1
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
2
|
Park JH, Im M, Kim YJ, Jang JH, Lee SM, Kim MS, Cho SY. Cartilage-hair hypoplasia-anauxetic dysplasia spectrum disorders harboring RMRP mutations in two Korean children: A case report. Medicine (Baltimore) 2024; 103:e37247. [PMID: 38787970 PMCID: PMC11124728 DOI: 10.1097/md.0000000000037247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 05/26/2024] Open
Abstract
RATIONALE Cartilage-hair hypoplasia (CHH, OMIM # 250250) is a rare autosomal recessive disorder, which includes cartilage-hair hypoplasia-anauxetic dysplasia (CHH-AD) spectrum disorders. CHH-AD is caused by homozygous or compound heterozygous mutations in the RNA component of the mitochondrial RNA-processing Endoribonuclease (RMRP) gene. PATIENT CONCERNS Here, we report 2 cases of Korean children with CHH-AD. DIAGNOSES In the first case, the patient had metaphyseal dysplasia without hypotrichosis, diagnosed by whole exome sequencing (WES), and exhibited only skeletal dysplasia and lacked extraskeletal manifestations, such as hair hypoplasia and immunodeficiency. In the second case, the patient had skeletal dysplasia, hair hypoplasia, and immunodeficiency, which were identified by WES. INTERVENTIONS The second case is the first CHH reported in Korea. The patients in both cases received regular immune and lung function checkups. OUTCOMES Our cases suggest that children with extremely short stature from birth, with or without extraskeletal manifestations, should include CHH-AD as a differential diagnosis. LESSONS SUBSECTIONS Clinical suspicion is the most important and RMRP sequencing should be considered for the diagnosis of CHH-AD.
Collapse
Affiliation(s)
- Ju Heon Park
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minji Im
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Min-Sun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Sizer RE, Butterfield SP, Hancocks LA, Gato De Sousa L, White RJ. Selective Occupation by E2F and RB of Loci Expressed by RNA Polymerase III. Cancers (Basel) 2024; 16:481. [PMID: 38339234 PMCID: PMC10854548 DOI: 10.3390/cancers16030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
In all cases tested, TFIIIB is responsible for recruiting pol III to its genetic templates. In mammalian cells, RB binds TFIIIB and prevents its interactions with both promoter DNA and pol III, thereby suppressing transcription. As TFIIIB is not recruited to its target genes when bound by RB, the mechanism predicts that pol III-dependent templates will not be occupied by RB; this contrasts with the situation at most genes controlled by RB, where it can be tethered by promoter-bound sequence-specific DNA-binding factors such as E2F. Contrary to this prediction, however, ChIP-seq data reveal the presence of RB in multiple cell types and the related protein p130 at many loci that rely on pol III for their expression, including RMRP, RN7SL, and a variety of tRNA genes. The sets of genes targeted varies according to cell type and growth state. In such cases, recruitment of RB and p130 can be explained by binding of E2F1, E2F4 and/or E2F5. Genes transcribed by pol III had not previously been identified as common targets of E2F family members. The data provide evidence that E2F may allow for the selective regulation of specific non-coding RNAs by RB, in addition to its influence on overall pol III output through its interaction with TFIIIB.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. White
- Department of Biology, University of York, York YO10 5DD, UK; (R.E.S.)
| |
Collapse
|
4
|
Remmelzwaal PC, Verhagen MV, Jongbloed JDH, van den Akker PC, Veenstra-Knol HE, Hitzert MM. Expanding the phenotype of anauxetic dysplasia caused by biallelic NEPRO mutations: A case report. Am J Med Genet A 2023; 191:2440-2445. [PMID: 37294112 DOI: 10.1002/ajmg.a.63316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The cartilage hair hypoplasia and anauxetic dysplasia (CHH-AD) spectrum encompasses a group of rare skeletal disorders, with anauxetic dysplasia (ANXD) at the most severe end of the spectrum. Biallelic variants in RMRP, POP1, and NEPRO (C3orf17) have previously been associated with the three currently recognized ANXD types. Generally, all types are characterized by severe short stature, brachydactyly, skin laxity, joint hypermobility and dislocations, and extensive skeletal abnormalities visible on radiological evaluation. Thus far, only five patients with type 3 anauxetic dysplasia (ANXD3) have been reported. Here, we describe one additional ANXD3 patient. We provide a detailed physical and radiological evaluation of this patient, in whom we identified a homozygous variant, c.280C > T, p.(Arg94Cys), in NEPRO. Our patient presented with clinically relevant features not previously described in ANXD3: atlantoaxial subluxation, extensive dental anomalies, and a sagittal suture craniosynostosis resulting in scaphocephaly. We provide an overview of the literature on ANXD3 and discuss our patient's characteristics in the context of previously described patients. This study expands the phenotypic spectrum of ANXD, particularly ANXD3. Greater awareness of the possibility of atlantoaxial subluxation, dental anomalies, and craniosynostosis may lead to more timely diagnosis and treatment.
