1
|
Duncan AB, Godoy O, Michalakis Y, Zélé F, Magalhães S. Interspecific interactions among parasites in multiple infections. Trends Parasitol 2024; 40:1042-1052. [PMID: 39428306 DOI: 10.1016/j.pt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Individual hosts and populations frequently harbour multiple parasite species simultaneously. Despite their commonness, the consequences of interspecific interactions among parasites for determining infection outcomes are still poorly understood. We review and propose several expectations for multiple infections involving different species. We highlight that interspecific interactions affect the outcome of competition within hosts and that heterospecific parasites engage in cotransmission, gene exchange, and reproductive interference. Studies specifically comparing intra- and inter-specific coinfections and knowledge from community ecology may be instrumental to fully understand the consequences of interspecific multiple infections for parasite life history, ecology, and evolution.
Collapse
Affiliation(s)
- Alison B Duncan
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Oscar Godoy
- Estación Biológica de Doñana, EBD, CSIC, Sevilla, 41092, Spain
| | - Yannis Michalakis
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
The scale of competition impacts parasite virulence evolution. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Segredo-Otero E, Sanjuán R. Cooperative Virus-Virus Interactions: An Evolutionary Perspective. BIODESIGN RESEARCH 2022; 2022:9819272. [PMID: 37850129 PMCID: PMC10521650 DOI: 10.34133/2022/9819272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Despite extensive evidence of virus-virus interactions, not much is known about their biological significance. Importantly, virus-virus interactions could have evolved as a form of cooperation or simply be a by-product of other processes. Here, we review and discuss different types of virus-virus interactions from the point of view of social evolution, which provides a well-established framework for interpreting the fitness costs and benefits of such traits. We also classify interactions according to their mechanisms of action and speculate on their evolutionary implications. As in any other biological system, the evolutionary stability of viral cooperation critically requires cheaters to be excluded from cooperative interactions. We discuss how cheater viruses exploit cooperative traits and how viral populations are able to counteract this maladaptive process.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| |
Collapse
|
4
|
Venter F, Matthews KR, Silvester E. Parasite co-infection: an ecological, molecular and experimental perspective. Proc Biol Sci 2022; 289:20212155. [PMID: 35042410 PMCID: PMC8767208 DOI: 10.1098/rspb.2021.2155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laboratory studies of pathogens aim to limit complexity in order to disentangle the important parameters contributing to an infection. However, pathogens rarely exist in isolation, and hosts may sustain co-infections with multiple disease agents. These interact with each other and with the host immune system dynamically, with disease outcomes affected by the composition of the community of infecting pathogens, their order of colonization, competition for niches and nutrients, and immune modulation. While pathogen-immune interactions have been detailed elsewhere, here we examine the use of ecological and experimental studies of trypanosome and malaria infections to discuss the interactions between pathogens in mammal hosts and arthropod vectors, including recently developed laboratory models for co-infection. The implications of pathogen co-infection for disease therapy are also discussed.
Collapse
Affiliation(s)
- Frank Venter
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
5
|
Gurney J, Simonet C, Wollein Waldetoft K, Brown SP. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat Prod Rep 2021; 39:325-334. [PMID: 34913456 DOI: 10.1039/d1np00053e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1999 to 2021Bacterial pathogens can be highly social, communicating and cooperating within multi-cellular groups to make us sick. The requirement for collective action in pathogens presents novel therapeutic avenues that seek to undermine cooperative behavior, what we call here 'cheat therapies'. We review two broad avenues of cheat therapy: first, the introduction of genetically engineered 'cheat' strains (bio-control cheats), and second the chemical induction of 'cheat' behavior in the infecting pathogens (chemical-control cheats). Both genetically engineered and chemically induced cheats can socially exploit the cooperative wildtype infection, reducing pathogen burden and the severity of disease. We review the costs and benefits of cheat therapies, highlighting advantages of evolutionary robustness and also the challenges of low to moderate efficacy, compared to conventional antibiotic treatments. We end with a summary of what we see as the most valuable next steps, focusing on adjuvant treatments and use as alternate therapies for mild, self-resolving infections - allowing the reservation of current and highly effective antibiotics for more critical patient needs.
Collapse
Affiliation(s)
- James Gurney
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristofer Wollein Waldetoft
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.,Torsby Hospital, Torsby, Sweden
| | - Sam P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| |
Collapse
|
6
|
Abbott E, Dixon G, Matz M. Shuffling between Cladocopium and Durusdinium extensively modifies the physiology of each symbiont without stressing the coral host. Mol Ecol 2021; 30:6585-6595. [PMID: 34551161 DOI: 10.1111/mec.16190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
As sea surface temperatures increase, many coral species that used to harbour symbionts of the genus Cladocopium have become colonized with the thermally tolerant genus, Durusdinium. Here, we asked how gene expression in the symbionts of one genus changes depending on the abundance of another symbiont genus within the same coral host, and what effect this interaction has on the host. Symbiont gene expression was overwhelmingly driven by whether the genus was the minority or the majority within the host, which affected 79% (Durusdinium) and 96% (Cladocopium) of all genes. Particularly strong effects in both genera were observed for photosynthesis components (upregulated in the minority state) and proteins putatively associated with cell motility (upregulated in the majority state). Importantly, there was no distinct gene expression signature associated with the mixed symbiosis state when both genera were represented in comparable proportions within the host, which could lead to more intense competition. The mixed symbiosis was also not associated with elevated host stress: in fact, after heat treatment, stress signatures were the lowest in mixed-symbiosis corals compared to both Cladocopium- and Durusdinium-dominated corals. In conclusion, during shuffling between Cladocopium and Durusdinium both symbiont genera go through extensive and largely reciprocal physiological transitions, but there is no evidence of intensifying antagonistic interactions that are detrimental to the host. Unless the mixed-symbiosis corals in this study are not representative of the typical transition between Cladocopium and Durusdinium, the process of shuffling from one symbiont genus to another appears to be cost-free for the coral host, and even appears to be associated with lower stress susceptibility. This raises optimism for the future corals, which will probably have to rely on symbiont shuffling more and more to withstand environmental challenges.
