1
|
Namba T, Takeuchi Y, Banerjee M. Importance of environmental productivity and diet quality in intraguild predation. Theor Popul Biol 2025; 163:24-35. [PMID: 40086602 DOI: 10.1016/j.tpb.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/13/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In the intricate network of ecological interactions, intraguild predation emerges as a fundamental community module incorporating omnivory. Classical equilibrium theory predicts the exclusion of the intraguild predator and prey at low and high environmental productivity, respectively, with the coexistence of both species occurring only at intermediate productivity levels. However, empirical studies challenge this theoretical prediction, particularly concerning the extinction of intraguild prey in highly productive environments. To address this enigmatic issue, Diehl (2003), Abrams and Fung (2010a) explore the impact of food quality and propose that low nutritional quality of the basal resource stabilizes omnivorous systems. Yet, the influence of intermediate consumer quality remains inadequately explored. This study employs analytical and numerical bifurcation studies to investigate the effects of the quality of two diet types. Various bifurcations, including supercritical and subcritical Hopf bifurcations, saddle-node bifurcations of periodic solutions, and transcritical bifurcations of periodic solutions are observed. These bifurcations are directly linked to the destinies of intraguild prey and predators. The results reveal that, in highly productive environments, it may not be the intermediate consumer but the omnivore that faces extinction. This discovery holds significant implications for the conservation and management of omnivorous systems.
Collapse
Affiliation(s)
- Toshiyuki Namba
- Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.
| | - Yasuhiro Takeuchi
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
2
|
Mullins DE, Nalepa CA, Mullins AJ, Gabbert SE. Cuticular nitrogen economy during development in the cockroach Cryptocercus punctulatus and the termite Neotermes jouteli. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104745. [PMID: 39725309 DOI: 10.1016/j.jinsphys.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The role of nitrogen during insect development and reproduction is key in the success of a species, and is of primary importance in wood feeding taxa. Based on comparison of xylophagous, one-piece termites to the termite sister group, subsocial wood-feeding cockroaches in the genus Cryptocercus, it has been proposed that the evolution of termite eusociality involved a fundamental shift in nitrogen allocation strategies. Cryptocercus exhibits a nitrogen storage economy, with individuals gradually increasing in size and cuticular density over a years-long developmental period. Termites, however, remain in a juvenilized morphotype with minimal investment into cuticle, suggesting that nitrogen is conserved and circulated according to the needs of the colony via behaviors such as trophallaxis and cannibalism. We examined the nitrogen economy of Cryptocercus punctulatus and the dampwood termite Neotermes jouteli, focusing on cuticular nitrogen investment during development and exuvial nitrogen losses resulting from molting. Cryptocercus progressively changes from a pale, thin, soft cuticle at hatch to a dark, thick, heavily sclerotized cuticle in adults; increases in N/mg cuticle and the quantity of cuticular catecholamines are correlated with these ontogenetic color changes. There were significant differences in the nitrogen content of two successive age classes of early stage juveniles and in their discarded exuvia at molt. Soldier and alate castes of N. jouteli exhibited the highest sclerotization/melanization indices; pseudergates had levels comparable to those measured in Class I (3rd and 4th instar) juveniles of C. punctulatus. Exuvia of N. jouteli contained 0.19 μgN/mg, while exuvia of approximately two- and three-year-old C. punctulatus had 72.9 and 82.6 μgN/mg, respectively. Our data support the hypothesis that the evolution of termite eusociality from subsocial cockroach ancestors was rooted in chronic fitness limitations imposed by their low nitrogen diet.
Collapse
Affiliation(s)
- D E Mullins
- Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States.
| | - C A Nalepa
- Department of Entomology, NC State University, Raleigh, NC 27695-7613, United States
| | - A J Mullins
- Fort Lauderdale Research and Education Center, University of FL, 3205 College Ave. Davie, FL 33314-7719, United States
| | - S E Gabbert
- Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States
| |
Collapse
|
3
|
Cai J, Zeng Y, Zhu Y, Zheng Q, Tian L, Xie Q, Zheng X. Trophic stoichiometry of macroelements and metals in a terrestrial food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124993. [PMID: 39303937 DOI: 10.1016/j.envpol.2024.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In order to understand the transfer of macroelements and toxic metals in the terrestrial food web, barn swallows, terrestrial frogs, and insects were collected from farmlands in the Leizhou Peninsula, and analyzed for macroelements carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) and trace metals nickel (Ni), zinc (Zn), selenium (Se), copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), and mercury (Hg). The multi-element ecological stoichiometry was discussed to trace the food web flow of nutrients and toxicants. The percentage contents of C, N, P, and S were 35.43-59.91%, 6.89-12.11%, 0.49-4.66%, and 0.44-2.19%, respectively. The concentrations of Ni, Zn, Se, Cu, Cr, Cd, Pb, and Hg were 0.163-116 mg/kg, 38.7-227 mg/kg, 0.0453-3.82 mg/kg, 3.11-141 mg/kg, not detected-79.6 mg/kg, 0.0203-0.358 mg/kg, 0.148-4.57 mg/kg, and 0.00159-1.46 mg/kg, respectively. Organisms at high trophic levels had higher contents of N, P, and S, and lower contents of C. Significant correlations were observed between δ15N and ratios of C: N, C: P, C: S, N: P, N: S, and S: P, indicating selective transfer of biogenic elements for predators in the terrestrial food web. Most metals including Ni, Zn, Se, Cu, Cr, Pb, and Hg had biomagnification factors and trophic magnification factors higher than 1, because the whole body of organisms rather than tissues were used. The negative correlations between the detoxification ratios of Se: X (each toxic metal) and metal concentrations suggest potential adverse effect of metals on terrestrial organisms.
Collapse
Affiliation(s)
- Junjie Cai
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Zeng
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yujing Zhu
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Li Tian
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China; Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Lingnan Normal University, Zhanjiang, 524048, China
| | - Qilai Xie
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Swain A, Azevedo-Schmidt LE, Maccracken SA, Currano ED, Meineke EK, Pierce NE, Fagan WF, Labandeira CC. Interactive Effects of Temperature, Aridity, and Plant Stoichiometry on Insect Herbivory: Past and Present. Am Nat 2024; 204:416-431. [PMID: 39326060 DOI: 10.1086/731995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO2 increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB). We find that higher temperatures were associated with increased herbivory in the past, especially among BB sites. In these BB sites, non-N2-fixing plants experienced a lower richness but higher frequency of herbivory damage than N2-fixing plants. Herbivory frequency but not richness was greater in BB sites compared with contemporaneous, nearby, but less arid sites from Hanna Basin. Compared with deep-time environments, herbivory frequency and richness are higher in modern sites, suggesting that current accelerated warming uniquely impacts plant-insect interactions. Overall, our work addresses multiple aspects of climate change using fossil data while also contextualizing the impact of modern anthropogenic change on Earth's most diverse interactions.
Collapse
|
5
|
Bernardin JR, Gray SM, Bittleston LS. Arthropod prey type drives decomposition rates and microbial community processes. Appl Environ Microbiol 2024; 90:e0039424. [PMID: 38916291 PMCID: PMC11267907 DOI: 10.1128/aem.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant, Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCE Microbial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context.
Collapse
Affiliation(s)
| | - Sarah M. Gray
- Department of Biology-Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
6
|
Hwang BC, Giardina CP, Adu-Bredu S, Barrios-Garcia MN, Calvo-Alvarado JC, Dargie GC, Diao H, Duboscq-Carra VG, Hemp A, Hemp C, Huasco WH, Ivanov AV, Johnson NG, Kuijper DPJ, Lewis SL, Lobos-Catalán P, Malhi Y, Marshall AR, Mumladze L, Ngute ASK, Palma AC, Petritan IC, Rordriguez-Cabal MA, Suspense IA, Zagidullina A, Andersson T, Galiano-Cabrera DF, Jiménez-Castillo M, Churski M, Gage SA, Filippova N, Francisco KS, Gaglianese-Woody M, Iankoshvili G, Kaswamila MA, Lyatuu H, Mampouya Wenina YE, Materu B, Mbemba M, Moritz R, Orang K, Plyusnin S, Puma Vilca BL, Rodríguez-Solís M, Šamonil P, Stępniak KM, Walsh SK, Xu H, Metcalfe DB. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Nat Commun 2024; 15:6011. [PMID: 39019847 PMCID: PMC11254921 DOI: 10.1038/s41467-024-50245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.
Collapse
Affiliation(s)
- Bernice C Hwang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, Umeå, Sweden.
