molina J, Ophoff RA, Raventos H, Sandkuijl LA, Service SK, Spesny M, León PE, Freimer NB. Genetic studies of neuropsychiatric disorders in Costa Rica: a model for the use of isolated populations. Psychiatr Genet 2004; 14:13-23. [PMID: 15091311 DOI: 10.1097/00041444-200403000-00003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The importance of genetics in understanding the etiology of mental illness has become increasingly clear in recent years, as more evidence has mounted that almost all neuropsychiatric disorders have a genetic component. It has also become clear, however, that these disorders are etiologically complex, and multiple genetic and environmental factors contribute to their makeup. So far, traditional linkage mapping studies have not definitively identified specific disease genes for neuropsychiatric disorders, although some potential candidates have been identified via these methods (e.g. the dysbindin gene in schizophrenia; Straub et al., 2002; Schwab et al., 2003). For this reason, alternative approaches are being attempted, including studies in genetically isolated populations. Because isolated populations have a high degree of genetic homogeneity, their use may simplify the process of identifying disease genes in disorders where multiple genes may play a role. Several areas of Latin America contain genetically isolated populations that are well suited for the study of neuropsychiatric disorders. Genetic studies of several major psychiatric illnesses, including bipolar disorder, major depression, schizophrenia, Tourette Syndrome, alcohol dependence, attention deficit hyperactivity disorder, and obsessive-compulsive disorder, are currently underway in these regions. In this paper we highlight the studies currently being conducted by our groups in the Central Valley of Costa Rica to illustrate the potential advantages of this population for genetic studies.
Collapse
Affiliation(s)
- Carol A Mathews
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0810, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75:862-72. [PMID: 15386212 PMCID: PMC1182115 DOI: 10.1086/425586] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 09/01/2004] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia, schizoaffective disorder, and bipolar disorder are common psychiatric disorders with high heritabilities and variable phenotypes. The Disrupted in Schizophrenia 1 (DISC1) gene, on chromosome 1q42, was originally discovered and linked to schizophrenia in a Scottish kindred carrying a balanced translocation that disrupts DISC1 and DISC2. More recently, DISC1 was linked to schizophrenia, broadly defined, in the general Finnish population, through the undertransmission to affected women of a common haplotype from the region of intron 1/exon 2. We present data from a case-control study of a North American white population, confirming the underrepresentation of a common haplotype of the intron 1/exon 2 region in individuals with schizoaffective disorder. Multiple haplotypes contained within four haplotype blocks extending between exon 1 and exon 9 are associated with schizophrenia, schizoaffective disorder, and bipolar disorder. We also find overrepresentation of the exon 9 missense allele Phe607 in schizoaffective disorder. These data support the idea that these apparently distinct disorders have at least a partially convergent etiology and that variation at the DISC1 locus predisposes individuals to a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Colin A Hodgkinson
- Section of Human Neurogenetics and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 2004; 36:1045-51. [DOI: 10.1038/ng1433] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 08/19/2004] [Indexed: 11/09/2022]
|
43
|
Dudbridge F, Koeleman BPC. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies. Am J Hum Genet 2004; 75:424-35. [PMID: 15266393 PMCID: PMC1182021 DOI: 10.1086/423738] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/24/2004] [Indexed: 11/04/2022] Open
Abstract
Large exploratory studies, including candidate-gene-association testing, genomewide linkage-disequilibrium scans, and array-expression experiments, are becoming increasingly common. A serious problem for such studies is that statistical power is compromised by the need to control the false-positive rate for a large family of tests. Because multiple true associations are anticipated, methods have been proposed that combine evidence from the most significant tests, as a more powerful alternative to individually adjusted tests. The practical application of these methods is currently limited by a reliance on permutation testing to account for the correlated nature of single-nucleotide polymorphism (SNP)-association data. On a genomewide scale, this is both very time-consuming and impractical for repeated explorations with standard marker panels. Here, we alleviate these problems by fitting analytic distributions to the empirical distribution of combined evidence. We fit extreme-value distributions for fixed lengths of combined evidence and a beta distribution for the most significant length. An initial phase of permutation sampling is required to fit these distributions, but it can be completed more quickly than a simple permutation test and need be done only once for each panel of tests, after which the fitted parameters give a reusable calibration of the panel. Our approach is also a more efficient alternative to a standard permutation test. We demonstrate the accuracy of our approach and compare its efficiency with that of permutation tests on genomewide SNP data released by the International HapMap Consortium. The estimation of analytic distributions for combined evidence will allow these powerful methods to be applied more widely in large exploratory studies.