Collapse
Affiliation(s)
- Evelyn Abbott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
Bell DA, Kovach RP, Robinson ZL, Whiteley AR, Reed TE. The ecological causes and consequences of hard and soft selection. Ecol Lett 2021; 24:1505-1521. [PMID: 33931936 DOI: 10.1111/ele.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | - Zachary L Robinson
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Andrew R Whiteley
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|
8
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
9
|
Gama JA, Zilhão R, Dionisio F. Plasmid Interactions Can Improve Plasmid Persistence in Bacterial Populations. Front Microbiol 2020; 11:2033. [PMID: 32983032 PMCID: PMC7487452 DOI: 10.3389/fmicb.2020.02033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 01/31/2023] Open
Abstract
It is difficult to understand plasmid maintenance in the absence of selection and theoretical models predict the conditions for plasmid persistence to be limited. Plasmid-associated fitness costs decrease bacterial competitivity, while imperfect partition allows the emergence of plasmid-free cells during cell division. Although plasmid conjugative transfer allows mobility into plasmid-free cells, the rate of such events is generally not high enough to ensure plasmid persistence. Experimental data suggest several factors that may expand the conditions favorable for plasmid maintenance, such as compensatory mutations and accessory genes that allow positive selection. Most of the previous studies focus on bacteria that carry a single plasmid. However, there is increasing evidence that multiple plasmids inhabit the same bacterial population and that interactions between them affect their transmission and persistence. Here, we adapt previous mathematical models to include multiple plasmids and perform computer simulations to study how interactions among them affect plasmid maintenance. We tested the contribution of different plasmid interaction parameters that impact three biological features: host fitness, conjugative transfer and plasmid loss – which affect plasmid persistence. The interaction affecting conjugation was studied in the contexts of intracellular and intercellular interactions, i.e., the plasmids interact when present in the same cell or when in different cells, respectively. First, we tested the effect of each type of interaction alone and concluded that only interactions affecting fitness (epistasis) prevented plasmid extinction. Although not allowing plasmid maintenance, intracellular interactions increasing conjugative efficiencies had a more determinant impact in delaying extinction than the remaining parameters. Then, we allowed multiple interactions between plasmids and concluded that, in a few cases, a combined effect of (intracellular) interactions increasing conjugation and fitness lead to plasmid maintenance. Our results show a hierarchy among these interaction parameters. Those affecting fitness favor plasmid persistence more than those affecting conjugative transfer and lastly plasmid loss. These results suggest that interactions between different plasmids can favor their persistence in bacterial communities.
Collapse
Affiliation(s)
- João Alves Gama
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rita Zilhão
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco Dionisio
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
10
|
Support for the Transmission-Clearance Trade-Off Hypothesis from a Study of Zika Virus Delivered by Mosquito Bite to Mice. Viruses 2019; 11:v11111072. [PMID: 31752097 PMCID: PMC6893444 DOI: 10.3390/v11111072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Evolutionary theory indicates that virus virulence is shaped by a trade-off between instantaneous rate of transmission and duration of infection. For most viruses, infection is curtailed by immune clearance, but there are few empirical tests of the transmission–clearance trade-off hypothesis. We exposed A129 mice to bites from groups of 1, 2–4, or 6–9 Aedes albopictus mosquitoes infected with Zika virus (ZIKV). We predicted that a higher number of infectious mosquito bites would deliver a higher total dose of the virus, and that increasing dose would result in earlier onset, higher magnitude, and shorter duration of viremia, as well as a more robust neutralizing antibody response. We found that increases in the number of mosquito bites delivered resulted in significantly different virus replication dynamics with higher, earlier peak titers. All mice experienced a transient weight loss following infection, but the nadir in weight loss was delayed in the mice that received the highest number of bites. Viremia persisted past the period of measurement in this study, so we did not capture its duration. However, the association at the level of the individual mouse between the estimated virus dose delivered and neutralizing antibody titer was remarkably strong, supporting the transmission–clearance trade-off hypothesis.
Collapse
|
11
|
Gipson SA, Jimenez L, Hall MD. Host sexual dimorphism affects the outcome of within‐host pathogen competition. Evolution 2019; 73:1443-1455. [DOI: 10.1111/evo.13760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen A.Y. Gipson
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| | - Luis Jimenez
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
12
|
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 2019; 102:29-36. [DOI: 10.1016/j.plasmid.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
13
|
Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid 2018; 99:82-88. [PMID: 30240700 DOI: 10.1016/j.plasmid.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Naturally occurring plasmids have medical importance given that they frequently code for virulence or antibiotic resistance. In many cases, plasmids impose a fitness cost to their hosts, meaning that the growth rate of plasmid-bearing cells is lower than that of plasmid-free cells. However, this does not fit with the fact that plasmids are ubiquitous in nature nor that plasmids and their hosts adapt to each other very fast - as has been shown in laboratory evolutionary assays. Even when plasmids are costly, they seem to largely interact in such a way that the cost of two plasmids is lower than the cost of one of them alone. Moreover, it has been argued that transfer rates are too low to compensate for plasmid costs and segregation. Several mechanisms involving interactions between plasmids and other replicons could overcome this limitation, hence contributing to the maintenance of plasmids in bacterial populations. We examine the importance of these mechanisms from a clinical point of view, particularly the spread of antibiotic resistance genes.
Collapse
|
14
|
Gallet R, Froissart R, Ravigné V. Experimental demonstration of the impact of hard and soft selection regimes on polymorphism maintenance in spatially heterogeneous environments. Evolution 2018; 72:1677-1688. [PMID: 29882597 DOI: 10.1111/evo.13513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/06/2018] [Indexed: 11/26/2022]
Abstract
Predicting and managing contemporary adaption requires a proper understanding of the determinants of genetic variation. Spatial heterogeneity of the environment may stably maintain polymorphism when habitat contribution to the next generation can be considered independent of the degree of adaptation of local populations within habitats (i.e., under soft selection). In contrast, when habitats contribute proportionally to the mean fitness of the populations they host (hard selection), polymorphism is not expected to be maintained by selection. Although mathematically established decades ago, this prediction had never been demonstrated experimentally. Here, we provide an experimental test in which polymorphic populations of Escherichia coli growing in heterogeneous habitats were exposed to hard and soft selection regimes. As predicted by theory, polymorphism was preserved longer under soft selection. Complementary tests established that soft selection slowed fixation processes and could even protect polymorphism in the long term by providing a systematic advantage to rare genotypes.