- Department of Ecology, University of Innsbruck, Sterwartestraße 15, Innsbruck, Austria.
| | - Christian P Giardina
- Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA
| | - Stephen Adu-Bredu
- CSIR-Forestry Research Institute of Ghana: Kumasi, Ashanti, Ghana
- Department of Natural Resources Management, CSIR College of Science and Technology, Kumasi, Ghana
| | - M Noelia Barrios-Garcia
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
- CONICET, CENAC-APN, Universidad Nacional del Comahue (CRUB), Bariloche (8400), Argentina
| | | | | | - Haoyu Diao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Virginia G Duboscq-Carra
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)-CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | - Claudia Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Aleksandr V Ivanov
- Institute of Geology and Nature Management Far Eastern Branch of Russian Academy of Sciences, Relochny lane, 1, Blagoveshchensk, 675000, Russia
| | - Nels G Johnson
- Pacific Southwest Research Station, USDA Forest Service, Hilo, Hawai'i, USA
| | - Dries P J Kuijper
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17‑230, Białowieża, Poland
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Paulina Lobos-Catalán
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Reforest Africa, PO Box 5, Mang'ula, Kilombero District, Tanzania
| | - Levan Mumladze
- Institute of Zoology, Ilia State University, 3/5 Cholokashvili Ave, 0169, Tbilisi, Georgia
| | - Alain Senghor K Ngute
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Ana C Palma
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Qld, Australia
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brașov, Șirul Beethoven 1, 500123, Brașov, Romania
| | - Mariano A Rordriguez-Cabal
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)-CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Ifo A Suspense
- Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, République du Congo
- Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l'Environnement, Faculté des Sciences et techniques, Université Marien Ngouabi, Brazzaville, République du Congo
| | - Asiia Zagidullina
- Forest Research Institute, University of Quebec in Abitibi-Témiscamingue, QC, Canada
- Department of Physical Geography and Environmental Management Problems, Institute of Geography, Russian Science Academy, Moscow, Russia
| | - Tommi Andersson
- Kevo Subarctic Research Institute, Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Darcy F Galiano-Cabrera
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
- Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Av. de La Cultura 773, Cusco, Cusco Province, 08000, Peru
| | - Mylthon Jiménez-Castillo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Marcin Churski
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17‑230, Białowieża, Poland
| | - Shelley A Gage
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 47 Mayers Road, Nambour, 4056, Australia
| | - Nina Filippova
- Yugra State University, 628012, Chekhova street, 16, Khanty-Mansiysk, Russia
| | - Kainana S Francisco
- Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA
| | | | - Giorgi Iankoshvili
- Institute of Ecology, Ilia State University, 3/5 Cholokashvili Ave, 0169, Tbilisi, Georgia
| | | | - Herman Lyatuu
- Reforest Africa, PO Box 5, Mang'ula, Kilombero District, Tanzania
| | - Y E Mampouya Wenina
- Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, République du Congo
- Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l'Environnement, Faculté des Sciences et techniques, Université Marien Ngouabi, Brazzaville, République du Congo
| | - Brayan Materu
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - M Mbemba
- CongoPeat Project, Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, République du Congo
| | - Ruslan Moritz
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033, Irkutsk, Lermontova str., 132, Russia
| | - Karma Orang
- Ugyen Wangchuk Institute for Forest Research and Training, Department of Forests and Park Services, Ministry of Energy and Natural Resources, Lamai Goempa, Bumthang, Bhutan
| | - Sergey Plyusnin
- Pitirim Sorokin Syktyvkar State University, 455 Oktyabrsky prosp., 167001, Syktyvkar, Russia
| | - Beisit L Puma Vilca
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
- Kevo Subarctic Research Institute, Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | | | - Pavel Šamonil
- The Silva Tarouca Research Institute, Květnové náměstí 391, Průhonice, 252 43, Czech Republic
| | - Kinga M Stępniak
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17‑230, Białowieża, Poland
- Department of Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-086, Warsaw, Poland
| | - Seana K Walsh
- Department of Science and Conservation, National Tropical Botanical Garden, 3530 Papalina Road, Kalāheo, HI, 96741, USA
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Daniel B Metcalfe
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, Umeå, Sweden
| |
Collapse
|
7
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
8
|
Aguilar JM, Gloss AD, Suzuki HC, Verster KI, Singhal M, Hoff J, Grebenok R, Nabity PD, Behmer ST, Whiteman NK. Insights into the evolution of herbivory from a leaf-mining fly. Ecosphere 2024; 15:e4764. [PMID: 39247255 PMCID: PMC11378976 DOI: 10.1002/ecs2.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024] Open
Abstract
Herbivorous insects and their host plants comprise most known species on Earth. Illuminating how herbivory repeatedly evolved in insects from non-herbivorous lineages is critical to understanding how this biodiversity is created and maintained. We characterized the trophic niche of Scaptomyza flava, a representative of a lineage nested within the Drosophila that transitioned to herbivory ~10-15 million years ago. We used natural history studies to determine if S. flava is a true herbivore or a cryptic microbe-feeder, given that the ancestral character state for the family Drosophilidae is likely microbe-feeding. Specifically, we quantified oviposition substrate choice and larval viability across food-types, trophic-related morphological traits, and nitrogen isotope and sterol profiles across putatively herbivorous and non-herbivorous drosophilids. The results of these studies show that S. flava is an obligate herbivore of living plants. Paired with its genetic model host, Arabidopsis thaliana, S. flava is a novel and powerful system for exploring mechanisms underlying the evolution of herbivory, a complex trait that enabled the exceptional diversification of insects.
Collapse
Affiliation(s)
- Jessica M Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Kirsten I Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jordan Hoff
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Robert Grebenok
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - Paul D Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Wierz JC, Gimmel ML, Huthmacher S, Engl T, Kaltenpoth M. Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles. THE ISME JOURNAL 2024; 18:wrae080. [PMID: 38861456 PMCID: PMC11191362 DOI: 10.1093/ismejo/wrae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Many insects feeding on nutritionally challenging diets like plant sap, leaves, or wood engage in ancient associations with bacterial symbionts that supplement limiting nutrients or produce digestive or detoxifying enzymes. However, the distribution, function, and evolutionary dynamics of microbial symbionts in insects exploiting other plant tissues or relying on a predacious diet remain poorly understood. Here, we investigated the evolutionary history and function of the intracellular gamma-proteobacterial symbiont "Candidatus Dasytiphilus stammeri" in soft-winged flower beetles (Coleoptera, Melyridae, Dasytinae) that transition from saprophagy or carnivory to palynivory (pollen-feeding) between larval and adult stage. Reconstructing the distribution of the symbiont within the Dasytinae phylogeny unraveled not only a long-term coevolution, originating from a single acquisition event with subsequent host-symbiont codiversification, but also several independent symbiont losses. The analysis of 20 different symbiont genomes revealed that their genomes are severely eroded. However, the universally retained shikimate pathway indicates that the core metabolic contribution to their hosts is the provisioning of tyrosine for cuticle sclerotization and melanization. Despite the high degree of similarity in gene content and order across symbiont strains, the capacity to synthesize additional essential amino acids and vitamins and to recycle urea is retained in some but not all symbionts, suggesting ecological differences among host lineages. This report of tyrosine-provisioning symbionts in insects with saprophagous or carnivorous larvae and pollen-feeding adults expands our understanding of tyrosine supplementation as an important symbiont-provided benefit across a broad range of insects with diverse feeding ecologies.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Matthew L Gimmel
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, United States
| | - Selina Huthmacher
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
10
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Herzog C, Reeves JT, Ipek Y, Jilling A, Hawlena D, Wilder SM. Multi-elemental consumer-driven nutrient cycling when predators feed on different prey. Oecologia 2023; 202:729-742. [PMID: 37552361 DOI: 10.1007/s00442-023-05431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.
Collapse
Affiliation(s)
- Colton Herzog
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA.
| | - Jacob T Reeves
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Yetkin Ipek
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, USA
| | - Dror Hawlena
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| |
Collapse
|
12
|
Gallego-Zamorano J, de Jonge MMJ, Runge K, Huls SH, Wang J, Huijbregts MAJ, Schipper AM. Context-dependent responses of terrestrial invertebrates to anthropogenic nitrogen enrichment: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:4161-4173. [PMID: 37114471 DOI: 10.1111/gcb.16717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 06/14/2023]
Abstract
Anthropogenic increases in nitrogen (N) concentrations in the environment are affecting plant diversity and ecosystems worldwide, but relatively little is known about N impacts on terrestrial invertebrate communities. Here, we performed an exploratory meta-analysis of 4365 observations from 126 publications reporting on the richness (number of taxa) or abundance (number of individuals per taxon) of terrestrial arthropods or nematodes in relation to N addition. We found that the response of invertebrates to N enrichment is highly dependent on both species' traits and local climate. The abundance of arthropods with incomplete metamorphosis, including agricultural pest species, increased in response to N enrichment. In contrast, arthropods exhibiting complete or no metamorphosis, including pollinators and detritivores, showed a declining abundance trend with increasing N enrichment, particularly in warmer climates. These contrasting and context-dependent responses may explain why we detected no overall response of arthropod richness. For nematodes, the abundance response to N enrichment was dependent on mean annual precipitation and varied between feeding guilds. We found a declining trend in abundance with N enrichment in dry areas and an increasing trend in wet areas, with slopes differing between feeding guilds. For example, at mean levels of precipitation, bacterivore abundance showed a positive trend in response to N addition while fungivore abundance declined. We further observed an overall decline in nematode richness with N addition. These N-induced changes in invertebrate communities could have negative consequences for various ecosystem functions and services, including those contributing to human food production.
Collapse
Affiliation(s)
- Juan Gallego-Zamorano
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
| | - Melinda M J de Jonge
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
| | - Katharina Runge
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
| | - Steven H Huls
- Department of Plant Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
| | - Jiaqi Wang
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| |
Collapse
|
13
|
Rogers R, Polito MJ, de Jesús Crespo R. Tree canopy cover affects basal resources and nutrient profiles of Aedes and Culex larvae in cemetery vases in New Orleans, Louisiana, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:500-510. [PMID: 36920104 DOI: 10.1093/jme/tjad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
Cemetery vases are important habitat for vector mosquito production, yet there is limited understanding on their food web dynamics and how they vary across environmental gradients. Tree cover is one factor that varies widely across cemeteries, and influence food webs by means of detrital inputs, temperature mediation, and light availability. Such information can be important for determining mosquito adult body size, fecundity, and competition outcomes, all of which may influence mosquito population and disease risk. This study evaluates the relationship between tree canopy cover and indicators of basal resources for Aede aegypti (L.), Aedes albopictuss (Skuse), and Culex quinquefasciatus (Say) larvae, such as stable isotopes (δ13C and δ15N) and nutrient stoichiometry in cemeteries of New Orleans, Louisiana (USA). Stable isotope values suggest that larvae feed directly on the Particulate Organic Matter (POM) suspended in the vase's water, and that POM composition influence the nutrient profiles of mosquito larvae. The POM of open canopy vases had higher δ13C values, than that of closed canopy vases indicating differences in relative proportion of basal carbon sources, with open canopy POM having a lower proportion of allochthonous carbon, and a higher proportion of authoctonous carbon. Accordingly, mosquito larvae collected from open canopy vases had higher δ13C values, and higher C:N than larvae from closed canopy vases. The results of this study show a shift in food web dynamics driven by canopy cover in cemetery vases that directly influence the nutrient profiles of mosquito larvae. The implications for mosquito ecology, and vector management are discussed.