Collapse
Affiliation(s)
- P Christian Remmelzwaal
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn V Verhagen
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, Groningen Expertise Center for Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermine E Veenstra-Knol
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marrit M Hitzert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Akhtar MR, Mondal MNI, Rana HK. Bioinformatics approach to identify the impacts of microgravity on the development of bone and joint diseases. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
7
|
Yang K, Liu Y, Wu J, Zhang J, Hu HY, Yan YS, Chen WQ, Yang SF, Sun LJ, Sun YQ, Wu QQ, Yin CH. Prenatal Cases Reflect the Complexity of the COL1A1/2 Associated Osteogenesis Imperfecta. Genes (Basel) 2022; 13:genes13091578. [PMID: 36140746 PMCID: PMC9498730 DOI: 10.3390/genes13091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Osteogenesis imperfecta (OI) is a rare mendelian skeletal dysplasia with autosomal dominant or recessive inheritance pattern, and almost the most common primary osteoporosis in prenatal settings. The diversity of clinical presentation and genetic etiology in prenatal OI cases presents a challenge to counseling yet has seldom been discussed in previous studies. Methods: Ten cases with suspected fetal OI were enrolled and submitted to a genetic detection using conventional karyotyping, chromosomal microarray analysis (CMA), and whole-exome sequencing (WES). Sanger sequencing was used as the validation method for potential diagnostic variants. In silico analysis of specific missense variants was also performed. Results: The karyotyping and CMA results of these cases were normal, while WES identified OI-associated variants in the COL1A1/2 genes in all ten cases. Six of these variants were novel. Additionally, four cases here exhibited distinctive clinical and/or genetic characteristics, including the situations of intrafamilial phenotypic variability, parental mosaicism, and “dual nosogenesis” (mutations in collagen I and another gene). Conclusion: Our study not only expands the spectrum of COL1A1/2-related OI, but also highlights the complexity that occurs in prenatal OI and the importance of clarifying its pathogenic mechanisms.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yan Liu
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Jue Wu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China
| | - Hua-ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100083, China
| | - You-sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Wen-qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China
| | - Shu-fa Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Li-juan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yong-qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Qing-qing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Correspondence: (Q.-q.W.); (C.-h.Y.)
| | - Cheng-hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Correspondence: (Q.-q.W.); (C.-h.Y.)
| |
Collapse
|
8
|
Van Bortle K, Marciano DP, Liu Q, Chou T, Lipchik AM, Gollapudi S, Geller BS, Monte E, Kamakaka RT, Snyder MP. A cancer-associated RNA polymerase III identity drives robust transcription and expression of snaR-A noncoding RNA. Nat Commun 2022; 13:3007. [PMID: 35637192 PMCID: PMC9151912 DOI: 10.1038/s41467-022-30323-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7β), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor. RNA polymerase III changes its subunit composition during mammalian development. Here the authors report that loss of subunit POLR3G, which re-emerges in cancer, promotes expression of small NF90-associated RNA (snaR-A), a noncoding RNA implicated in cell proliferation and metastasis.
Collapse
|
9
|
Malcolm JR, Leese NK, Lamond-Warner PI, Brackenbury WJ, White RJ. Widespread association of ERα with RMRP and tRNA genes in MCF-7 cells and breast cancers. Gene X 2022; 821:146280. [PMID: 35143945 PMCID: PMC8942118 DOI: 10.1016/j.gene.2022.146280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Estrogen receptor (ER) interacts with hundreds of tRNA genes (tDNAs) in MCF-7 cells. Hundreds of tDNAs are also targeted in primary breast tumours and metastases. Canonical estrogen response element is not found near top tDNA targets of ER. ER also targets non-coding breast cancer driver gene RMRP. ER also targets RN7SL1 gene that promotes breast cancer progression.
tRNA gene transcription by RNA polymerase III (Pol III) is a tightly regulated process, but dysregulated Pol III transcription is widely observed in cancers. Approximately 75% of all breast cancers are positive for expression of Estrogen Receptor alpha (ERα), which acts as a key driver of disease. MCF-7 cells rapidly upregulate tRNA gene transcription in response to estrogen and ChIP-PCR demonstrated ERα enrichment at tRNALeu and 5S rRNA genes in this breast cancer cell line. While these data implicate the ERα as a Pol III transcriptional regulator, how widespread this regulation is across the 631 tRNA genes has yet to be revealed. Through analyses of ERα ChIP-seq datasets, we show that ERα interacts with hundreds of tRNA genes, not only in MCF-7 cells, but also in primary human breast tumours and distant metastases. The extent of ERα association with tRNA genes varies between breast cancer cell lines and does not correlate with levels of ERα binding to its canonical target gene GREB1. Amongst other Pol III-transcribed genes, ERα is consistently enriched at the long non-coding RNA gene RMRP, a positive regulator of cell cycle progression that is subject to focal amplification in tumours. Another Pol III template targeted by ERα is the RN7SL1 gene, which is strongly implicated in breast cancer pathology by inducing inflammatory responses in tumours. Our data indicate that Pol III-transcribed non-coding genes should be added to the list of ERα targets in breast cancer.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Natasha K Leese
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Robert J White
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom.
| |
Collapse
|
10
|
Derksen M, Mertens V, Visser EA, Arts J, Vree Egberts W, Pruijn GJM. A novel experimental approach for the selective isolation and characterization of human RNase MRP. RNA Biol 2022; 19:305-312. [PMID: 35129080 PMCID: PMC8820802 DOI: 10.1080/15476286.2022.2027659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
RNase MRP is a ribonucleoprotein complex involved in the endoribonucleolytic cleavage of different RNAs. Mutations in the RNA component of the RNP are the cause of cartilage hair hypoplasia. Patients with cartilage hair hypoplasia are characterized by skeletal dysplasia. Biochemical purification of RNase MRP is desired to be able to study its biochemical function, composition and activity in both healthy and disease situations. Due to the high similarity with RNase P, a method to specifically isolate the RNase MRP complex is currently lacking. By fusing a streptavidin-binding RNA aptamer, the S1m-aptamer, to the RNase MRP RNA we have been able to compare the relative expression levels of wildtype and mutant MRP RNAs. Moreover, we were able to isolate active RNase MRP complexes. We observed that mutant MRP RNAs are expressed at lower levels and have lower catalytic activity compared to the wildtype RNA. The observation that a single nucleotide substitution at position 40 in the P3 domain but not in other domains of RNase MRP RNA severely reduced the binding of the Rpp25 protein subunit confirmed that the P3 region harbours the main binding site for this protein. Altogether, this study shows that the RNA aptamer tagging approach can be used to identify RNase MRP substrates, but also to study the effect of mutations on MRP RNA expression levels and RNase MRP composition and endoribonuclease activity.