Collapse
Affiliation(s)
- Romain Gallet
- INRA, UMR 385 BGPI, Cirad TA A-54/K Campus International de Baillarguet 34398 Montpellier Cedex 5, France
| | - Rémy Froissart
- INRA, UMR 385 BGPI, Cirad TA A-54/K Campus International de Baillarguet 34398 Montpellier Cedex 5, France
- CNRS, IRD, Université de Montpellier, UMR 5290 MIVEGEC, F-34090 Montpellier, France
| | | |
Collapse
|
15
|
Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A. Host-Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1806. [PMID: 29118773 PMCID: PMC5660990 DOI: 10.3389/fpls.2017.01806] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 05/04/2023]
Abstract
Studies of plant-pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies.
Collapse
Affiliation(s)
- Araz S. Abdullah
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Caroline S. Moffat
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - John Hamblin
- Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| |
Collapse
|
16
|
Leclair M, Polin S, Jousseaume T, Simon JC, Sugio A, Morlière S, Fukatsu T, Tsuchida T, Outreman Y. Consequences of coinfection with protective symbionts on the host phenotype and symbiont titres in the pea aphid system. INSECT SCIENCE 2017; 24:798-808. [PMID: 27514019 DOI: 10.1111/1744-7917.12380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Symbiotic associations between microbes and insects are widespread, and it is frequent that several symbionts share the same host individual. Hence, interactions can occur between these symbionts, influencing their respective abundance within the host with consequences on its phenotype. Here, we investigate the effects of multiple infections in the pea aphid, Acyrthosiphon pisum, which is the host of an obligatory and several facultative symbionts. In particular, we study the influence of a coinfection with 2 protective symbionts: Hamiltonella defensa, which confers protection against parasitoids, and Rickettsiella viridis, which provides protection against fungal pathogens and predators. The effects of Hamiltonella-Rickettsiella coinfection on the respective abundance of the symbionts, host fitness and efficacy of enemy protection were studied. Asymmetrical interactions between the 2 protective symbionts have been found: when they coinfect the same aphid individuals, the Rickettsiella infection affected Hamiltonella abundance within hosts but not the Hamiltonella-mediated protective phenotype while the Hamiltonella infection negatively influences the Rickettsiella-mediated protective phenotype but not its abundance. Harboring the 2 protective symbionts also reduced the survival and fecundity of host individuals. Overall, this work highlights the effects of multiple infections on symbiont abundances and host traits that are likely to impact the maintenance of the symbiotic associations in natural habitats.
Collapse
Affiliation(s)
- Mélanie Leclair
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Sarah Polin
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | | | | | - Akiko Sugio
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | | | | | - Tsutomu Tsuchida
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Yannick Outreman
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| |
Collapse
|
17
|
Ashby B, King KC. Friendly foes: The evolution of host protection by a parasite. Evol Lett 2017; 1:211-221. [PMID: 30283650 PMCID: PMC6121858 DOI: 10.1002/evl3.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Hosts are often infected by multiple parasite species, yet the ecological and evolutionary implications of the interactions between hosts and coinfecting parasites are largely unknown. Most theoretical models of evolution among coinfecting parasites focus on the evolution of virulence, but parasites may also evolve to protect their hosts by reducing susceptibility (i.e., conferring resistance) to other parasites or reducing the virulence of coinfecting parasites (i.e., conferring tolerance). Here, we analyze the eco-evolutionary dynamics of parasite-conferred resistance and tolerance using coinfection models. We show that both parasite-conferred resistance and tolerance can evolve for a wide range of underlying trade-offs. The shape and strength of the trade-off qualitatively affects the outcome causing shifts between the minimisation or maximization of protection, intermediate stable strategies, evolutionary branching, and bistability. Furthermore, we find that a protected dimorphism can readily evolve for parasite-conferred resistance, but find no evidence of evolutionary branching for parasite-conferred tolerance, in general agreement with previous work on host evolution. These results provide novel insights into the evolution of parasite-conferred resistance and tolerance, and suggest clues to the underlying trade-offs in recent experimental work on microbe-mediated protection. More generally, our results highlight the context dependence of host-parasite relationships in complex communities.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathBA2 7AYUnited Kingdom
- Department of Integrative BiologyUniversity of California BerkeleyBerkeley94720California
| | - Kayla C. King
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUnited Kingdom
| |
Collapse
|
18
|
Barkman TJ, Klooster MR, Gaddis KD, Franzone B, Calhoun S, Manickam S, Vessabutr S, Sasirat S, Davis CC. Reading between the vines: Hosts as islands for extreme holoparasitic plants. AMERICAN JOURNAL OF BOTANY 2017; 104:1382-1389. [PMID: 29885244 DOI: 10.3732/ajb.1700117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/08/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Partitioning of population genetic variation in plants may be affected by numerous factors including life history and dispersal characteristics. In parasitic plants, interactions with host populations may be an additional factor influencing partitioning. To test for hierarchical population genetic patterns related to obligate endoparasitism, we studied three species of Rafflesiaceae, which grow as extremely reduced endophytes infecting Tetrastigma vines in Southeast Asia. METHODS Microsatellite markers were developed and multilocus genotypes were determined for Rafflesia cantleyi, Rafflesia tuan-mudae, and Sapria himalayana and each of their Tetrastigma hosts. Relatedness among parasite individuals was estimated, and AMOVAs were used to determine levels of population genetic subdivision. KEY RESULTS Microsatellite genotypes for 340 paired parasite and host samples revealed that host vines were infected by numerous Rafflesiaceae individuals that may spread for up to 14 m within stem tissues. Surprisingly, Rafflesiaceae parasites within a given host are significantly more closely related to each other than individuals of the same species in other host individuals. The pattern of hierarchical population genetic subdivision we detected across species is likely due to limited seed dispersal with reinfection of natal host vines. CONCLUSIONS These findings demonstrate common population genetic patterns between animal and plant parasites, potentially indicating advantages of close relatives infecting hosts. This study also has important conservation implications for Rafflesiaceae since our data suggest that destruction of a single infected host vine could result in large genetic losses.