Collapse
Affiliation(s)
- Rachel Rogers
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, USA
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
14
|
Engel N, Aguado MT, Maraun M. Trophic ecology of three marine polychaete species: Evidence from laboratory experiments using stable isotope ( 15N, 13C), fatty acid (NLFA) analyses, and C and N stoichiometry. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105878. [PMID: 36652888 DOI: 10.1016/j.marenvres.2023.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Marine polychaetes are a highly diverse taxon with a large variety of different feeding modes. A proper identification of the different diets of polychaete species and their trophic position in the food web is crucial for understanding their interactions in marine ecosystems as well as marine community dynamics. Since gut content analyses and feeding experiments are difficult to conduct in marine habitats, other methods using biochemical tracers may contribute to a better understanding of the trophic ecology of marine polychaetes. Here, we conducted laboratory experiments and used a combination of stable isotope (13C, 15N) and neutral lipid fatty acid (NLFA) analyses, as well as C and N stoichiometry to determine the feeding habits of widely distributed marine polychaete species, such as Eurythoe complanata, Platynereis massiliensis, and Syllis malaquini. Additionally, the impact of starvation on the stable isotope signatures was analyzed. Our data show that the trophic ecology of the three species differs from each other. Stable isotope and fatty acid analyses indicate that (a) E. complanata is mainly feeding on algae, cyanobacteria and to a lesser extent on fungi, that (b) S. malaquini is mainly feeding on algae and bacteria and that (c) P. massiliensis is mainly feeding on algae, especially diatoms. An analysis of the C:N ratio of the respective annelid species and their potential food sources corroborated these results. The combination of stable isotope signatures, fatty acid markers and stoichiometry of carbon and nitrogen is a useful tool to identify the diet and trophic position of marine polychaete species and provides more results about their feeding habits and their position in marine food webs.
Collapse
Affiliation(s)
- Nele Engel
- Dep. Animal Evolution and Biodiversity, JFB Institute for Zoology and Anthropology, Georg-August-University Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.
| | - M Teresa Aguado
- Dep. Animal Evolution and Biodiversity, JFB Institute for Zoology and Anthropology, Georg-August-University Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Mark Maraun
- Dep. Animal Ecology, JFB Institute of Zoology and Anthropology, Georg-August-University Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| |
Collapse
|
15
|
Beck M, Billoir E, Floury M, Usseglio-Polatera P, Danger M. A 34-year survey under phosphorus decline and warming: Consequences on stoichiometry and functional trait composition of freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159786. [PMID: 36377090 DOI: 10.1016/j.scitotenv.2022.159786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Worldwide, freshwater systems are subjected to increasing temperatures and nutrient changes. Under phosphorus and nitrogen enrichment consumer communities are often thought to shift towards fast-growing and P-rich taxa, supporting the well-known link between growth rate and body stoichiometry. While these traits are also favoured under warming, the temperature effect on stoichiometry is less clear. As recently shown, there is a general link between functional traits and body stoichiometry, which makes the integration of stoichiometric traits a promising tool to help understanding the mechanisms behind taxonomic and functional community responses to nutrient changes and/or warming. Yet, such approaches have been scarcely developed at community level and on a long-term perspective. In this study, we investigated long-term responses in stoichiometry and functional trait composition of macroinvertebrate communities to nutrient changes (decreasing water P; increasing water N:P) and warming over a 34-year period in the Middle Loire River (France), testing the potentially opposing responses to these drivers. Both drivers should cause shifts in species composition, which will alter the overall community stoichiometry and functional composition following assumptions from ecological stoichiometry theory. We found that the macroinvertebrate community shifted towards P-poor taxa, causing significant trends in overall community stoichiometry which indicates long-term changes in the nutrient pool provided by these consumers (i.e. decrease in %N and %P, increase in N:P). Further, while the former high-P conditions favoured traits associated to detritus feeding and fast development (i.e. small maximum body size, short life duration), recent conditions favoured predators and slow-developing taxa. These results suggest nutrients to be a more important driver than temperature over this period. By providing a pivotal link between environmental changes and functional trait composition of communities, approaches based on stoichiometric traits offer sound perspectives to investigate ecological relationships between multiple drivers operating at various scales and ecosystem functioning.
Collapse
Affiliation(s)
| | | | - Mathieu Floury
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F- 69622, Villeurbanne, France
| | | | - Michael Danger
- LIEC, Université de Lorraine, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
Zhang B, Chen H, Deng M, Li X, Chen TW, Liu L, Scheu S, Wang S. Multidimensional stoichiometric mismatch explains differences in detritivore biomass across three forest types. J Anim Ecol 2023; 92:454-465. [PMID: 36477808 DOI: 10.1111/1365-2656.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Haozhen Chen
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Mingqin Deng
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Xin Li
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, České Budějovice, Czech Republic
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| |
Collapse
|
17
|
Suzuki Y, Ikemoto M, Yokoi T. The ontogenetic dietary shift from non-dangerous to dangerous prey in predator-eating predators under capture risk. Ecol Evol 2022; 12:e9609. [PMID: 36514549 PMCID: PMC9731918 DOI: 10.1002/ece3.9609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Evaluating the patterns and generality of ontogenetic dietary shifts (ODSs) contributes to understanding prey-predator interactions and food web dynamics. Numerous studies have focused on predators that target distinctively lower trophic-level organisms. However, the ODS of predators that routinely prey on organisms at similar trophic levels (i.e., predator-eating predators) have been neglected in ODS research. The ODS patterns of predator eaters may not fit into conventional frameworks owing to constraints of potential capture risk (e.g., deadly counterattack from prey) and body size. We aimed to reveal the ODS patterns of predator eaters and determine whether the patterns were affected by body size and capture risk. Assuming that capture risk is a significant factor in ODS patterns, we expected: (1) juvenile araneophagic spiders to forage on non-dangerous prey (insects) and capture larger non-dangerous prey more frequently than dangerous prey (spiders); and (2) as they grow, their prey types will shift from non-dangerous to dangerous prey because larger predators will be able to capture dangerous prey as the optimal food. As a result of field observations, we revealed that the major ODS pattern in these spiders changed from a mixed (both insect and spider) to a spider-dominant diet. The model selection approach showed that this diet shift was partly due to predator size, and the relative importance of predator size was higher than the life stage per se and almost equal to species identity. In these spiders, the body size of spider prey tended to be smaller than that of insects when the predators were small, suggesting that capture risk may be a critical factor in determining the ODS patterns of these predators. Therefore, our study adds to the evidence that the capture risk is crucial in comprehensively understanding the mechanisms determining ODS patterns in natural systems.
Collapse
Affiliation(s)
- Yuya Suzuki
- Laboratory of Conservation Ecology, Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Mito Ikemoto
- Laboratory of Conservation Ecology, Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
- Biodiversity DivisionNational Institute for Environmental StudiesTsukubaJapan
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
| |
Collapse
|
18
|
Beck M, Billoir E, Felten V, Meyer A, Usseglio‐Polatera P, Danger M. Lessons from linking bio- and ecological traits to stoichiometric traits in stream macroinvertebrates. Ecol Evol 2022; 12:e9605. [PMID: 36514542 PMCID: PMC9731919 DOI: 10.1002/ece3.9605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
Ecologists rely on various functional traits when investigating the functioning of ecological systems and its responses to global changes. Changing nutrient levels, for example, can affect taxa expressing different trait combinations in various ways, e.g., favoring small, fast-growing species under high phosphorus conditions. Stoichiometric traits, describing the elemental composition of organism body tissues, can help in understanding the mechanisms behind such functional shifts. So far, mainly life-history traits have been related to body stoichiometry (e.g., the growth rate hypothesis) on a limited number of taxa, and there is little knowledge of the general link between stoichiometric and other functional traits on a taxonomically large scale. Here, we highlight this link in the freshwater macroinvertebrates, testing predictions from underlying trait-based and Ecological Stoichiometry Theory (EST) in >200 taxa belonging to eight larger taxonomic groups. We applied a series of multivariate analyses on six of their stoichiometric traits (%C, %N, %P, C:N, C:P, and N:P) and 23 biological and ecological traits. We found significant relationships between stoichiometric traits and other types of traits when analyzing single-trait and multi-trait profiles. Patterns found within traits related to organism development or nutrient cycling were in line with our assumptions based on EST, e.g., traits describing predators were associated with high %N; traits suggesting a fast development (small maximum body size and high molting frequency) with high %P. Associations between ecological traits and body stoichiometry could be explained by the longitudinal stream gradient: Taxa preferring headwater habitats (i.e., high altitude, coarse substrate, and cold temperature) exhibited high %N and %P. Demonstrating the link between stoichiometric and both bio- and ecological traits on a large diversity of taxa underlines the potential of integrating stoichiometric traits into ecological analyses to improve our understanding of taxonomic and functional responses of communities-and ecosystems-to changing environmental conditions worldwide.
Collapse
Affiliation(s)
| | | | - Vincent Felten
- CNRS, LIECUniversité de LorraineMetzFrance
- LTER‐“Zone Atelier Moselle”MetzFrance
| | | | | | - Michael Danger
- CNRS, LIECUniversité de LorraineMetzFrance
- LTER‐“Zone Atelier Moselle”MetzFrance
- Institut Universitaire de France (IUF)ParisFrance
| |
Collapse
|
19
|
Sun SL, Abudisilimu N, Yi H, Li S, Liu TX, Jing X. Understanding nutritive need in Harmonia axyridis larvae: Insights from nutritional geometry. INSECT SCIENCE 2022; 29:1433-1444. [PMID: 35061926 DOI: 10.1111/1744-7917.13009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an important natural enemy in agricultural ecosystems. In spite of being a carnivore consuming protein-rich preys, the lady beetles often consume carbohydrate-rich food like nectar or honeydew. However, most studies on nutrition regulation of carnivores mainly focus on protein and lipid, two major macronutrients in preys. In this study, nutrition regulation of protein and carbohydrate has been investigated in the 4th instar larvae of H. axyridis using Geometric Framework. We provided the insects two pairs of foods, one a protein-biased one and the second carbohydrate-biased, to determine the intake target. We then confined them to nutritionally imbalanced foods to examine how they regulated food intake to achieve maximal performance. The larvae performed well on the 2 foods that containing the closest P : C ratios to the intake target, but, surprisingly, the lipid content was much lower than that in the choice experiment. The lady beetles seemed to maintain the optimal lipid content by consuming carbohydrate-rich food. Moreover, consuming the carbohydrate-rich food was less metabolically expensive than the protein-rich food. Therefore, switching behavior between plant and animal foods actually reflects their nutritive needs. These findings extended our understanding of predator forage behavior and its influence on food web in ecosystems, and shed light on the role of agri-environment schemes in meeting the nutritional need of predators in field.