Collapse
Affiliation(s)
- Merel Derksen
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Vicky Mertens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Eline A. Visser
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Janine Arts
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Wilma Vree Egberts
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Robertson N, Shchepachev V, Wright D, Turowski TW, Spanos C, Helwak A, Zamoyska R, Tollervey D. A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis. Nat Commun 2022; 13:649. [PMID: 35115551 PMCID: PMC8814244 DOI: 10.1038/s41467-022-28295-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/14/2022] [Indexed: 01/02/2023] Open
Abstract
RMRP encodes a non-coding RNA forming the core of the RNase MRP ribonucleoprotein complex. Mutations cause Cartilage Hair Hypoplasia (CHH), characterized by skeletal abnormalities and impaired T cell activation. Yeast RNase MRP cleaves a specific site in the pre-ribosomal RNA (pre-rRNA) during ribosome synthesis. CRISPR-mediated disruption of RMRP in human cells lines caused growth arrest, with pre-rRNA accumulation. Here, we analyzed disease-relevant primary cells, showing that mutations in RMRP impair mouse T cell activation and delay pre-rRNA processing. Patient-derived human fibroblasts with CHH-linked mutations showed similar pre-rRNA processing delay. Human cells engineered with the most common CHH mutation (70AG in RMRP) show specifically impaired pre-rRNA processing, resulting in reduced mature rRNA and a reduced ratio of cytosolic to mitochondrial ribosomes. Moreover, the 70AG mutation caused a reduction in intact RNase MRP complexes. Together, these results indicate that CHH is a ribosomopathy.
Collapse
Affiliation(s)
- Nic Robertson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Vadim Shchepachev
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Wright
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Huang Y, Xie B, Cao M, Lu H, Wu X, Hao Q, Zhou X. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol 2021; 9:730538. [PMID: 34621748 PMCID: PMC8490808 DOI: 10.3389/fcell.2021.730538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
The RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) was recently shown to play a role in cancer development. However, the function and mechanism of RMRP during cancer progression remain incompletely understood. Here, we report that RMRP is amplified and highly expressed in various malignant cancers, and the high level of RMRP is significantly associated with their poor prognosis, including breast cancer. Consistent with this, ectopic RMRP promotes proliferation and migration of TP53-mutated breast cancer cells, whereas depletion of RMRP leads to inhibition of their proliferation and migration. RNA-seq analysis reveals AKT as a downstream target of RMRP. Interestingly, RMRP indirectly elevates AKT expression by preventing AKT mRNA from miR-206-mediated targeting via a competitive sequestering mechanism. Remarkably, RMRP endorses breast cancer progression in an AKT-dependent fashion, as knockdown of AKT completely abolishes RMRP-induced cancer cell growth and migration. Altogether, our results unveil a novel role of the RMRP-miR-206-AKT axis in breast cancer development, providing a potential new target for developing an anti-breast cancer therapy.
Collapse
Affiliation(s)
- Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Abstract
The tumor suppressor p53 prevents tumorigenesis, while inactivation of p53 promotes cancer development and drug resistance. Here, we identify that a long noncoding RNA, the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP), promotes growth and proliferation of colorectal cancer cells by inhibiting p53 activity. Mechanistically, RMRP retains SNRPA1 in the nucleus, thus preventing its lysosomal degradation. The nuclear SNRPA1 then prompts MDM2-mediated p53 ubiquitination and degradation. Remarkably, RMRP expression is induced by poly (ADP-ribose) polymerase (PARP) inhibitors, a group of targeted anticancer drugs, through the transcription factor C/EBPβ. Targeting RMRP significantly enhances sensitivity of colorectal cancer cells to PARP inhibition by reactivating p53. Our study provides a possible mechanism underling tumor resistance to PARP inhibitors. p53 inactivation is highly associated with tumorigenesis and drug resistance. Here, we identify a long noncoding RNA, the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP), as an inhibitor of p53. RMRP is overexpressed and associated with an unfavorable prognosis in colorectal cancer. Ectopic RMRP suppresses p53 activity by promoting MDM2-induced p53 ubiquitination and degradation, while depletion of RMRP activates the p53 pathway. RMRP also promotes colorectal cancer growth and proliferation in a p53-dependent fashion in vitro and in vivo. This anti-p53 action of RMRP is executed through an identified partner protein, SNRPA1. RMRP can interact with SNRPA1 and sequester it in the nucleus, consequently blocking its lysosomal proteolysis via chaperone-mediated autophagy. The nuclear SNRPA1 then interacts with p53 and enhances MDM2-induced proteasomal degradation of p53. Remarkably, ablation of SNRPA1 completely abrogates RMRP regulation of p53 and tumor cell growth, indicating that SNRPA1 is indispensable for the anti-p53 function of RMRP. Interestingly and significantly, poly (ADP-ribose) polymerase (PARP) inhibitors induce RMRP expression through the transcription factor C/EBPβ, and RMRP confers tumor resistance to PARP inhibition by preventing p53 activation. Altogether, our study demonstrates that RMRP plays an oncogenic role by inactivating p53 via SNRPA1 in colorectal cancer.