Collapse
Affiliation(s)
- Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 USA
| | - Matthew R Klooster
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
- Biology and Environmental Studies Programs, Centre College, Danville, Kentucky 40422 USA
| | - Keith D Gaddis
- National Aeronautics and Space Administration, Washington, D.C. 20546 USA
| | - Brian Franzone
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| | - Sondra Calhoun
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| | - Sugumaran Manickam
- Rimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya 50603 Kuala Lumpur, Malaysia
| | | | | | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
19
|
Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: Plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid 2017; 93:6-16. [PMID: 28842132 DOI: 10.1016/j.plasmid.2017.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Conjugative plasmids encode the genes responsible for the synthesis of conjugative pili and plasmid transfer. Expression of the conjugative machinery (including conjugative pili) may be costly to bacteria, not only due to the energetic/metabolic cost associated with their expression but also because they serve as receptors for certain viruses. Consequently, the presence of two plasmids in the same cell may be disadvantageous to each plasmid, because they may impose a higher fitness cost on the host. Therefore, plasmids may encode mechanisms to cope with co-resident plasmids. Moreover, it is possible that the transfer rate of a plasmid is affected by the presence of a distinct plasmid in the recipient cell. In this work, we measured transfer rates of twelve natural plasmids belonging to seven incompatibility groups in three situations, namely when: (i) donor cells contain a plasmid and recipient cells are plasmid-free; (ii) donor cells contain two unrelated plasmids and recipient cells are plasmid-free; and (iii) half of the cells contain a given plasmid and the other half contain another, unrelated, plasmid. In the third situation, recipient cells of a plasmid are the donor cells of the other plasmid. We show that there are more negative interactions (reduction of a plasmid's conjugative efficiency) between plasmids if they reside in the same cell than if they reside in different cells. However, if plasmids interacted intercellularly, the transfer rate of one of the plasmids was often higher (when the unrelated conjugative plasmid was present in the recipient cell) than if the recipient cell was plasmid-free - a positive effect. Experimental data retrieved from the study of mutant plasmids not expressing conjugative pili on the cell surface suggest that positive effects result from a higher efficiency of mating pair formation. Overall, our results suggest that negative interactions are significantly more frequent when plasmids occupy the same cell. Such interactions may determine how antibiotic resistance disseminates in bacterial populations.
Collapse
Affiliation(s)
- João Alves Gama
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rita Zilhão
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco Dionisio
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
20
|
Bose J, Kloesener MH, Schulte RD. Multiple-genotype infections and their complex effect on virulence. ZOOLOGY 2016; 119:339-49. [PMID: 27389395 DOI: 10.1016/j.zool.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 11/17/2022]
Abstract
Multiple infections are common. Although in recent years our understanding of multiple infections has increased significantly, it has also become clear that a diversity of aspects has to be considered to understand the interplay between co-infecting parasite genotypes of the same species and its implications for virulence and epidemiology, resulting in high complexity. Here, we review different interaction mechanisms described for multiple infections ranging from competition to cooperation. We also list factors influencing the interaction between co-infecting parasite genotypes and their influence on virulence. Finally, we emphasise the importance of between-host effects and their evolution for understanding multiple infections and their implications.
Collapse
Affiliation(s)
- Joy Bose
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Michaela H Kloesener
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Rebecca D Schulte
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany.
| |
Collapse
|
21
|
Martinez J, Fleury F, Varaldi J. Competitive outcome of multiple infections in a behavior-manipulating virus/wasp interaction. Ecol Evol 2015; 5:5934-45. [PMID: 26811766 PMCID: PMC4717342 DOI: 10.1002/ece3.1749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022] Open
Abstract
Infections by multiple parasites are common in nature and may impact the evolution of host–parasite interactions. We investigated the existence of multiple infections involving the DNA virus LbFV and the Drosophila parasitoid Leptopilina boulardi. This vertically transmitted virus forces infected females to lay their eggs in already parasitized Drosophila larvae (a behavior called superparasitism), thus favoring its spread through horizontal transmission. Previous theoretical work indicated that the evolution of the level of the manipulation strongly depends on whether infected parasitoids can be re‐infected or not. Here, we describe a strain of LbFV that differs from the reference strain by showing a deletion within the locus used for PCR detection. We used this polymorphism to test for the existence of multiple infections in this system. Viral strains did not differ on their vertical or horizontal transmission rates nor on the way they affect the parasitoid's phenotype, including their ability to manipulate behavior. Although already infected parasitoids were much less susceptible to new infection than uninfected ones, frequent coinfection was detected. However, following coinfection, competition between viral strains led to the rapid elimination of one strain or the other after a few generations of vertical transmission. We discuss the implications of these results for the evolution of the behavioral manipulation.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Genetics University of Cambridge Cambridge CB2 3EH UK
| | - Frédéric Fleury
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon69000 Lyon France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5558 Université Lyon 169622 Villeurbanne France
| | - Julien Varaldi
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon69000 Lyon France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5558 Université Lyon 169622 Villeurbanne France
| |
Collapse
|
22
|
Abstract
Mathematical modelling provides an effective way to challenge conventional wisdom about
parasite evolution and investigate why parasites ‘do what they do’ within the host. Models
can reveal when intuition cannot explain observed patterns, when more complicated biology
must be considered, and when experimental and statistical methods are likely to mislead.
We describe how models of within-host infection dynamics can refine experimental design,
and focus on the case study of malaria to highlight how integration between models and
data can guide understanding of parasite fitness in three areas: (1) the adaptive
significance of chronic infections; (2) the potential for tradeoffs between virulence and
transmission; and (3) the implications of within-vector dynamics. We emphasize that models
are often useful when they highlight unexpected patterns in parasite evolution, revealing
instead why intuition yields the wrong answer and what combination of theory and data are
needed to advance understanding.