Collapse
Affiliation(s)
- Shao-Lei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Nibijiang Abudisilimu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Sali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
May EM, El‐Sabaawi RW. Life stage and taxonomy the most important factors determining vertebrate stoichiometry: A meta-analysis. Ecol Evol 2022; 12:e9354. [PMID: 36203622 PMCID: PMC9526032 DOI: 10.1002/ece3.9354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/19/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Whole-body elemental composition is a key trait for determining how organisms influence their ecosystems. Using mass-balance, ecological stoichiometry predicts that animals with higher concentrations of element X will selectively retain more X and will recycle less X in their waste than animals with lower X concentrations. These animals will also store high quantities of X during their lives and after their deaths (prior to full decomposition). Vertebrates may uniquely impact nutrient cycling because they store high quantities of phosphorus (P) in their bones. However, vertebrates have diverse body forms and invest variably in bone. Current analyses of vertebrate elemental content predominately evaluate fishes, typically neglecting other vertebrates and leaving much of the diversity unexplored. We performed a systematic review and identified 179 measurements of whole-body percent phosphorus (%P), percent nitrogen (%N), and N to P ratio (N:P) from 129 unique species of non-fish vertebrates (amphibians: 39 species; reptiles: 19 species; birds: 27 species; mammals: 46 species). We found that %P (mean: 1.94%; SD [standard deviation] = 0.77) and N:P (mean: 12.52) varied with taxonomy and life stage, while %N (mean: 10.51%; SD = 3.25) varied primarily with taxonomy. Habitat, diet, and size had small and inconsistent effects in different groups. Our study highlights two research gaps. Life stage, which is frequently neglected in stoichiometric studies, is an important factor determining vertebrate %P. Furthermore, amphibians dominate our dataset, while other vertebrate taxa are poorly represented in the current literature. Further research into these neglected vertebrate taxa is essential.
Collapse
Affiliation(s)
- Emily M. May
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rana W. El‐Sabaawi
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
21
|
Lescano MN, Quintero C, Farji‐Brener AG, Balseiro E. Excessive nutrient input induces an ecological cost for aphids by modifying their attractiveness towards mutualist ants. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. N. Lescano
- Laboratorio de Investigaciones en Hormigas (LIHO), INIBIOMA (CONICET‐UNComa), Bariloche Argentina
| | - C. Quintero
- Laboratorio Ecotono, INIBIOMA (CONICET‐UNComa), Bariloche Argentina
| | - A. G. Farji‐Brener
- Laboratorio de Investigaciones en Hormigas (LIHO), INIBIOMA (CONICET‐UNComa), Bariloche Argentina
| | - E. Balseiro
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNComa), Bariloche Argentina
| |
Collapse
|
22
|
Henneken J, Blamires SJ, Goodger JQ, Jones TM, Elgar MA. Population level variation in silk chemistry but not web architecture in a widely distributed orb web spider. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Spider webs are iconic examples of extended phenotypes that are remarkably plastic across different environments. Orb webs are not only effective traps for capturing prey, but can also provide information to potential mates and, in some cases, potential predators and prey through silk-based chemicals. As with regular phenotypic traits, variability in the properties of spider webs is thought to be mediated by a combination of genetic and environmental effects. Here, we examined variation in several key features of the webs of the orb-weaving spider Argiope keyserlingi across five geographically disparate populations. We documented variation in web architecture and chemical properties of webs collected directly from the field. We then probed the potential for the underlying environmental driver of local insect abundance to explain this variation, by analysing the properties of orb webs constructed by the spiders from these different populations, but under identical laboratory conditions. We found no evidence of variation across populations in the architecture of webs constructed in the laboratory, despite the large geographic distances. Nonetheless, we discovered between population variation in the composition of chemicals found on the surface of silk and in the taxonomic distribution of available prey. Furthermore, there was a positive correlation between the quantity of nitrogenous compounds in web silks and female body condition. When combined, these findings suggest that environmental mechanisms can drive variation in web traits across spider populations.
Collapse
Affiliation(s)
- Jessica Henneken
- School of BioSciences, The University of Melbourne , VIC 3010 , Australia
- Agriculture Victoria Research, AgriBio Centre , 5 Ring Road Bundoora, VIC 3083 , Australia
| | - Sean J Blamires
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales , Sydney, NSW 2052 , Australia
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052 , Australia
| | - Jason Qd Goodger
- School of Ecosystem and Forest Sciences, The University of Melbourne, VIC 3010 , Australia
| | - Therésa M Jones
- School of BioSciences, The University of Melbourne , VIC 3010 , Australia
| | - Mark A Elgar
- School of BioSciences, The University of Melbourne , VIC 3010 , Australia
| |
Collapse
|
23
|
Merwin AC, Hilliard J, Larsen A, Lasken AG, Johnson I. Oh, the places you will grow: Intraspecific latitudinal clines in butterfly size suggest a phylogenetic signal. Ecol Evol 2022; 12:e8913. [PMID: 35600686 PMCID: PMC9120895 DOI: 10.1002/ece3.8913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Within an animal species, the body sizes of individuals at higher latitudes are often different from individuals at lower latitudes. For homeothermic species that maintain a relatively constant body temperature, such as mammals and birds, individuals at higher latitudes tend to be larger. For ectothermic species, such as insects, that do not retain their own body heat and which often do not maintain a relatively constant body temperature, patterns of body size with latitude are highly variable. This has led some authors to contend that patterns in even closely related species cannot be expected to be similar. Indeed, to our knowledge, no studies of invertebrates have found that more closely related species have more similar relationships between body size and latitude. Further, no studies have investigated the potential influence of diet quality on interspecific differences in these clines. We measured wing lengths of specimens (N = 1753) in eight lycaenid butterfly species and one species of the sister family, Riodinidae to determine if more closely related species have similar latitudinal trends. We also estimated the mean nitrogen content of caterpillars’ hosts to investigate whether this often‐limiting nutrient influences the strength and direction of latitudinal clines in body size. We found that four species are significantly smaller at higher latitudes, an additional species is marginally smaller at higher latitudes (p < .06), and four species had no significant relationship with latitude. We also found a strong phylogenetic signal for latitudinal clines in body size among our species, which indicates that some closely related species may have similar clines. However, the strength and direction of these clines did not depend on the estimated nitrogen content of caterpillars’ hosts. Our results indicate that mean nitrogen content of hosts may not be an important driver in latitudinal clines but that phylogenetic relationships among species should be accounted for when exploring other potential drivers of body‐size clines in invertebrate species.
Collapse
Affiliation(s)
- Andrew C. Merwin
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | - Justin Hilliard
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | - Ashley Larsen
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | | | - Icesstrená Johnson
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| |
Collapse
|
24
|
Zhang B, Chen H, Deng M, Li J, González AL, Wang S. High dimensionality of stoichiometric niches in soil fauna. Ecology 2022; 103:e3741. [PMID: 35524916 DOI: 10.1002/ecy.3741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The ecological niche is a fundamental concept to understand species coexistence in natural communities. The recently developed framework of the multidimensional stoichiometric niche (MSN) characterizes species niches using chemical elements in living organisms. Despite the fact that living organisms are composed by multiple elements, stoichiometric studies have so far mostly focused on carbon (C), nitrogen (N), and phosphorus (P), and therefore a quantitative analysis of the dimensionality of the MSN in living organisms is still lacking, particularly for animals. Here we quantified ten elements composing the biomass of nine soil animal taxa (958 individuals) from three trophic groups. We found that all ten elements exhibited large variation among taxa, which was partially explained by their phylogeny. Overlaps of MSNs among the nine soil animal taxa were relatively smaller based on ten elements, compared with those based on only C, N, and P. Discriminant analysis using all ten elements successfully differentiated among the nine taxa (accuracy: 90%), whereas that using only C, N, and P resulted in a lower accuracy (60%). Our findings provide new evidence for MSN differentiation in soil fauna and demonstrate the high dimensionality of organismal stoichiometric niches beyond C, N, and P.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Haozhen Chen
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Mingqin Deng
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Jingyi Li
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Angélica L González
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| |
Collapse
|
25
|
Kaspari M, Joern A, Welti EAR. How and why grasshopper community maturation rates are slowing on a North American tall grass prairie. Biol Lett 2022; 18:20210510. [PMID: 35078328 PMCID: PMC8790374 DOI: 10.1098/rsbl.2021.0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Invertebrate growth rates have been changing in the Anthropocene. We examine rates of seasonal maturation in a grasshopper community that has been declining annually greater than 2% a year over 34 years. As this grassland has experienced a 1°C increase in temperature, higher plant biomass and lower nutrient densities, the community is maturing more slowly. Community maturation had a nutritional component: declining in years/watersheds with lower plant nitrogen. The effects of fire frequency were consistent with effects of plant nitrogen. Principal components analysis also suggests associated changes in species composition-declines in the densities of grass feeders were associated with declines in community maturation rates. We conclude that slowed maturation rates-a trend counteracted by frequent burning-likely contribute to long-term decline of this dominant herbivore.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, University of Oklahoma, Norman, OK, USA
| | - Anthony Joern
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ellen A. R. Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
26
|
Nielsen SMB, Bilde T, Toft S. Macronutrient niches and field limitation in a woodland assemblage of harvestmen. J Anim Ecol 2021; 91:593-603. [PMID: 34894154 DOI: 10.1111/1365-2656.13649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
Description of animals' trophic niches helps us understand interactions between species in biological communities that are not easily observed. Analyses of macronutrient niches, that is, the range of macronutrient (protein:lipid:carbohydrate) ratios selected by generalist feeders, may be a useful alternative approach to inter-species comparisons of diets, especially within taxonomic assemblages of predators where species with similar nutritional requirements are likely to accept similar types of prey. Here we analysed the macronutritional niches of a woodland assemblage of seven harvestman species, all supposed to be predators with omnivorous tendencies. Five species (Mitopus morio, Leiobunum gracile, Oligolophus tridens, O. hanseni and Paroligolophus agrestis) were native and two species (Opilio canestrinii and Dicranopalpus ramosus) were recent invaders into the community. We compare the fundamental (FMN) and realized (RMN) macronutritional niche positions of the species using a 'double-test procedure', which provides information on whether the species were food limited in their natural habitat, and whether they were limited by specific macronutrients. All seven species were food limited and six species were non-protein limited in the field; of these, four species were carbohydrate limited, and in one species females were lipid limited and males were carbohydrate limited. These findings add to the notion that predators are mainly non-protein limited in the field. The FMN positions of the assemblage fell within 46%-50% protein, 29%-38% lipid and 16%-22% carbohydrate. The amount of carbohydrate in the self-selected diet combined with carbohydrate limitation confirms that the species are zoophytophagous. Two morphological clusters of species (large long-legged vs. small short-legged species) differed not only in microhabitat (upper vs. lower forest strata) but also in macronutrient selection, where large long-legged species selected higher proportion of carbohydrate than small short-legged species. Thus, morphologically similar species occupy the same habitat stratum and have similar macronutritional niches. We discuss the hypothesis that the invasive O. canestrinii might have an impact on native species as it allegedly had in urban environments previously. Two basic assumptions about interspecific resource competition were fulfilled, that is, high overlap of nutritional requirements and limitation by food and macronutrients.