Collapse
|
14
|
Luzón-Toro B, Villalba-Benito L, Fernández RM, Torroglosa A, Antiñolo G, Borrego S. RMRP, RMST, FTX and IPW: novel potential long non-coding RNAs in medullary thyroid cancer. Orphanet J Rare Dis 2021; 16:4. [PMID: 33407723 PMCID: PMC7789680 DOI: 10.1186/s13023-020-01665-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The relevant role of long non-coding RNAs (lncRNAs) in cancer is currently a matter of increasing interest. Medullary thyroid cancer (MTC) is a rare neuroendocrine tumor (2-5% of all thyroid cancer) derived from the parafollicular C-cells which secrete calcitonin. About 75% of all medullary thyroid cancers are believed to be sporadic medullary thyroid cancer (sMTC), whereas the remaining 25% correspond to inherited cancer syndromes known as Multiple Endocrine Neoplasia type 2 (MEN2). MEN2 syndrome, with autosomal dominant inheritance is caused by germline gain of function mutations in RET proto-oncogene. To date no lncRNA has been associated to MEN2 syndrome and only two articles have been published relating long non-coding RNA (lncRNA) to MTC: the first one linked MALAT1 with sMTC and, in the other, our group determined some new lncRNAs in a small group of sMTC cases in fresh tissue (RMST, FTX, IPW, PRNCR1, ADAMTS9-AS2 and RMRP). The aim of the current study is to validate such novel lncRNAs previously described by our group by using a larger cohort of patients, in order to discern their potential role in the disease. Here we have tested three up-regulated (RMST, FTX, IPW) and one down-regulated (RMRP) lncRNAs in our samples (formalin fixed paraffin embedded tissues from twenty-one MEN2 and ten sMTC patients) by RT-qPCR analysis. The preliminary results reinforce the potential role of RMST, FTX, IPW and RMRP in the pathogenesis of MTC.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain.
| |
Collapse
|
15
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
16
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Venturi G, Montanaro L. How Altered Ribosome Production Can Cause or Contribute to Human Disease: The Spectrum of Ribosomopathies. Cells 2020; 9:E2300. [PMID: 33076379 PMCID: PMC7602531 DOI: 10.3390/cells9102300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
A number of different defects in the process of ribosome production can lead to a diversified spectrum of disorders that are collectively identified as ribosomopathies. The specific factors involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal functions, making it difficult to ascribe the pathogenesis of the disease specifically to an altered ribosome biogenesis, even if the latter is clearly affected. We reviewed the available literature in the field from this point of view with the aim of distinguishing, among ribosomopathies, the ones due to specific alterations in the process of ribosome production from those characterized by a multifactorial pathogenesis.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
18
|
Vakkilainen S, Kleino I, Honkanen J, Salo H, Kainulainen L, Gräsbeck M, Kekäläinen E, Mäkitie O, Klemetti P. The Safety and Efficacy of Live Viral Vaccines in Patients With Cartilage-Hair Hypoplasia. Front Immunol 2020; 11:2020. [PMID: 32849667 PMCID: PMC7432140 DOI: 10.3389/fimmu.2020.02020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Live viral vaccines are generally contraindicated in patients with combined immunodeficiency including cartilage-hair hypoplasia (CHH); however, they may be tolerated in milder syndromes. We evaluated the safety and efficacy of live viral vaccines in patients with CHH. Methods We analyzed hospital and immunization records of 104 patients with CHH and measured serum antibodies to measles, mumps, rubella, and varicella zoster virus (VZV) in all patients who agreed to blood sampling (n = 50). We conducted a clinical trial (ClinicalTrials.gov identifier: NCT02383797) of live VZV vaccine on five subjects with CHH who lacked varicella history, had no clinical symptoms of immunodeficiency, and were seronegative for VZV; humoral and cellular immunologic responses were assessed post-immunization. Results A large proportion of patients have been immunized with live viral vaccines, including measles-mumps-rubella (MMR) (n = 40, 38%) and VZV (n = 10, 10%) vaccines, with no serious adverse events. Of the 50 patients tested for antibodies, previous immunization has been documented with MMR (n = 22), rubella (n = 2) and measles (n = 1) vaccines. Patients with CHH demonstrated seropositivity rates of 96%/75%/91% to measles, mumps and rubella, respectively, measured at a medium of 24 years post-immunization. Clinical trial participants developed humoral and cellular responses to VZV vaccine. One trial participant developed post-immunization rash and knee swelling, both resolved without treatment. Conclusion No serious adverse events have been recorded after immunization with live viral vaccines in Finnish patients with CHH. Patients generate humoral and cellular immune response to live viral vaccines. Immunization with live vaccines may be considered in selected CHH patients with no or clinically mild immunodeficiency.