Collapse
|
23
|
Relative reproductive success of co-infecting parasite genotypes under intensified within-host competition. INFECTION GENETICS AND EVOLUTION 2015; 36:450-455. [PMID: 26296607 DOI: 10.1016/j.meegid.2015.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/24/2022]
Abstract
In nature, host individuals are commonly simultaneously infected with more than one genotype of the same parasite species. These co-infecting parasites often interact, which can affect their fitness and shape host-parasite ecology and evolution. Many of such interactions take place through competition for limited host resources. Therefore, variation in ecological factors modifying the host resource level could be important in determining the intensity of competition and the outcome of co-infections. We tested this hypothesis by measuring the relative reproductive success of co-infecting genotypes of the trematode parasite Diplostomum pseudospathaceum in its snail host Lymnaea stagnalis while experimentally manipulating snail resource level using contrasting feeding treatments (ad libitum food supply, no food). We found that food deprivation constrained the overall parasite within-host reproduction as the release of parasite transmission stages (cercariae) was reduced. This indicates intensified competition among the parasite genotypes. The genotypic composition of the released cercariae, however, was not affected by the feeding treatments. This suggests that in this system, the relative reproductive success of co-infecting parasite genotypes, which is an important component determining their fitness, is robust to variation in ecological factors modifying the strength of resource competition.
Collapse
|
24
|
Bashey F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140301. [PMID: 26150667 PMCID: PMC4528499 DOI: 10.1098/rstb.2014.0301] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.
Collapse
Affiliation(s)
- Farrah Bashey
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Klinger EG, Vojvodic S, DeGrandi-Hoffman G, Welker DL, James RR. Mixed infections reveal virulence differences between host-specific bee pathogens. J Invertebr Pathol 2015; 129:28-35. [PMID: 25982695 DOI: 10.1016/j.jip.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/04/2023]
Abstract
Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens.
Collapse
Affiliation(s)
- Ellen G Klinger
- USDA-ARS Pollinating Insect Research Unit, 1410 North 800 East, Logan, UT 84341, United States; Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States.
| | - Svjetlana Vojvodic
- University of Arizona, Center for Insect Science, 1041 E. Lowell St., Tucson, AZ 85721, United States
| | - Gloria DeGrandi-Hoffman
- USDA-ARS Carl Hayden Bee Research Center, 2000 East Allen Road, Tucson, AZ 85721, United States
| | - Dennis L Welker
- Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States
| | - Rosalind R James
- USDA-ARS Pollinating Insect Research Unit, 1410 North 800 East, Logan, UT 84341, United States
| |
Collapse
|
26
|
Natsopoulou ME, McMahon DP, Doublet V, Bryden J, Paxton RJ. Interspecific competition in honeybee intracellular gut parasites is asymmetric and favours the spread of an emerging infectious disease. Proc Biol Sci 2015; 282:20141896. [PMID: 25429014 PMCID: PMC4262169 DOI: 10.1098/rspb.2014.1896] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/24/2014] [Indexed: 02/03/2023] Open
Abstract
There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this 'priority effect' was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host-multi-parasite interactions as drivers of host-pathogen community structure.
Collapse
Affiliation(s)
- Myrsini E Natsopoulou
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany
| | - Dino P McMahon
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, Berlin 14195, Germany Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Vincent Doublet
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany
| | - John Bryden
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Robert J Paxton
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
27
|
Vale PF. Killing them softly: managing pathogen polymorphism and virulence in spatially variable environments. Trends Parasitol 2013; 29:417-22. [PMID: 23928098 PMCID: PMC3764335 DOI: 10.1016/j.pt.2013.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
Abstract
Understanding why pathogen populations are genetically variable is vital because genetic variation fuels evolution, which often hampers disease control efforts. Here I argue that classical models of evolution in spatially variable environments - specifically, models of hard and soft selection - provide a useful framework to understand the maintenance of pathogen polymorphism and the evolution of virulence. First, the similarities between models of hard and soft selection and pathogen life cycles are described, highlighting how the type and timing of pathogen control measures impose density regulation that may affect both the level of pathogen polymorphism and virulence. The article concludes with an outline of potential lines of future theoretical and experimental work.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection, and Evolution and Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
28
|
Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens. Parasitology 2013; 140:1119-32. [PMID: 23714427 PMCID: PMC3695730 DOI: 10.1017/s0031182013000590] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parasitic helminths are ubiquitous in most host, including human, populations. Helminths
often alter the likelihood of infection and disease progression of coinfecting
microparasitic pathogens (viruses, bacteria, protozoa), and there is great interest in
incorporating deworming into control programmes for many major diseases (e.g. HIV,
tuberculosis, malaria). However, such calls are controversial; studies show the
consequences of deworming for the severity and spread of pathogens to be highly variable.
Hence, the benefits of deworming, although clear for reducing the morbidity due to
helminth infection per se, are unclear regarding the outcome of
coinfections and comorbidities. I develop a theoretical framework to explore how helminth
coinfection with other pathogens affects host mortality and pathogen spread and evolution
under different interspecific parasite interactions. In all cases the outcomes of
coinfection are highly context-dependent, depending on the mechanism of helminth-pathogen
interaction and the quantitative level of helminth infection, with the effects of
deworming potentially switching from beneficial to detrimental depending on helminth
burden. Such context-dependency may explain some of the variation in the benefits of
deworming seen between studies, and highlights the need for obtaining a quantitative
understanding of parasite interactions across realistic helminth infection ranges.
However, despite this complexity, this framework reveals predictable patterns in the
effects of helminths that may aid the development of more effective, integrated management
strategies to combat pathogens in this coinfected world.
Collapse
|
29
|
Ben-Ami F, Routtu J. The expression and evolution of virulence in multiple infections: the role of specificity, relative virulence and relative dose. BMC Evol Biol 2013; 13:97. [PMID: 23641899 PMCID: PMC3659053 DOI: 10.1186/1471-2148-13-97] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/29/2013] [Indexed: 11/11/2022] Open
Abstract
Background Multiple infections of the same host by different strains of the same microparasite species are believed to play a crucial role during the evolution of parasite virulence. We investigated the role of specificity, relative virulence and relative dose in determining the competitive outcome of multiple infections in the Daphnia magna-Pasteuria ramosa host-parasite system. Results We found that infections by P. ramosa clones (single genotype) were less virulent and produced more spores than infections by P. ramosa isolates (possibly containing multiple genotypes). We also found that two similarly virulent isolates of P. ramosa differed considerably in their within-host competitiveness and their effects on host offspring production when faced with coinfecting P. ramosa isolates and clones. Although the relative virulence of a P. ramosa isolate/clone appears to be a good indicator of its competitiveness during multiple infections, the relative dose may alter the competitive outcome. Moreover, spore counts on day 20 post-infection indicate that the competitive outcome is largely decided early in the parasite’s growth phase, possibly mediated by direct interference or apparent competition. Conclusions Our results emphasize the importance of epidemiology as well as of various parasite traits in determining the outcome of within-host competition. Incorporating realistic epidemiological and ecological conditions when testing theoretical models of multiple infections, as well as using a wider range of host and parasite genotypes, will enable us to better understand the course of virulence evolution.