Collapse
Affiliation(s)
| | - Trine Bilde
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Søren Toft
- Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
27
|
Krams R, Munkevics M, Popovs S, Dobkeviča L, Willow J, Contreras Garduño J, Krama T, Krams IA. Ecological Stoichiometry of Bumblebee Castes, Sexes, and Age Groups. Front Physiol 2021; 12:696689. [PMID: 34721052 PMCID: PMC8548625 DOI: 10.3389/fphys.2021.696689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ecological stoichiometry is important for revealing how the composition of chemical elements of organisms is influenced by their physiological functions and ecology. In this study, we investigated the elemental body composition of queens, workers, and males of the bumblebee Bombus terrestris, an important pollinator throughout Eurasia, North America, and northern Africa. Our results showed that body elemental content differs among B. terrestris castes. Young queens and workers had higher body nitrogen concentration than ovipositing queens and males, while castes did not differ significantly in their body carbon concentration. Furthermore, the carbon-to-nitrogen ratio was higher in ovipositing queens and males. We suggest that high body nitrogen concentration and low carbon-to-nitrogen ratio in young queens and workers may be related to their greater amount of flight muscles and flight activities than to their lower stress levels. To disentangle possible effects of stress in the agricultural landscape, further studies are needed to compare the elemental content of bumblebee bodies between natural habitats and areas of high-intensity agriculture.
Collapse
Affiliation(s)
- Ronalds Krams
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia.,Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Māris Munkevics
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia.,Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Sergejs Popovs
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Linda Dobkeviča
- Department of Environmental Science, Faculty of Geography and Earth Sciences, University of Latvia, Riga, Latvia
| | - Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Jorge Contreras Garduño
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Tatjana Krama
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia.,Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis A Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia.,Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, Latvia.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
28
|
Soil organic matter is essential for colony growth in subterranean termites. Sci Rep 2021; 11:21252. [PMID: 34711880 PMCID: PMC8553850 DOI: 10.1038/s41598-021-00674-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Intrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.
Collapse
|
29
|
Jochum M, Barnes AD, Brose U, Gauzens B, Sünnemann M, Amyntas A, Eisenhauer N. For flux's sake: General considerations for energy-flux calculations in ecological communities. Ecol Evol 2021; 11:12948-12969. [PMID: 34646445 PMCID: PMC8495806 DOI: 10.1002/ece3.8060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Global change alters ecological communities with consequences for ecosystem processes. Such processes and functions are a central aspect of ecological research and vital to understanding and mitigating the consequences of global change, but also those of other drivers of change in organism communities. In this context, the concept of energy flux through trophic networks integrates food-web theory and biodiversity-ecosystem functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy-flux approach is a strikingly effective tool to answer central questions in ecology and global-change research. This might seem straight forward, given that the theoretical background and software to efficiently calculate energy flux are readily available. However, the implementation of such calculations is not always straight forward, especially for those who are new to the topic and not familiar with concepts central to this line of research, such as food-web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we thus provide a guide to adopting energy-flux calculations for people new to the method, struggling with its implementation, or simply looking for background reading, important resources, and standard solutions to the problems everyone faces when starting to quantify energy fluxes for their community data. First, we introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive explanation of the single steps towards calculating energy flux for community data. Finally, we discuss remaining challenges and exciting research frontiers for future energy-flux research.
Collapse
Affiliation(s)
- Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | | | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityUniversity of JenaJenaGermany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityUniversity of JenaJenaGermany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityUniversity of JenaJenaGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
30
|
Moosmann M, Cuenca-Cambronero M, De Lisle S, Greenway R, Hudson CM, Lürig MD, Matthews B. On the evolution of trophic position. Ecol Lett 2021; 24:2549-2562. [PMID: 34553481 PMCID: PMC9290349 DOI: 10.1111/ele.13888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.
Collapse
Affiliation(s)
- Marvin Moosmann
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Maria Cuenca-Cambronero
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ryan Greenway
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
31
|
Nessel MP, Konnovitch T, Romero GQ, González AL. Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2617-2637. [PMID: 34173704 DOI: 10.1111/brv.12771] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
Human-driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem-level processes. Here, we present a meta-analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human-driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.
Collapse
Affiliation(s)
- Mark P Nessel
- Center for Computational and Integrative Biology, Rutgers University, 201 S. Broadway, Camden, NJ, 08103, U.S.A
| | - Theresa Konnovitch
- Center for Computational and Integrative Biology, Rutgers University, 201 S. Broadway, Camden, NJ, 08103, U.S.A.,Biology Department, La Salle University, 1900 W Olney Ave, Philadelphia, PA, 19141, U.S.A
| | - Gustavo Q Romero
- Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), CP 6109, Campinas, São Paulo, 13083-862, Brazil
| | - Angélica L González
- Center for Computational and Integrative Biology, Rutgers University, 201 S. Broadway, Camden, NJ, 08103, U.S.A.,Biology Department, Rutgers University, Science Building, 315 Penn Street, Camden, NJ, 08102, U.S.A
| |
Collapse
|
32
|
The sublethal effects of neonicotinoids on spiders are independent of their nutritional status. Sci Rep 2021; 11:8496. [PMID: 33875743 PMCID: PMC8055996 DOI: 10.1038/s41598-021-87935-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of β-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.
Collapse
|
33
|
Beck M, Mondy CP, Danger M, Billoir E, Usseglio‐Polatera P. Extending the growth rate hypothesis to species development: Can stoichiometric traits help to explain the composition of macroinvertebrate communities? OIKOS 2021. [DOI: 10.1111/oik.08090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Miriam Beck
- Univ. de Lorraine, CNRS, LIEC Metz France
- LTER‐‘Zone Atelier Moselle' Metz France
| | - Cédric P. Mondy
- Office Français de la Biodiversité, Direction Régionale d'Ile‐de‐France Vincennes France
| | - Michael Danger
- Univ. de Lorraine, CNRS, LIEC Metz France
- LTER‐‘Zone Atelier Moselle' Metz France
| | | | | |
Collapse
|
34
|
Parimuchová A, Dušátková LP, Kováč Ľ, Macháčková T, Slabý O, Pekár S. The food web in a subterranean ecosystem is driven by intraguild predation. Sci Rep 2021; 11:4994. [PMID: 33654189 PMCID: PMC7925651 DOI: 10.1038/s41598-021-84521-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
Trophic interactions of cave arthropods have been understudied. We used molecular methods (NGS) to decipher the food web in the subterranean ecosystem of the Ardovská Cave (Western Carpathians, Slovakia). We collected five arthropod predators of the species Parasitus loricatus (gamasid mites), Eukoenenia spelaea (palpigrades), Quedius mesomelinus (beetles), and Porrhomma profundum and Centromerus cavernarum (both spiders) and prey belonging to several orders. Various arthropod orders were exploited as prey, and trophic interactions differed among the predators. Linear models were used to compare absolute and relative prey body sizes among the predators. Quedius exploited relatively small prey, while Eukoenenia and Parasitus fed on relatively large prey. Exploitation of eggs or cadavers is discussed. In contrast to previous studies, Eukoenenia was found to be carnivorous. A high proportion of intraguild predation was found in all predators. Intraspecific consumption (most likely cannibalism) was detected only in mites and beetles. Using Pianka's index, the highest trophic niche overlaps were found between Porrhomma and Parasitus and between Centromerus and Eukoenenia, while the lowest niche overlap was found between Parasitus and Quedius. Contrary to what we expected, the high availability of Diptera and Isopoda as a potential prey in the studied system was not corroborated. Our work demonstrates that intraguild diet plays an important role in predators occupying subterranean ecosystems.