Collapse
Affiliation(s)
- Svetlana Vakkilainen
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iivari Kleino
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Salo
- Children’s Hospital, Clinicum, University of Helsinki, Helsinki, Finland
| | - Leena Kainulainen
- Department of Pediatrics and Adolescents, Turku University Hospital, University of Turku, Turku, Finland
| | - Michaela Gräsbeck
- Department of Pediatrics, Kymenlaakso Central Hospital, Kotka, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSLAB, Division of Clinical Microbiology, Helsinki, Finland
| | - Outi Mäkitie
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Paula Klemetti
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Lan P, Zhou B, Tan M, Li S, Cao M, Wu J, Lei M. Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. Science 2020; 369:656-663. [PMID: 32586950 DOI: 10.1126/science.abc0149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Ribonuclease (RNase) MRP is a conserved eukaryotic ribonucleoprotein complex that plays essential roles in precursor ribosomal RNA (pre-rRNA) processing and cell cycle regulation. In contrast to RNase P, which selectively cleaves transfer RNA-like substrates, it has remained a mystery how RNase MRP recognizes its diverse substrates. To address this question, we determined cryo-electron microscopy structures of Saccharomyces cerevisiae RNase MRP alone and in complex with a fragment of pre-rRNA. These structures and the results of biochemical studies reveal that coevolution of both protein and RNA subunits has transformed RNase MRP into a distinct ribonuclease that processes single-stranded RNAs by recognizing a short, loosely defined consensus sequence. This broad substrate specificity suggests that RNase MRP may have myriad yet unrecognized substrates that could play important roles in various cellular contexts.
Collapse
Affiliation(s)
- Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Bin Zhou
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
20
|
Vakkilainen S, Taskinen M, Mäkitie O. Immunodeficiency in cartilage-hair hypoplasia: Pathogenesis, clinical course and management. Scand J Immunol 2020; 92:e12913. [PMID: 32506568 DOI: 10.1111/sji.12913] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Cartilage-hair hypoplasia (CHH) is an autosomal recessive syndromic immunodeficiency with skeletal dysplasia, short stature, hypotrichosis, variable degree of immune dysfunction and increased incidence of anaemia, Hirschsprung disease and malignancy. CHH is caused by variants in the RMRP gene, encoding the untranslated RNA molecule of the mitochondrial RNA-processing endoribonuclease, which participates in for example cell cycle regulation and telomere maintenance. Recent studies have expanded our understanding of the complex pathogenesis of CHH. Immune dysfunction has a major impact on clinical course and prognosis. Clinical features of immune dysfunction are highly variable, progressive and include infections, lung disease, immune dysregulation and malignancy. Mortality is increased compared with the general population, due to infections, malignancy and pulmonary disease. Several risk factors for early mortality have been reported in the Finnish CHH cohort and can be used to guide management. Newborn screening for severe combined immunodeficiency can possibly be of prognostic value in CHH. Regular follow-up by a multidisciplinary team should be implemented to address immune dysfunction in all patients with CHH, also in asymptomatic cases. Haematopoietic stem cell transplantation can cure immune dysfunction, but its benefits in mildly symptomatic patients with CHH remain debatable. Further research is needed to understand the mechanisms behind the variability of clinical features, to search for potential molecular treatment targets, to examine and validate risk factors for early mortality outside the Finnish CHH cohort and to develop management guidelines. This review focuses on the pathogenesis, clinical course and management of CHH.
Collapse
Affiliation(s)
- Svetlana Vakkilainen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mervi Taskinen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Abdulhadi-Atwan M, Klopstock T, Sharaf M, Weinberg-Shukron A, Renbaum P, Levy-Lahad E, Zangen D. The novel R211Q POP1 homozygous mutation causes different pathogenesis and skeletal changes from those of previously reported POP1-associated anauxetic dysplasia. Am J Med Genet A 2020; 182:1268-1272. [PMID: 32134183 DOI: 10.1002/ajmg.a.61538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
Processing of Precursor RNA 1 (POP1) is a core protein component shared by two essential closely related eukaryotic ribonucleoprotein complexes: RNase MRP (the mitochondrial RNA processing ribonuclease) and RNase P. Recently, five patients harboring mutations in POP1 have been reported with severe spondylo-epi-metaphyseal dysplasia and extremely short stature. We report a unique clinical phenotype resulting from the novel homozygous R211Q POP1 mutation in three patients from one family, presenting with severe short stature but only subtle skeletal dysplastic changes that are merely metaphyseal. The RNA moiety of the RNase-MRP complex quantified in RNA extracted from peripheral lymphocytes was dramatically reduced in affected patients indicating instability of the enzymatic complex. However, pre5.8s rRNA, a substrate of RNase-MRP complex, was not accumulated in patients' RNA unlike in the previously reported POP1 mutations; this may explain the uniquely mild phenotype in our cases, and questions the assumption that alteration in ribosomal biogenesis is the pathophysiological basis for skeletal disorders caused by POP1 mutations. Finally, POP1 mutations should be considered in familial cases with severe short stature even when skeletal dysplasia is not strongly evident.