Collapse
Affiliation(s)
- Frida Ben-Ami
- Department of Zoology, George S, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | | |
Collapse
|
30
|
Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett 2013; 16:556-67. [PMID: 23347009 DOI: 10.1111/ele.12076] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022]
Abstract
Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within-host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such 'mixed infections', which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM1, UM2), Montpellier, France.
| | | | | |
Collapse
|
31
|
Leggett H, Benmayor R, Hodgson D, Buckling A. Experimental Evolution of Adaptive Phenotypic Plasticity in a Parasite. Curr Biol 2013; 23:139-42. [DOI: 10.1016/j.cub.2012.11.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/23/2012] [Accepted: 11/21/2012] [Indexed: 11/27/2022]
|
32
|
SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS One 2012; 7:e52492. [PMID: 23300684 PMCID: PMC3531457 DOI: 10.1371/journal.pone.0052492] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/14/2012] [Indexed: 01/11/2023] Open
Abstract
Background Molecular tools may greatly improve our understanding of pathogen evolution and epidemiology but technical constraints have hindered the development of genetic resources for parasites compared to free-living organisms. This study aims at developing molecular tools for Podosphaera plantaginis, an obligate fungal pathogen of Plantago lanceolata. This interaction has been intensively studied in the Åland archipelago of Finland with epidemiological data collected from over 4,000 host populations annually since year 2001. Principal Findings A cDNA library of a pooled sample of fungal conidia was sequenced on the 454 GS-FLX platform. Over 549,411 reads were obtained and annotated into 45,245 contigs. Annotation data was acquired for 65.2% of the assembled sequences. The transcriptome assembly was screened for SNP loci, as well as for functionally important genes (mating-type genes and potential effector proteins). A genotyping assay of 27 SNP loci was designed and tested on 380 infected leaf samples from 80 populations within the Åland archipelago. With this panel we identified 85 multilocus genotypes (MLG) with uneven frequencies across the pathogen metapopulation. Approximately half of the sampled populations contain polymorphism. Our genotyping protocol revealed mixed-genotype infection within a single host leaf to be common. Mixed infection has been proposed as one of the main drivers of pathogen evolution, and hence may be an important process in this pathosystem. Significance The developed SNP panel offers exciting research perspectives for future studies in this well-characterized pathosystem. Also, the transcriptome provides an invaluable novel genomic resource for powdery mildews, which cause significant yield losses on commercially important crops annually. Furthermore, the features that render genetic studies in this system a challenge are shared with the majority of obligate parasitic species, and hence our results provide methodological insights from SNP calling to field sampling protocols for a wide range of biological systems.
Collapse
|
33
|
Hock K, Fefferman NH. Social organization patterns can lower disease risk without associated disease avoidance or immunity. ECOLOGICAL COMPLEXITY 2012. [DOI: 10.1016/j.ecocom.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Ho EKH, Agrawal AF. The effects of competition on the strength and softness of selection. J Evol Biol 2012; 25:2537-46. [DOI: 10.1111/j.1420-9101.2012.02618.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Affiliation(s)
- E. K. H. Ho
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto; ON; Canada
| | - A. F. Agrawal
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
35
|
Rumbaugh KP, Trivedi U, Watters C, Burton-Chellew MN, Diggle SP, West SA. Kin selection, quorum sensing and virulence in pathogenic bacteria. Proc Biol Sci 2012; 279:3584-8. [PMID: 22648154 PMCID: PMC3396913 DOI: 10.1098/rspb.2012.0843] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial growth and virulence often depends upon the cooperative release of extracellular factors excreted in response to quorum sensing (QS). We carried out an in vivo selection experiment in mice to examine how QS evolves in response to variation in relatedness (strain diversity), and the consequences for virulence. We started our experiment with two bacterial strains: a wild-type that both produces and responds to QS signal molecules, and a lasR (signal-blind) mutant that does not release extracellular factors in response to signal. We found that: (i) QS leads to greater growth within hosts; (ii) high relatedness favours the QS wild-type; and (iii) low relatedness favours the lasR mutant. Relatedness matters in our experiment because, at relatively low relatedness, the lasR mutant is able to exploit the extracellular factors produced by the cells that respond to QS, and hence increase in frequency. Furthermore, our results suggest that because a higher relatedness favours cooperative QS, and hence leads to higher growth, this will also lead to a higher virulence, giving a relationship between relatedness and virulence that is in the opposite direction to that usually predicted by virulence theory.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | |
Collapse
|
36
|
Vojvodic S, Boomsma JJ, Eilenberg J, Jensen AB. Virulence of mixed fungal infections in honey bee brood. Front Zool 2012; 9:5. [PMID: 22444792 PMCID: PMC3384236 DOI: 10.1186/1742-9994-9-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/23/2012] [Indexed: 11/16/2022] Open
Abstract
Introduction Honey bees, Apis mellifera, have a diverse community of pathogens. Previous research has mostly focused on bacterial brood diseases of high virulence, but milder diseases caused by fungal pathogens have recently attracted more attention. This interest has been triggered by partial evidence that co-infection with multiple pathogens has the potential to accelerate honey bee mortality. In the present study we tested whether co-infection with closely related fungal brood-pathogen species that are either specialists or non-specialist results in higher host mortality than infections with a single specialist. We used a specially designed laboratory assay to expose honey bee larvae to controlled infections with spores of three Ascosphaera species: A. apis, the specialist pathogen that causes chalkbrood disease in honey bees, A. proliperda, a specialist pathogen that causes chalkbrood disease in solitary bees, and A. atra, a saprophytic fungus growing typically on pollen brood-provision masses of solitary bees. Results We show for the first time that single infection with a pollen fungus A. atra may induce some mortality and that co-infection with A. atra and A. apis resulted in higher mortality of honey bees compared to single infections with A. apis. However, similar single and mixed infections with A. proliperda did not increase brood mortality. Conclusion Our results show that co-infection with a closely related fungal species can either increase or have no effect on host mortality, depending on the identity of the second species. Together with other studies suggesting that multiple interacting pathogens may be contributing to worldwide honey bee health declines, our results highlight the importance of studying effects of multiple infections, even when all interacting species are not known to be specialist pathogens.