Collapse
Affiliation(s)
- Andrea Parimuchová
- Department of Zoology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Šrobárova 2, 041 54, Košice, Slovakia.
| | - Lenka Petráková Dušátková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Ľubomír Kováč
- Department of Zoology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Šrobárova 2, 041 54, Košice, Slovakia
| | - Táňa Macháčková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
35
|
Effects of grazing on C:N:P stoichiometry attenuate from soils to plants and insect herbivores in a semi-arid grassland. Oecologia 2021; 195:785-795. [PMID: 33616723 DOI: 10.1007/s00442-021-04873-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Understanding the processing of limiting nutrients among organisms is an important goal of community ecology. Less known is how human disturbances may alter the stoichiometric patterns among organisms from different trophic levels within communities. Here, we investigated how livestock grazing affects the C:N:P ecological stoichiometry of soils, plants (Leymus chinensis), and grasshoppers (Euchorthippus spp.) in a semi-arid grassland in northeastern China. We found that grazing significantly enhanced soil available N and leaf N content of the dominant L. chinensis grass by 15% and 20%, respectively. Grazing also reduced (soluble) C:N of L. chinensis leaves by 22%. However, grazing did not affect total C, N, or P contents nor their ratios in Euchorthippus grasshoppers. Our results reveal that the effects of grazing disturbances on elemental composition attenuated from lower to higher trophic levels. These findings support the theory that organisms from higher trophic levels have relatively stronger stoichiometric homeostasis compared to those from lower trophic levels. Moreover, grasshopper abundance dropped by 66% in the grazed areas, and they reduced the feeding time on their host L. chinensis grass by 43%, presumably to limit the intake of excess nitrogen from host plants. The energetic costs associated with the maintenance of elemental homeostasis likely reduced grasshopper individual performance and population abundance in the grazed areas. A comprehensive investigation of stoichiometric properties of organisms across trophic levels may enable a better understanding of the nature of species interactions, and facilitate predictions of the consequences of future environmental changes for a community organization.
Collapse
|
36
|
Wimp GM, Lewis D, Murphy SM. Prey identity but not prey quality affects spider performance. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100013. [PMID: 36003602 PMCID: PMC9387502 DOI: 10.1016/j.cris.2021.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/01/2022]
Abstract
Prey identity affected the survival and body mass of a generalist spider predator. Trophic level of the prey did not affect spider survival and body mass. Prey identity and cordgrass quality had an interactive effect on spider body mass. Greater spider body mass led to greater egg production. In a literature review, female spider fitness increased with greater body size.
Increasing host plant quality affects higher trophic level predators, but whether such changes are simply a result of prey density or are also affected by changes in prey quality remain uncertain. Moreover, whether changes in prey quality affect measures of predator performance is understudied. Using a combination of field and greenhouse mesocosm experiments, we demonstrate that the survival and body size of a hunting spider (Pardosa littoralis Araneae: Lycosidae) is affected more by prey species identity than the trophic level of the prey. Furthermore, increasing host plant quality does not necessarily propagate through the food web by altering prey quality. While changes in plant quality affected spider body mass, they did so in opposite ways for spiders feeding on Prokelisia (Hemiptera: Delphacodes) herbivores relative to Tytthus (Hemiptera: Miridae) egg predators, and had no impact on spider body mass for two additional species of intraguild prey. These changes in body mass were important because greater body mass increased spider egg production. To examine the generality of this pattern, we reviewed the literature and found a consistent positive relationship between female body size and egg production for Pardosa species, indicating that body size is a reliable proxy for fitness. While many studies emphasize the importance of nitrogen to arthropod diets, this focus may be driven largely by our understanding of herbivore diets rather than predator diets. Thus, the positive impact of host plant quality on higher trophic level predators appears to be driven more by altering prey composition, density, and availability rather than simply providing predators with more nutritious prey.
Collapse
Affiliation(s)
- Gina M. Wimp
- Department of Biology, Georgetown University, Washington, DC, USA
- Corresponding author.
| | - Danny Lewis
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Shannon M. Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
37
|
Reihart RW, Angelos KP, Gawkins KM, Hurst SE, Montelongo DC, Laws AN, Pennings SC, Prather CM. Crazy ants craving calcium: macronutrients and micronutrients can limit and stress an invaded grassland brown food web. Ecology 2020; 102:e03263. [PMID: 33314072 DOI: 10.1002/ecy.3263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022]
Abstract
Nitrogen and phosphorus are thought to be the most important limiting nutrients in most terrestrial ecosystems, but little is known about how other elements may limit the abundance of arthropods. We utilized a fully factorial fertilization experiment that manipulated macronutrients (N and P, together) and micronutrients (calcium, sodium, potassium, separately), in large 30 × 30 m plots and sampled litter arthropods via pitfall trapping to determine the nutrients that limit this group. An invasive ant, Nylanderia fulva, numerically dominated the community and increased in abundance 13% in plots fertilized by Ca. Detritivores were not limited by any nutrient combination, but macronutrients increased predator abundance 43%. We also found that some combinations of macronutrients and micronutrients had toxic or stressful effects on the arthropod community: detritivores decreased in abundance 23% with the combination of macronutrients, Ca, and K, and 22% with macronutrients and K; and N. fulva decreased in abundance 24% in plots fertilized by K and 45% in plots fertilized by the combination of Na and K. Our work supports growing evidence that micronutrients, especially Ca and K, may be important in structuring grassland arthropod communities, and suggests that micronutrients may affect whether or not invasive ants reach numerical dominance.
Collapse
Affiliation(s)
- Ryan W Reihart
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA
| | | | - Kaitlin M Gawkins
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA
| | - Shania E Hurst
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA
| | - Denise C Montelongo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Angela N Laws
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Chelse M Prather
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, USA.,Department of Biology, Radford, Virginia, 46556, USA
| |
Collapse
|
38
|
Wen L, Jiao X, Liu F, Zhang S, Li D. High-lipid prey reduce juvenile survivorship and delay egg laying in a small linyphiid spider Hylyphantes graminicola. J Exp Biol 2020; 223:jeb237255. [PMID: 33161380 DOI: 10.1242/jeb.237255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022]
Abstract
Prey proteins and lipids greatly impact predator life-history traits. However, life-history plasticity offers predators the opportunity to tune the life-history traits in response to the limited macronutrients to allocate among traits. A fast-growing predator species with a strict maturation time may be more likely to consume nutritionally imbalanced prey. Here, we tested this hypothesis by examining the effect of the protein-to-lipid ratio in prey on a small sheet web-building spider, Hylyphantes graminicola, with a short life span, using adult Drosophila melanogaster as the prey. By manipulating the macronutrient content of the prey to generate three prey types with different protein-to-lipid ratios (i.e. high, intermediate and low), we demonstrated that the majority of the spiders that consumed only these flies could reach full maturity. However, juvenile spiders that consumed high-lipid (low protein-to-lipid ratio) flies had a higher rate of mortality than those consuming medium-protein and high-protein flies. The prey protein-to-lipid ratio had no significant effects on the developmental duration and size at maturity. Although the prey protein-to-lipid ratio had no significant influence on mating behaviour and female fecundity, females reared on high-lipid flies exhibited a significant delay in oviposition compared with those reared on high-protein flies. We conclude that high-lipid prey has negative effects on the survival and reproductive function of H. graminicola Our study thus provides clear evidence that low plasticity with fast development to a certain size means a high nutritional requirement for protein at a cost of lower survival and prolonged time to egg laying when prey have low protein-to-lipid content in H. graminicola.
Collapse
Affiliation(s)
- Lelei Wen
- Centre for Behavioural Ecology and Evolution (CBEE), State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Xiaoguo Jiao
- Centre for Behavioural Ecology and Evolution (CBEE), State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Fengxiang Liu
- Centre for Behavioural Ecology and Evolution (CBEE), State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Shichang Zhang
- Centre for Behavioural Ecology and Evolution (CBEE), State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
39
|
Balluffi‐Fry J, Leroux SJ, Wiersma YF, Heckford TR, Rizzuto M, Richmond IC, Vander Wal E. Quantity-quality trade-offs revealed using a multiscale test of herbivore resource selection on elemental landscapes. Ecol Evol 2020; 10:13847-13859. [PMID: 33391685 PMCID: PMC7771173 DOI: 10.1002/ece3.6975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well as quantities (biomass) when foraging. Such selection patterns may change based on the scale of foraging, particularly in the case of ungulates that forage at many scales.To test selection for quality and quantity in free-ranging herbivores across scales, however, we must first develop landscape-wide quantitative estimates of both forage quantity and quality. Stoichiometric distribution models (StDMs) bring opportunity to address this because they predict the elemental measures and stoichiometry of resources at landscape extents.Here, we use StDMs to predict elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We analyzed global positioning system (GPS) collared moose (n = 14) selection for forage quantity and quality at the landscape, home range, and patch extents using both individual and pooled resource selection analyses. We predicted that as the scale of resource selection decreased from the landscape to the patch, selection for white birch quantity would decrease and selection for quality would increase.Counter to our prediction, pooled-models showed selection for our estimates of quantity and quality to be neutral with low explanatory power and no scalar trends. At the individual-level, however, we found evidence for quality and quantity trade-offs, most notably at the home-range scale where resource selection models explain the largest amount of variation in selection. Furthermore, individuals did not follow the same trade-off tactic, with some preferring forage quantity over quality and vice versa.Such individual trade-offs show that moose may be flexible in attaining a limiting nutrient. Our findings suggest that herbivores may respond to forage elemental compositions and quantities, giving tools like StDMs merit toward animal ecology applications. The integration of StDMs and animal movement data represents a promising avenue for progress in the field of zoogeochemistry.