Collapse
Affiliation(s)
- Maha Abdulhadi-Atwan
- Pediatric Endocrinology Service, Palestine Red Crescent Society Hospital, Hebron, Palestine
| | - Tehila Klopstock
- Medical Genetics Institute, Share Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel
| | - Muna Sharaf
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariella Weinberg-Shukron
- Medical Genetics Institute, Share Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Share Zedek Medical Center, Jerusalem, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Share Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel
| | - David Zangen
- The Hebrew University School of Medicine, Jerusalem, Israel.,Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Sun X, Zhang R, Liu M, Chen H, Chen L, Luo F, Zhang D, Huang J, Li F, Ni Z, Qi H, Su N, Jin M, Yang J, Tan Q, Du X, Chen B, Huang H, Chen S, Yin L, Xu X, Deng C, Luo L, Xie Y, Chen L. Rmrp Mutation Disrupts Chondrogenesis and Bone Ossification in Zebrafish Model of Cartilage-Hair Hypoplasia via Enhanced Wnt/β-Catenin Signaling. J Bone Miner Res 2019; 34:2101-2116. [PMID: 31237961 DOI: 10.1002/jbmr.3820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Cartilage-hair hypoplasia (CHH) is an autosomal recessive metaphyseal chondrodysplasia characterized by bone dysplasia and many other highly variable features. The gene responsible for CHH is the RNA component of the mitochondrial RNA-processing endoribonuclease (RMRP) gene. Currently, the pathogenesis of osteochondrodysplasia and extraskeletal manifestations in CHH patients remains incompletely understood; in addition, there are no viable animal models for CHH. We generated an rmrp KO zebrafish model to study the developmental mechanisms of CHH. We found that rmrp is required for the patterning and shaping of pharyngeal arches. Rmrp mutation inhibits the intramembranous ossification of skull bones and promotes vertebrae ossification. The abnormalities of endochondral bone ossification are variable, depending on the degree of dysregulated chondrogenesis. Moreover, rmrp mutation inhibits cell proliferation and promotes apoptosis through dysregulating the expressions of cell-cycle- and apoptosis-related genes. We also demonstrate that rmrp mutation upregulates canonical Wnt/β-catenin signaling; the pharmacological inhibition of Wnt/β-catenin could partially alleviate the chondrodysplasia and increased vertebrae mineralization in rmrp mutants. Our study, by establishing a novel zebrafish model for CHH, partially reveals the underlying mechanism of CHH, hence deepening our understanding of the role of rmrp in skeleton development.
Collapse
Affiliation(s)
- Xianding Sun
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ruobin Zhang
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mi Liu
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hangang Chen
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Chen
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fengtao Luo
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dali Zhang
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Junlan Huang
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangfang Li
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhenhong Ni
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huabing Qi
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Su
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Min Jin
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qiaoyan Tan
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaolan Du
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bo Chen
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Haiyang Huang
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shuai Chen
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yangli Xie
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
24
|
Vakkilainen S, Skoog T, Einarsdottir E, Middleton A, Pekkinen M, Öhman T, Katayama S, Krjutškov K, Kovanen PE, Varjosalo M, Lindqvist A, Kere J, Mäkitie O. The human long non-coding RNA gene RMRP has pleiotropic effects and regulates cell-cycle progression at G2. Sci Rep 2019; 9:13758. [PMID: 31551465 PMCID: PMC6760211 DOI: 10.1038/s41598-019-50334-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
RMRP was the first non-coding nuclear RNA gene implicated in a disease. Its mutations cause cartilage-hair hypoplasia (CHH), an autosomal recessive skeletal dysplasia with growth failure, immunodeficiency, and a high risk for malignancies. This study aimed to gain further insight into the role of RNA Component of Mitochondrial RNA Processing Endoribonuclease (RMRP) in cellular physiology and disease pathogenesis. We combined transcriptome analysis with single-cell analysis using fibroblasts from CHH patients and healthy controls. To directly assess cell cycle progression, we followed CHH fibroblasts by pulse-labeling and time-lapse microscopy. Transcriptome analysis identified 35 significantly upregulated and 130 downregulated genes in CHH fibroblasts. The downregulated genes were significantly connected to the cell cycle. Multiple other pathways, involving regulation of apoptosis, bone and cartilage formation, and lymphocyte function, were also affected, as well as PI3K-Akt signaling. Cell-cycle studies indicated that the CHH cells were delayed specifically in the passage from G2 phase to mitosis. Our findings expand the mechanistic understanding of CHH, indicate possible pathways for therapeutic intervention and add to the limited understanding of the functions of RMRP.
Collapse
Affiliation(s)
- Svetlana Vakkilainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. .,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.
| | - Tiina Skoog
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Middleton
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Panu E Kovanen
- Department of Pathology, University of Helsinki, and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Medical and Molecular Genetics, King's College, London, UK
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Vakkilainen S, Costantini A, Taskinen M, Wartiovaara-Kautto U, Mäkitie O. 'Metaphyseal dysplasia without hypotrichosis' can present with late-onset extraskeletal manifestations. J Med Genet 2019; 57:18-22. [PMID: 31413121 PMCID: PMC6929920 DOI: 10.1136/jmedgenet-2019-106131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 06/22/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Metaphyseal dysplasia without hypotrichosis (MDWH) is a rare form of chondrodysplasia with no extraskeletal manifestations. MDWH is caused by RMRP mutations, but it is differentiated from the allelic condition cartilage-hair hypoplasia (CHH), which in addition to chondrodysplasia is characterised by thin hair, immunodeficiency and increased risk of malignancy. The long-term outcome of MDWH remains unknown. OBJECTIVE We diagnosed severe agranulocytosis in a subject with RMRP mutations and normal hair. Based on this observation, we hypothesised that MDWH may, similar to CHH, associate with immune deficiency and malignancy. METHODS We collected clinical and laboratory data for a cohort of 80 patients with RMRP mutations followed for over 30 years and analysed outcome data for those with features consistent with MDWH. RESULTS In our cohort, we identified 10 patients with skeletal but no extraskeletal features during preschool age. Eight of these patients developed malignancy or clinically significant immunodeficiency during follow-up. Two of them died during chemotherapy for malignancy. At the time of the first extraskeletal manifestation, patients were school aged, 20, 43 and 50 years old. Laboratory signs of immunodeficiency (impaired lymphocyte proliferative responses) were demonstrated in four patients before the onset of symptoms. The patient outside this cohort, who had RMRP mutations, skeletal dysplasia, normal hair and severe agranulocytosis at 18 years of age, underwent haematopoietic stem cell transplantation. CONCLUSIONS MDWH can present with severe late-onset extraskeletal manifestations and thus should be reclassified and managed as CHH.