Collapse
Affiliation(s)
- Svjetlana Vojvodic
- Center for Social Evolution, Department of Agriculture and Ecology Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
37
|
Abstract
As social interactions are increasingly recognized as important determinants of microbial fitness, sociobiology is being enlisted to better understand the evolution of clinically relevant microbes and, potentially, to influence their evolution to aid human health. Of special interest are situations in which there exists a "tragedy of the commons," where natural selection leads to a net reduction in fitness for all members of a population. Here, I demonstrate the existence of a tragedy of the commons among antibiotic resistance plasmids of bacteria. In serial transfer culture, plasmids evolved a greater ability to superinfect already-infected bacteria, increasing plasmid fitness when evolved genotypes were rare. Evolved plasmids, however, fell victim to their own success, reducing the density of their bacterial hosts when they became common and suffering reduced fitness through vertical transmission. Social interactions can thus be an important determinant of evolution for the molecular endosymbionts of bacteria. These results also identify an avenue of evolution that reduces proliferation of both antibiotic resistance genes and their bacterial hosts.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Nonacs P, Kapheim KM. Modeling Disease Evolution with Multilevel Selection: HIV as a Quasispecies Social Genome. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jem/235553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Hall AR, Scanlan PD, Leggett HC, Buckling A. Multiplicity of infection does not accelerate infectivity evolution of viral parasites in laboratory microcosms. J Evol Biol 2011; 25:409-15. [PMID: 22168551 DOI: 10.1111/j.1420-9101.2011.02434.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coinfection with multiple parasite genotypes [multiplicity of infection (MOI)] creates within-host competition and opportunities for parasite recombination and is therefore predicted to be important for both parasite and host evolution. We tested for a difference in the infectivity of viral parasites (lytic phage Φ2) and resistance of their bacterial hosts (Pseudomonas fluorescens SBW25) under both high and low MOI during coevolution in laboratory microcosms. Results show that MOI has no effect on infectivity and resistance evolution during coevolution over ∼80 generations of host growth, and this is true when the experiment is initiated with wild-type viruses and hosts, or with viruses and hosts that have already been coevolving for ∼330 generations. This suggests that MOI does not have a net effect of accelerating parasite adaptation to hosts through recombination, or slowing adaptation to hosts through between-parasite conflict in this system.
Collapse
Affiliation(s)
- A R Hall
- Department of Zoology, University of Oxford, Oxford, UK College of Life & Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, UK
| | | | | | | |
Collapse
|
40
|
Barrett LG, Bell T, Dwyer G, Bergelson J. Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecol Lett 2011; 14:1149-57. [PMID: 21951910 DOI: 10.1111/j.1461-0248.2011.01687.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The evolutionary dynamics of pathogens are critically important for disease outcomes, prevalence and emergence. In this study we investigate ecological conditions that may promote the long-term maintenance of virulence polymorphisms in pathogen populations. Recent theory predicts that evolution towards increased virulence can be reversed if less-aggressive social 'cheats' exploit more aggressive 'cooperator' pathogens. However, there is no evidence that social exploitation operates within natural pathogen populations. We show that for the bacterium Pseudomonas syringae, major polymorphisms for pathogenicity are maintained at unexpectedly high frequencies in populations infecting the host Arabidopsis thaliana. Experiments reveal that less-aggressive strains substantially increase their growth potential in mixed infections and have a fitness advantage in non-host environments. These results suggest that niche differentiation can contribute to the maintenance of virulence polymorphisms, and that both within-host and between-host growth rates modulate cheating and cooperation in P. syringae populations.
Collapse
Affiliation(s)
- Luke G Barrett
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
41
|
Staves PA, Knell RJ. Virulence and competitiveness: testing the relationship during inter- and intraspecific mixed infections. Evolution 2011; 64:2643-52. [PMID: 20394652 DOI: 10.1111/j.1558-5646.2010.00999.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the reasons why different parasites cause different degrees of harm to their hosts is an important objective in evolutionary biology. One group of models predicts that if hosts are infected with more than one strain or species of parasite, then competition between the parasites will select for higher virulence. While this idea makes intuitive sense, empirical data to support it are rare and equivocal. We investigated the relationship between fitness and virulence during both inter- and intraspecific competition for a fungal parasite of insects, Metarhizium anisopliae. Contrary to theoretical expectations, competition favored parasite strains with either a lower or a higher virulence depending on the competitor: when in interspecific competition with an entomopathogenic nematode, Steinernema feltiae, less virulent strains of the fungus were more successful, but when competing against conspecific fungi, more virulent strains were better competitors. We suggest that the nature of competition (direct via toxin production when competing against the nematode, indirect via exploitation of the host when competing against conspecific fungal strains) determines the relationship between virulence and competitive ability.