Collapse
Affiliation(s)
- Juliana Balluffi‐Fry
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
- Present address:
Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | - Shawn J. Leroux
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| | - Yolanda F. Wiersma
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| | - Travis R. Heckford
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| | - Matteo Rizzuto
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| | | | - Eric Vander Wal
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| |
Collapse
|
40
|
Elser JJ, Wu C, González AL, Shain DH, Smith HJ, Sommaruga R, Williamson CE, Brahney J, Hotaling S, Vanderwall J, Yu J, Aizen V, Aizen E, Battin TJ, Camassa R, Feng X, Jiang H, Lu L, Qu JJ, Ren Z, Wen J, Wen L, Woods HA, Xiong X, Xu J, Yu G, Harper JT, Saros JE. Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. GLOBAL CHANGE BIOLOGY 2020; 26:6644-6656. [PMID: 32969121 DOI: 10.1111/gcb.15362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Alpine regions are changing rapidly due to loss of snow and ice in response to ongoing climate change. While studies have documented ecological responses in alpine lakes and streams to these changes, our ability to predict such outcomes is limited. We propose that the application of fundamental rules of life can help develop necessary predictive frameworks. We focus on four key rules of life and their interactions: the temperature dependence of biotic processes from enzymes to evolution; the wavelength dependence of the effects of solar radiation on biological and ecological processes; the ramifications of the non-arbitrary elemental stoichiometry of life; and maximization of limiting resource use efficiency across scales. As the cryosphere melts and thaws, alpine lakes and streams will experience major changes in temperature regimes, absolute and relative inputs of solar radiation in ultraviolet and photosynthetically active radiation, and relative supplies of resources (e.g., carbon, nitrogen, and phosphorus), leading to nonlinear and interactive effects on particular biota, as well as on community and ecosystem properties. We propose that applying these key rules of life to cryosphere-influenced ecosystems will reduce uncertainties about the impacts of global change and help develop an integrated global view of rapidly changing alpine environments. However, doing so will require intensive interdisciplinary collaboration and international cooperation. More broadly, the alpine cryosphere is an example of a system where improving our understanding of mechanistic underpinnings of living systems might transform our ability to predict and mitigate the impacts of ongoing global change across the daunting scope of diversity in Earth's biota and environments.
Collapse
Affiliation(s)
- James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Angélica L González
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Daniel H Shain
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ruben Sommaruga
- Lake and Glacier Research Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Joseph Vanderwall
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Vladimir Aizen
- Department of Geography, University of Idaho, Moscow, ID, USA
| | - Elena Aizen
- Department of Geography, University of Idaho, Moscow, ID, USA
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Roberto Camassa
- Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Xiu Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hongchen Jiang
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lixin Lu
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - John J Qu
- Global Environment and Natural Resources Institute (GENRI) and Department of Geography and GeoInformation Science (GGS), George Mason University, Fairfax, VA, USA
| | - Ze Ren
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Jun Wen
- Sichuan Key Laboratory of Plateau Atmosphere and Environment, College of Atmospheric Sciences, Chengdu University of Information Technology, Chendu, China
| | - Lijuan Wen
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Joel T Harper
- Department of Geosciences, University of Montana, Missoula, MT, USA
| | - Jasmine E Saros
- School of Biology and Ecology, Climate Change Institute, University of Maine, Orono, ME, USA
| |
Collapse
|
41
|
Pequeno PACL, Graça MB, Oliveira JR, Šobotník J, Acioli ANS. Can shifts in metabolic scaling predict coevolution between diet quality and body size? Evolution 2020; 75:141-148. [PMID: 33196103 DOI: 10.1111/evo.14128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.
Collapse
Affiliation(s)
- Pedro A C L Pequeno
- Roraima Research Nucleus, National Institute for Amazonia Research, R. Cel. Pinto, 315, Centro, Boa Vista - RR, CEP:, 69301-150, Brazil
| | - Márlon B Graça
- Federal Institute for Education, Science and Technology of Amazonas, Estr. Coari Itapeua, s/n - Itamarati, Coari - AM, CEP:, 69460-000, Brazil
| | - João R Oliveira
- Entomology Program, National Institute for Amazonia Research, Av. André Araújo, 2.936, Petrópolis, Manaus - AM, CEP: 69067-375, Brazil
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Agno N S Acioli
- Faculty of Agrarian Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus - AM, CEP: 69067-005, Brazil
| |
Collapse
|
42
|
Allgeier JE, Wenger S, Layman CA. Taxonomic identity best explains variation in body nutrient stoichiometry in a diverse marine animal community. Sci Rep 2020; 10:13718. [PMID: 32792497 PMCID: PMC7426267 DOI: 10.1038/s41598-020-67881-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
Animal-mediated nutrient dynamics are critical processes in ecosystems. Previous research has found animal-mediated nutrient supply (excretion) to be highly predictable based on allometric scaling, but similar efforts to find universal predictive relationships for an organism’s body nutrient content have been inconclusive. We use a large dataset from a diverse tropical marine community to test three frameworks for predicting body nutrient content. We show that body nutrient content does not follow allometric scaling laws and that it is not well explained by trophic status. Instead, we find strong support for taxonomic identity (particularly at the family level) as a predictor of body nutrient content, indicating that evolutionary history plays a crucial role in determining an organism’s composition. We further find that nutrients are “stoichiometrically linked” (e.g., %C predicts %N), but that the direction of these relationships does not always conform to expectations, especially for invertebrates. Our findings demonstrate that taxonomic identity, not trophic status or body size, is the best baseline from which to predict organismal body nutrient content.
Collapse
Affiliation(s)
- Jacob E Allgeier
- Department of Ecology, and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Seth Wenger
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
43
|
Orłowski G, Mróz L, Kadej M, Smolis A, Tarnawski D, Karg J, Campanaro A, Bardiani M, Harvey DJ, Méndez M, Thomaes A, Vrezec A, Ziomek K, Rudecki AL, Mader D. Breaking down insect stoichiometry into chitin-based and internal elemental traits: Patterns and correlates of continent-wide intraspecific variation in the largest European saproxylic beetle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114064. [PMID: 32443193 DOI: 10.1016/j.envpol.2020.114064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 06/11/2023]
Abstract
Stoichiometric, trophic and ecotoxicological data have traditionally been acquired from patterns of variation in elemental traits of whole invertebrate bodies, whereas the critical issue of the extracellular origin of some portion of elements, such as those present in ingested food and internal organs, has been ignored. Here we investigated an unexplored, yet crucial, question relating to whether, and to what degree, metals from two major body fractions: exoskeleton (elytra) and internal (body organs with gut material present in abdomens), are correlated with each other in wild populations of the largest European saproxylic insect, the Stag Beetle Lucanus cervus, and how metals from these two fractions vary with insect size and local habitat conditions. We examined the continent-wide variation in the concentrations of 12 chemical elements (Ca, Mg, K, Na, Mn, Fe, Zn, Cu, As, Cd, Pb and Ni) measured in the elytra and abdomen of specimens from 28 populations inhabiting an urban-woodland habitat gradient across the species' entire distributional range from Spain to Russia. Across populations, elemental concentrations (except Ni and Pb) were 2-13 times higher in abdominal samples than in elytra, and the magnitude of these differences was related to both insect size and local habitat conditions. Smaller individuals from both woodland and urban habitat tended to have higher concentrations of trace elements (Zn, As, Cd, Pb and Ni). The concentration of only six elements (Mg, K, Na, Mn, Cd and Ni) was correlated in the elytra and abdomen at the individual and population levels, implying a limitation to the broader applicability of elytra as a surrogate for internal elemental pools. We highlight that in non-feeding adult saproxylic beetles, minerals, acquired during the larval stage, may be concentrated in the large quantities of residual body fat.
Collapse
Affiliation(s)
- Grzegorz Orłowski
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, PL-60-809, Poznań, Poland.
| | - Lucyna Mróz
- Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, PL-50-328, Wrocław, Poland.
| | - Marcin Kadej
- Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Science, University of Wrocław, Przybyszewskiego 65, PL-51-148, Wrocław, Poland.
| | - Adrian Smolis
- Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Science, University of Wrocław, Przybyszewskiego 65, PL-51-148, Wrocław, Poland.
| | - Dariusz Tarnawski
- Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Science, University of Wrocław, Przybyszewskiego 65, PL-51-148, Wrocław, Poland.
| | - Jerzy Karg
- Faculty of Biological Sciences, Department of Nature Conservation, University of Zielona Góra, Zielona Góra, Prof. Z. Szafrana 1, PL-65-516, Zielona Góra, Poland.
| | - Alessandro Campanaro
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Difesa e Certificazione, Firenze, Italy.
| | - Marco Bardiani
- Reparto Carabinieri Biodiversità di Verona, Centro Nazionale Carabinieri Biodiversità "Bosco Fontana", Mantova, Italy.
| | - Deborah J Harvey
- School of Biological Sciences, Royal Holloway University of London, Egham, UK.
| | - Marcos Méndez
- Área de Biodiversidad y Conservacion, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain.
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO), Brussel, Belgium.
| | - Al Vrezec
- National Institute of Biology, Ljubljana, Slovenia.
| | - Krzysztof Ziomek
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, PL-60-809, Poznań, Poland
| | - Andrzej L Rudecki
- Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, PL-50-328, Wrocław, Poland
| | | |
Collapse
|
44
|
Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat Ecol Evol 2020; 4:393-405. [PMID: 32094542 DOI: 10.1038/s41559-020-1123-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/15/2020] [Indexed: 11/08/2022]
Abstract
The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.
Collapse
|
45
|
Ecophysiological and life-history adaptations of Gammarus balcanicus (Schäferna, 1922) in a sinking-cave stream from Western Carpathians (Romania). ZOOLOGY 2020; 139:125754. [PMID: 32088526 DOI: 10.1016/j.zool.2020.125754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 11/21/2022]
Abstract
Freshwater gammarids are known to colonise occasionally sinking-cave streams, providing contrasting morphological, life-history and ecophysiological adaptations compared to their surface conspecifics. In this study, a subterranean and a surface population of the species Gammarus balcanicus was surveyed for one year in a sinking-cave stream from the Western Carpathians (Romania). The results showed that the cave-dwelling population comprised individuals that were significantly larger compared to their surface conspecifics, had larger body-size at sexual maturity and that the females produced fewer, but larger eggs, compared to the population situated outside the cave. The trophic position and the omnivory were significantly higher for the cave-dwelling compared to surface population and the elemental imbalance for C:P molar ratios lower, but similar for C:N. However, the subterranean population did not present troglomorphic characters or longer lifespan as known for other cave-surface paired crustaceans. This, together with the rather extensive hydrological connection of the habitats, suggests active gene-flow between populations and similar response to seasonality for body-size distributions, indicating that the observed ecophysiological and life-history differences are rather the consequence of phenotypic plasticity than the result of genetic adaptation.