Collapse
Affiliation(s)
- Svetlana Vakkilainen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland .,Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Mervi Taskinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics / Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- New Children's Hospital, Pediatric Research Center and Institute of Genetics, University of Helsinki and HUS Helsinki University Hospital and Folkhälsan Research Center, Helsinki, Finland.,Department of Molecular Medicine and Surgery and Center for Molecular Medicine and Department of Clinical Genetics, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Deelen P, van Dam S, Herkert JC, Karjalainen JM, Brugge H, Abbott KM, van Diemen CC, van der Zwaag PA, Gerkes EH, Zonneveld-Huijssoon E, Boer-Bergsma JJ, Folkertsma P, Gillett T, van der Velde KJ, Kanninga R, van den Akker PC, Jan SZ, Hoorntje ET, Te Rijdt WP, Vos YJ, Jongbloed JDH, van Ravenswaaij-Arts CMA, Sinke R, Sikkema-Raddatz B, Kerstjens-Frederikse WS, Swertz MA, Franke L. Improving the diagnostic yield of exome- sequencing by predicting gene-phenotype associations using large-scale gene expression analysis. Nat Commun 2019; 10:2837. [PMID: 31253775 PMCID: PMC6599066 DOI: 10.1038/s41467-019-10649-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The diagnostic yield of exome and genome sequencing remains low (8-70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.
Collapse
Affiliation(s)
- Patrick Deelen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Sipko van Dam
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Johanna C Herkert
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Juha M Karjalainen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Harm Brugge
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Kristin M Abbott
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Cleo C van Diemen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Paul A van der Zwaag
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Erica H Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Jelkje J Boer-Bergsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Pytrik Folkertsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Tessa Gillett
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - K Joeri van der Velde
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Roan Kanninga
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Peter C van den Akker
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Sabrina Z Jan
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Edgar T Hoorntje
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,Netherlands Heart Institute, 3511 EP, Utrecht, The Netherlands
| | - Wouter P Te Rijdt
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,Netherlands Heart Institute, 3511 EP, Utrecht, The Netherlands
| | - Yvonne J Vos
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Richard Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Birgit Sikkema-Raddatz
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | | | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.
| |
Collapse
|
27
|
An emerging ribosomopathy affecting the skeleton due to biallelic variations in NEPRO. Am J Med Genet A 2019; 179:1709-1717. [DOI: 10.1002/ajmg.a.61267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023]
|
28
|
Sulima SO, Kampen KR, De Keersmaecker K. Cancer Biogenesis in Ribosomopathies. Cells 2019; 8:E229. [PMID: 30862070 PMCID: PMC6468915 DOI: 10.3390/cells8030229] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional "onco-specialization" of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim R Kampen
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Steinbusch MMF, Caron MMJ, Surtel DAM, Friedrich F, Lausch E, Pruijn GJM, Verhesen W, Schroen BLM, van Rhijn LW, Zabel B, Welting TJM. Expression of RMRP RNA is regulated in chondrocyte hypertrophy and determines chondrogenic differentiation. Sci Rep 2017; 7:6440. [PMID: 28743979 PMCID: PMC5527100 DOI: 10.1038/s41598-017-06809-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 12/01/2022] Open
Abstract
Mutations in the RMRP-gene, encoding the lncRNA component of the RNase MRP complex, are the origin of cartilage-hair hypoplasia. Cartilage-hair hypoplasia is associated with severe dwarfism caused by impaired skeletal development. However, it is not clear why mutations in RMRP RNA lead to skeletal dysplasia. Since chondrogenic differentiation of the growth plate is required for development of long bones, we hypothesized that RMRP RNA plays a pivotal role in chondrogenic differentiation. Expression of Rmrp RNA and RNase MRP protein subunits was detected in the murine growth plate and during the course of chondrogenic differentiation of ATDC5 cultures, where Rmrp RNA expression was found to be correlated with chondrocyte hypertrophy. Genetic interference with Rmrp RNA expression in ATDC5 cultures caused a deregulation of chondrogenic differentiation, with a prominent impact on hypertrophy and changes in pre-rRNA processing and rRNA levels. Promoter reporter studies showed that Rmrp RNA expression responds to chondrogenic morphogens. Chondrogenic trans-differentiation of cartilage-hair hypoplasia fibroblasts was impaired with a pronounced impact on hypertrophic differentiation. Together, our data show that RMRP RNA expression is regulated during different stages of chondrogenic differentiation and indicate that RMRP RNA may play a pivotal role in chondrocyte hypertrophy, with potential consequences for CHH pathobiology.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Don A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Franziska Friedrich
- Department of Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Wouter Verhesen
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Blanche L M Schroen
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bernhard Zabel
- Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Lanini LLS, Prader S, Siler U, Reichenbach J. Modern management of phagocyte defects. Pediatr Allergy Immunol 2017; 28:124-134. [PMID: 27612320 DOI: 10.1111/pai.12654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
Abstract
Phagocytic neutrophil granulocytes are among the first immune cells active at sites of infection, forming an important first-line defense against invading microorganisms. Congenital immune defects concerning these phagocytes may be due to reduced neutrophil numbers or function. Management of affected patients depends on the type and severity of disease. Here, we provide an overview of causes and treatment of diseases associated with congenital neutropenia, as well as defects of the phagocytic respiratory burst.