Collapse
Affiliation(s)
- Peter A Staves
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom.
| | | |
Collapse
|
42
|
The Symbiotic Habit. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2010.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
López‐Villavicencio M, Courjol F, Gibson AK, Hood ME, Jonot O, Shykoff JA, Giraud T. COMPETITION, COOPERATION AMONG KIN, AND VIRULENCE IN MULTIPLE INFECTIONS. Evolution 2010; 65:1357-66. [DOI: 10.1111/j.1558-5646.2010.01207.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Manuela López‐Villavicencio
- Origine, Structure, Evolution de la Diversité, UMR 7205 CNRS‐MNHN, Muséum national d’histoire naturelle, CP39, 57 rue Cuvier, 75231 Paris Cedex 05, France
- E‐mail:
| | - Flavie Courjol
- Ecologie, Systématique et Evolution, UMR 8079, Bâtiment 360, Université Paris‐Sud, F‐91405 Orsay cedex, France; UMR 8079, Bâtiment 360, CNRS, F‐91405 Orsay cedex; France
- E‐mail:
| | - Amanda K. Gibson
- Ecologie, Systématique et Evolution, UMR 8079, Bâtiment 360, Université Paris‐Sud, F‐91405 Orsay cedex, France; UMR 8079, Bâtiment 360, CNRS, F‐91405 Orsay cedex; France
- E‐mail:
| | - Michael E. Hood
- Department of Biology, McGuire Life Sciences Building, Amherst College, Rts 9 and 116, Amherst, Massachusetts 01002‐5000
- E‐mail:
| | - Odile Jonot
- Ecologie, Systématique et Evolution, UMR 8079, Bâtiment 360, Université Paris‐Sud, F‐91405 Orsay cedex, France; UMR 8079, Bâtiment 360, CNRS, F‐91405 Orsay cedex; France
- E‐mail:
| | - Jacqui A. Shykoff
- Ecologie, Systématique et Evolution, UMR 8079, Bâtiment 360, Université Paris‐Sud, F‐91405 Orsay cedex, France; UMR 8079, Bâtiment 360, CNRS, F‐91405 Orsay cedex; France
- E‐mail:
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, UMR 8079, Bâtiment 360, Université Paris‐Sud, F‐91405 Orsay cedex, France; UMR 8079, Bâtiment 360, CNRS, F‐91405 Orsay cedex; France
- E‐mail:
| |
Collapse
|
44
|
Hoa TTT, Zwart MP, Phuong NT, Oanh DTH, de Jong MCM, Vlak JM. Mixed-genotype white spot syndrome virus infections of shrimp are inversely correlated with disease outbreaks in ponds. J Gen Virol 2010; 92:675-80. [DOI: 10.1099/vir.0.026351-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Smith J. Superinfection drives virulence evolution in experimental populations of bacteria and plasmids. Evolution 2010; 65:831-41. [PMID: 21054359 DOI: 10.1111/j.1558-5646.2010.01178.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A prominent hypothesis proposes that pathogen virulence evolves in large part due to a trade-off between infectiousness and damage to hosts. Other explanations emphasize how virulence evolves in response to competition among pathogens within hosts. Given the proliferation of theoretical possibilities, what best predicts how virulence evolves in real biological systems? Here, I show that virulence evolution in experimental populations of bacteria and self-transmissible plasmids is best explained by within-host competition. Plasmids evolved to severely reduce the fitness of their hosts even in the absence of uninfected cells. This result is inconsistent with the trade-off hypothesis, which predicts that under these conditions vertically transmitted pathogens would evolve to be less virulent. Plasmid virulence was strongly correlated with the ability to superinfect cells containing competing plasmid genotypes, suggesting a key role for within-host competition. When virulent genotypes became common, hosts evolved resistance to plasmid infection. These results show that the trade-off hypothesis can incorrectly predict virulence evolution when within-host interactions are neglected. They also show that symbioses between bacteria and plasmids can evolve to be surprisingly antagonistic.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
46
|
Berngruber TW, Weissing FJ, Gandon S. Inhibition of superinfection and the evolution of viral latency. J Virol 2010; 84:10200-8. [PMID: 20660193 PMCID: PMC2937782 DOI: 10.1128/jvi.00865-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/12/2010] [Indexed: 01/21/2023] Open
Abstract
Latent viruses generally defend their host cell against superinfection by nonlatent virulent mutants that could destroy the host cell. Superinfection inhibition thus seems to be a prerequisite for the maintenance of viral latency. Yet viral latency can break down when resistance to superinfection inhibition, known as ultravirulence, occurs. To understand the evolution of viral latency, we have developed a model that analyzes the epidemiology of latent infection in the face of ultravirulence. We show that latency can be maintained when superinfection inhibition and resistance against it coevolve in an arms race, which can result in large fluctuations in virulence. An example is the coevolution of the virulence and superinfection repressor protein of phage lambda (cI) and its binding target, the lambda oLoR operator. We show that this repressor/operator coevolution is the driving force for the evolution of superinfection immunity groups. Beyond latent phages, we predict analogous dynamics for any latent virus that uses a single repressor for the simultaneous control of virulence and superinfection.
Collapse
Affiliation(s)
- Thomas W Berngruber
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Route de Mende 1919, Montpellier, France.
| | | | | |
Collapse
|
47
|
Bonsall MB. Parasite replication and the evolutionary epidemiology of parasite virulence. PLoS One 2010; 5:e12440. [PMID: 20805976 PMCID: PMC2929189 DOI: 10.1371/journal.pone.0012440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/30/2010] [Indexed: 12/17/2022] Open
Abstract
Parasite virulence evolution is shaped by both within-host and population-level processes yet the link between these differing scales of infection is often neglected. Population structure and heterogeneity in both parasites and hosts will affect how hosts are exploited by pathogens and the intensity of infection. Here, it is shown how the degree of relatedness among parasites together with epidemiological parameters such as pathogen yield and longevity influence the evolution of virulence. Furthermore, the role of kin competition and the degree of cheating within highly structured parasite populations also influences parasite fitness and infectivity patterns. Understanding how the effects of within-host processes scale up to affect the epidemiology has importance for understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
48
|
Schuster BM, Perry LA, Cooper VS, Whistler CA. Breaking the language barrier: experimental evolution of non-native Vibrio fischeri in squid tailors luminescence to the host. Symbiosis 2010. [DOI: 10.1007/s13199-010-0074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Choisy M, de Roode J. Mixed Infections and the Evolution of Virulence: Effects of Resource Competition, Parasite Plasticity, and Impaired Host Immunity. Am Nat 2010; 175:E105-18. [DOI: 10.1086/651587] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
FRIESEN ML, MATHIAS A. Mixed infections may promote diversification of mutualistic symbionts: why are there ineffective rhizobia? J Evol Biol 2010; 23:323-34. [DOI: 10.1111/j.1420-9101.2009.01902.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|