Collapse
|
46
|
Parthiban E, Arokiyaraj C, Ramanibai R. Annona muricata: An alternate mosquito control agent with special reference to inhibition of detoxifying enzymes in Aedes aegypti. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110050. [PMID: 31816498 DOI: 10.1016/j.ecoenv.2019.110050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
This study was aimed to investigate an effectual level of Annona muricata (soursop) extracts on mosquito vectors namely, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The toxicity study on non-target organism and other important biochemical marker enzymes to find and illustrate the exact mechanism of specific enzymes responsible for detoxifying allelochemicals. Among the various soursop seed kernel extracts tested for larvicidal activity, the 0.9% saline extract exhibited maximum mortality (100%) against three vectors at the lowest concentration for 24 h exposure. Based on these findings, the saline extract was opted for further studies including toxicity on non-target organism and systemic effects on important biochemical constituents in the larvae A. aegypti at the lethal threshold time (18 h) with LC50 concentration (0.009 mg/mL). The tested extract against non-target aquatic fourth instar larvae Chironomus costatus was safe up to 0.0028 mg/mL for 24 h exposure and the mortality was observed only above the concentration 0.0028 mg/mL used in the study. The systemic effects on main neuron transmitter Acetylcholinesterase (p ≤ 0.01), xenobiotics detoxifying enzyme of α-and β-carboxylesterase (p ≤ 0.05; p ≤ 0.01) and antioxidant enzyme glutathione S-transferase (p ≤ 0.05) were reduced significantly in quantitative analysis. Analysis of such biochemical constituents of proteins and enzymes α-and β-carboxylesterase were considerably down regulated in the resolving native-PAGE. In contrast, acid and alkaline phosphatase were upregulated in both quantitative and qualitative analysis. This investigation clearly demonstrates the soursop extract has potent larvicidal agent with alterations in biochemical constituents of exposed larvae of A. aegypti.
Collapse
Affiliation(s)
- Ezhumalai Parthiban
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Charles Arokiyaraj
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | |
Collapse
|
47
|
Abstract
The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect-fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect-fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has (a) resulted in the evolution of morphological adaptations in insects and fungi, (b) driven the evolution of social behaviors in some groups of insects, and (c) led to the loss of sexuality in some fungal mutualists.
Collapse
Affiliation(s)
- Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
48
|
Vivero RJ, Mesa GB, Robledo SM, Herrera CXM, Cadavid-Restrepo G. Enzymatic, antimicrobial, and leishmanicidal bioactivity of gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of leishmaniasis in Colombia. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00379. [PMID: 31641623 PMCID: PMC6796522 DOI: 10.1016/j.btre.2019.e00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 02/03/2023]
Abstract
Knowledge regarding new compounds, peptides, and/or secondary metabolites secreted by bacteria isolated from the intestine of phebotominae has the potential to control insect vectors and pathogens (viruses, bacteria, and parasites) transmitted by them. In this respect, twelve Gram-negative bacteria isolated from the intestine of Lutzomyia evansi were selected and screened for their enzymatic, antimicrobial, and leishmanicidal activity. E. cancerogenus, E. aerogenes, P. otitidis, E. cloacae, L. soli, and P. ananatis exhibited enzymatic activity. 83.3% of the isolates displayed lipolytic and nitrate reductase activity and 58.3% of the isolates displayed protease activity. Hemolytic activity (17%) was identified only in E. hormaechei, and P. ananatis. E. cancerogenus, A. calcoaceticus, and P. otitidis showed cellulolytic activity. A. gyllenbergii, P. aeruginosa, and E. hormaechei showed amylolytic activity. In general, the totality of methanolic extracts exhibited antimicrobial activity, where E. hormaechei, A. calcoaceticus, and E. cancerogenus presented the highest activity against the evaluated reference bacteria strains. Cell-free supernatants (CFSS) of the Gram-negative bacteria showed higher growth inhibitory activity against the reference Gram-positive bacteria. The CFS of A. gyllenbergii was the most active antimicrobial in this study, against S. aureus (AAODs = 95.12%) and E. faecalis (AAODs = 86.90%). The inhibition percentages of CFS against Gram-positive bacteria showed statistically significant differences (repeated measure ANOVA df= 2; F= 6.095; P= 0.007832). The E. hormaechei methanolic extract showed leishmanicidal activity (CE-50 μg/ml = 47.7 + 3.8) against metacyclic promastigotes of Leishmania braziliensis (UA301). Based on this finding, we discuss the possible implications of these bacteria in digestion and physiological processes in the Lu. evansi intestine. P. ananatis, E. cloacae, E. hormaechei, and P. otitidis were considered the most promising bacteria in this study and they could potentially be used for biological control.
Collapse
Affiliation(s)
- Rafael J. Vivero
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia, Laboratory 632, Medellín 050003, Colombia
| | - Gustavo Bedoya Mesa
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| | - Sara M. Robledo
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia, Laboratory 632, Medellín 050003, Colombia
| | - Claudia Ximena Moreno Herrera
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| |
Collapse
|
49
|
Rizzuto M, Leroux SJ, Vander Wal E, Wiersma YF, Heckford TR, Balluffi‐Fry J. Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare ( Lepus americanus). Ecol Evol 2019; 9:14453-14464. [PMID: 31938532 PMCID: PMC6953652 DOI: 10.1002/ece3.5880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022] Open
Abstract
Intraspecific variability in ecological traits is widespread in nature. Recent evidence, mostly from aquatic ecosystems, shows individuals differing at the most fundamental level, that of their chemical composition. Age, sex, or body size and condition may be key drivers of intraspecific variability in the body concentrations of carbon (C), nitrogen (N), and phosphorus (P). However, we still have a rudimentary understanding of the patterns and drivers of intraspecific variability in chemical composition of terrestrial consumers, particularly vertebrates.Here, we investigate the elemental composition of the snowshoe hare Lepus americanus. Based on snowshoe hare ecology, we predicted older, larger individuals to have higher concentration of N or P and lower C content compared with younger, smaller individuals. We also predicted females to have higher concentrations of N, P, and lower C than males due to the higher reproductive costs they incur. Finally, we predicted that individuals in better body condition would have higher N and P than those in worse condition, irrespective of age.We obtained C, N, and P concentrations and ratios from a sample of 50 snowshoe hares. We then used general linear models to test our predictions on the relationship between age, sex, body size or condition and stoichiometric variability in hares.We found considerable variation in C, N, and P stoichiometry within our sample. Contrary to our predictions, we found weak evidence of N content decreasing with age. As well, sex appeared to have no relationship with hare body elemental composition. Conversely, as expected, P content increased with body size and condition. Finally, we found no relationship between variability in C content and any of our predictor variables.Snowshoe hare stoichiometry does not appear to vary with individual age, sex, body size, or condition. However, the weak relationship between body N concentration and age may suggest varying nutritional requirements of individuals at different ages. Conversely, body P's weak relationship to body size and condition appears in line with this limiting element's importance in terrestrial ecosystems. Snowshoe hares are keystone herbivores in the boreal forest of North America, and the substantial stoichiometric variability we find in our sample could have important implications for nutrient dynamics, in both boreal and adjacent ecosystems.
Collapse
Affiliation(s)
- Matteo Rizzuto
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Shawn J. Leroux
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Eric Vander Wal
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Yolanda F. Wiersma
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Travis R. Heckford
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | | |
Collapse
|
50
|
Dudová P, Boukal DS, Klecka J. Prey selectivity and the effect of diet on growth and development of a dragonfly, Sympetrum sanguineum. PeerJ 2019; 7:e7881. [PMID: 31720101 PMCID: PMC6839516 DOI: 10.7717/peerj.7881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/12/2019] [Indexed: 11/20/2022] Open
Abstract
Despite a long tradition of research, our understanding of mechanisms driving prey selectivity in predatory insects is limited. According to optimal foraging theory, predators should prefer prey which provides the highest amount of energy per unit time. However, prey selectivity may also depend on previous diet and specific nutritional demands of the predator. From the long-term perspective, diet composition affects predator fitness. An open question is whether short-term selectivity of predators provides a diet which is optimal in the long-term. To shed more light on these issues, we conducted laboratory experiments on prey selectivity and its long-term consequences in larvae of the dragonfly Sympetrum sanguineum. We conditioned the larvae to one of two prey types, the cladoceran Daphnia magna and larvae of a non-biting midge Chironomus sp., and then exposed them to various combinations of the two prey types. We found that dragonfly larvae conditioned to Chironomus larvae consumed the same amount of D. magna, but significantly less Chironomus larvae compared to dragonfly larvae conditioned to D. magna. However, there was no effect of previous diet on their success of capture and handling time, suggesting a limited role of learning in their ability to process prey. We then tested the long-term effects of diets with different proportions of both prey for survival and growth of the dragonfly larvae. Individuals fed Chironomus-only diet had higher mortality and slower growth than dragonflies fed D. magna, while larvae fed a mixed diet had the highest survival and growth rate. In conclusion, we show that dragonfly larvae fed by Chironomus larvae performed poorly and compensated by preferring D. magna when both prey types were available. The superiority of the mixed diet suggests that a diverse diet may be needed to satisfy nutritional demands in S. sanguineum larvae. We demonstrate that merging short-term predation experiments with relevant data on predator fitness may provide better understanding of predator-prey interactions and conclude that detailed information on the (mis)matches between prey composition and predator nutritional demands is needed for further progress.
Collapse
Affiliation(s)
- Pavla Dudová
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - David S. Boukal
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
- Department of Ecosystem Biology & Soil and Water Research Infrastructure, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Klecka
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|