Collapse
Affiliation(s)
- Frank Dudbridge
- MRC Rosalind Franklin Centre for Genomics Research, and MRC Biostatistics Unit, Cambridge, United Kingdom.
| | | |
Collapse
|
44
|
Kohn Y, Danilovich E, Filon D, Oppenheim A, Karni O, Kanyas K, Turetsky N, Korner M, Lerer B. Linkage disequlibrium in the DTNBP1 (dysbindin) gene region and on chromosome 1p36 among psychotic patients from a genetic isolate in Israel: findings from identity by descent haplotype sharing analysis. Am J Med Genet B Neuropsychiatr Genet 2004; 128B:65-70. [PMID: 15211634 DOI: 10.1002/ajmg.b.30044] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several genes have been reported recently to be associated with schizophrenia and bipolar disorder. Because of the complexity of the inheritance of these disorders, there is an urgent need to replicate these findings and to search for additional candidate genes. The study of genetic isolates is a powerful technique that may overcome some of the obstacles caused by genetic heterogeneity and ambiguity of phenotype definition. Identity by descent (IBD) haplotype sharing analysis in these populations may be used to detect mutations within shared haplotypes in smaller samples of affected individuals. In this study, we used IBD haplotype sharing analysis to replicate positive linkage and association findings in psychotic disorders, and to identify other regions of interest. Fifty-two patients with major psychiatric disorders from a genetically isolated village in Israel were studied. By studying eight Y chromosome markers, we were able to confirm the oral tradition of members of this isolate regarding a common paternal origin. Three hundred fifty nine microsatellite markers on 9 candidate chromosomes were genotyped, and haplotypes were reconstructed using information from family members. Two highly significant (P < 0.0001) peaks of haplotype sharing were found. One was for psychotic patients with any diagnosis at the location of dysbindin, a gene previously associated with schizophrenia. The other peak was for patients with schizophrenia on chromosome 1p36. Thus, this study both replicates an earlier finding and points to a novel region of interest, which might be unique to this population.
Collapse
Affiliation(s)
- Yoav Kohn
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel 91120.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Berrettini W. Evidence for shared susceptibility in bipolar disorder and schizophrenia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2004; 123C:59-64. [PMID: 14601037 DOI: 10.1002/ajmg.c.20014] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article reviews evidence that bipolar disorder (BPD) and schizophrenia (SZ) share familial risk characteristics. The topic is introduced with a brief discussion of various shared epidemiologic characteristics of SZ and BPD. Family studies of BPD and SZ, conducted by multiple independent groups of investigators, are consistent with partial overlap in familial susceptibility. Given that the family study data suggest overlap in familial susceptibility for BPD and SZ, several confirmed linkages of BPD or SZ are reviewed, with the conclusion that there are five genomic regions for which evidence suggests shared genetic susceptibility of BPD and SZ. It is suggested that nosology must be changed to reflect the genetic origins of the multiple disorders that are collectively described by the terms BPD and SZ.
Collapse
Affiliation(s)
- Wade Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Yamada K, Iwayama-Shigeno Y, Yoshida Y, Toyota T, Itokawa M, Hattori E, Shimizu H, Yoshikawa T. Family-based association study of schizophrenia with 444 markers and analysis of a new susceptibility locus mapped to 11q13.3. Am J Med Genet B Neuropsychiatr Genet 2004; 127B:11-9. [PMID: 15108173 DOI: 10.1002/ajmg.b.20166] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Family-based linkage disequilibrium (LD) mapping has been suggested as a powerful and practical alternative to linkage analysis. We have performed a genome-wide LD survey of susceptibility loci for schizophrenia in a Japanese population. We first typed 119 schizophrenic pedigrees (357 individuals) using 444 microsatellite markers, and analyzed the data using the pedigree disequilibrium test. This analysis revealed 14 markers demonstrating significant transmission distortion. To corroborate these findings, the statistical methods were changed to the extended transmission disequilibrium test (ETDT), using 80 independent complete trios (schizophrenic proband and both parents), with 68 derived from initial pedigrees and 12 newly recruited trios. ETDT supported two markers for continued association, D11S987 on 11q13.3 (P = 0.00009) and D16S423 on 16p13.3 (P = 0.002). We scrutinized the most significant genomic locus on 11q11-13 by adding 26 new markers for analysis. Results of three-marker haplotype analysis in the region showed evidence of association with schizophrenia (most significant haplotype P = 0.0005, global P = 0.022). Although the present study may have missed other potential genomic intervals because of the sparse mapping density, we hope that it has identified promising anchor points for further studies to identify risk-conferring genes for schizophrenia in the Japanese population. In addition, we provide useful information on genomic LD structures in Japanese populations, which can be used for LD mapping of complex diseases.
Collapse
Affiliation(s)
- K Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Bipolar disorder is an etiologically complex syndrome that is clearly heritable. Multiple genes, working singly or in concert, are likely to cause susceptibility to bipolar disorder. Bipolar disorder genetics has progressed rapidly in the last few decades. However, specific causal genetic mutations for bipolar disorder have not been identified. Both candidate gene studies and complete genome screens have been conducted. They have provided compelling evidence for several potential bipolar disorder susceptibility loci in several regions of the genome. The strongest evidence suggests that bipolar disorder susceptibility loci may lie in one or more genomic regions on chromosomes 18, 4, and 21. Other regions of interest, including those on chromosomes 5 and 8, are also under investigation. New approaches, such as the use of genetically isolated populations and the use of endophenotypes for bipolar disorder, hold promise for continued advancement in the search to identify specific bipolar disorder genes.
Collapse
Affiliation(s)
- Carol A Mathews
- Department of Psychiatry at the University of California, San Diego, San Diego, California, USA
| | | |
Collapse
|
48
|
Abstract
Improved techniques for defining disease-gene location and evaluating the biological candidacy of regional transcripts will hasten disease-gene discovery. Improved techniques for defining disease-gene location and evaluating the biological candidacy of regional transcripts will hasten disease-gene discovery.
Collapse
Affiliation(s)
- Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, and Wellcome Trust Centre for Human Genetics, Headington, Oxford 0X3 7LJ, UK.
| | | | | |
Collapse
|
49
|
Berrettini W. Bipolar disorder and schizophrenia: not so distant relatives? World Psychiatry 2003; 2:68-72. [PMID: 16946898 PMCID: PMC1525081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Bipolar disorder (BPD) and schizophrenia (SZ) may have some susceptibility genes in common, despite the fact that current nosology separates them into non-overlapping categories. The evidence for shared genetic factors includes epidemiologic characteristics, family studies and overlap in confirmed linkages. Review of these data indicates that there are five genomic regions which may represent shared genetic susceptibility of BPD and SZ. As the genes underlying these confirmed linkages are identified, the current nosology must be changed to reflect the new knowledge concerning the shared etiologies of BPD and SZ.
Collapse
Affiliation(s)
- Wade Berrettini
- Department of Psychiatry, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for complex disorders. Genetics 2003; 164:829-33. [PMID: 12807801 PMCID: PMC1462572 DOI: 10.1093/genetics/164.2.829] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We explore the implications of the false discovery rate (FDR) controlling procedure in disease gene mapping. With the aid of simulations, we show how, under models commonly used, the simple step-down procedure introduced by Benjamini and Hochberg controls the FDR for the dependent tests on which linkage and association genome screens are based. This adaptive multiple comparison procedure may offer an important tool for mapping susceptibility genes for complex diseases.
Collapse
Affiliation(s)
- Chiara Sabatti
- Department of Human Genetics and Statistics, University of California, Los Angeles 90095-7088, USA.
| | | | | |
Collapse
|