Collapse
Affiliation(s)
- Lorenza Lisa Serena Lanini
- Division of Immunology, University Children's Hospital Zurich and Children's Research Centre, University Zurich, Switzerland
| | - Seraina Prader
- Division of Immunology, University Children's Hospital Zurich and Children's Research Centre, University Zurich, Switzerland
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital Zurich and Children's Research Centre, University Zurich, Switzerland
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital Zurich and Children's Research Centre, University Zurich, Switzerland
| |
Collapse
|
31
|
Barraza-García J, Rivera-Pedroza CI, Hisado-Oliva A, Belinchón-Martínez A, Sentchordi-Montané L, Duncan EL, Clark GR, Del Pozo A, Ibáñez-Garikano K, Offiah A, Prieto-Matos P, Cormier-Daire V, Heath KE. Broadening the phenotypic spectrum of POP1-skeletal dysplasias: identification of POP1 mutations in a mild and severe skeletal dysplasia. Clin Genet 2017; 92:91-98. [PMID: 28067412 DOI: 10.1111/cge.12964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Processing of Precursor 1 (POP1) is a large protein common to the ribonuclease-mitochondrial RNA processing (RNase-MRP) and RNase-P (RMRP) endoribonucleoprotein complexes. Although its precise function is unknown, it appears to participate in the assembly or stability of both complexes. Numerous RMRP mutations have been reported in individuals with cartilage-hair hypoplasia (CHH) but, to date, only three POP1 mutations have been described in two families with features similar to anauxetic dysplasia (AD). We present two further individuals, one with severe short stature and a relatively mild skeletal dysplasia and another in whom AD was suspected. Biallelic POP1 mutations were identified in both. A missense mutation and a novel single base deletion were detected in proband 1, p.[Pro582Ser]:[Glu870fs*5]. Markedly reduced abundance of RMRP and elevated levels of pre5.8s rRNA was observed. In proband 2, a homozygous novel POP1 mutation was identified, p.[(Asp511Tyr)];[(Asp511Tyr)]. These two individuals show the phenotypic extremes in the clinical presentation of POP1-dysplasias. Although CHH and other skeletal dysplasias caused by mutations in RMRP or POP1 are commonly cited as ribosomal biogenesis disorders, recent studies question this assumption. We discuss the past and present knowledge about the function of the RMRP complex in skeletal development.
Collapse
Affiliation(s)
- J Barraza-García
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- Multidisciplinary Skeletal dysplasia Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - C I Rivera-Pedroza
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Multidisciplinary Skeletal dysplasia Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - A Hisado-Oliva
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- Multidisciplinary Skeletal dysplasia Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - A Belinchón-Martínez
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- Multidisciplinary Skeletal dysplasia Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - L Sentchordi-Montané
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Multidisciplinary Skeletal dysplasia Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - E L Duncan
- Department of Endocrinology, Royal Brisbane and Women's Hospital, Herston, Australia
| | - G R Clark
- Human Genetics Group, University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| | - A Del Pozo
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - K Ibáñez-Garikano
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - A Offiah
- Radiology Department, Sheffield Children's Hospital NHS Foundation Trust and Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - P Prieto-Matos
- Pediatric Endocrinology Unit, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - V Cormier-Daire
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes-Sorbonne Paris Cité University, AP-HP, Institut Imagine and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - K E Heath
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- Multidisciplinary Skeletal dysplasia Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
32
|
Castilla-Cortázar I, Rodríguez De Ita J, Martín-Estal I, Castorena F, Aguirre GA, García de la Garza R, Elizondo MI. Clinical and molecular diagnosis of a cartilage-hair hypoplasia with IGF-1 deficiency. Am J Med Genet A 2016; 173:537-540. [PMID: 27862957 PMCID: PMC6586044 DOI: 10.1002/ajmg.a.38052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/27/2016] [Indexed: 01/20/2023]
Abstract
Cartilage-hair hypoplasia syndrome (CHH) is a rare autosomal recessive condition characterized by metaphyseal chondrodysplasia and characteristic hair, together with a myriad of other symptoms, being most common immunodeficiency and gastrointestinal complications. A 15-year-old Mexican male initially diagnosed with Hirschsprung disease and posterior immunodeficiency, presents to our department for genetic and complementary evaluation for suspected CHH. Physical, biochemical, and genetic studies confirmed CHH together with IGF-1 deficiency. For this reason, we propose IGF-1 replacement therapy for its well-known actions on hematopoiesis, immune function and maturation, and metabolism. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico.,Fundacion para la Investigacion, HM Hospitales, Madrid, Spain
| | | | - Irene Martín-Estal
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| | - Fabiola Castorena
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| | - Gabriel A Aguirre
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| | | | - Martha I Elizondo
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| |
Collapse
|
33
|
Elalaoui SC, Laarabi FZ, Mansouri M, Mrani NA, Nishimura G, Sefiani A. Further evidence of POP1 mutations as the cause of anauxetic dysplasia. Am J Med Genet A 2016; 170:2462-5. [PMID: 27380734 DOI: 10.1002/ajmg.a.37839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/23/2016] [Indexed: 11/09/2022]
Abstract
Anauxetic dysplasia (AAD, OMIM 607095) is a rare skeletal dysplasia inherited as an autosomal recessive trait, which is caused by mutations in RMRP and allelic to a more common disorder, cartilage hair hypoplasia (CHH). CHH is a multi-system disorder with a variety of extraskeletal changes. Whereas AAD is a bone-restricted disorder with a more severe skeletal phenotype: affected individuals are extremely short and complicated by orthopedic morbidity, and the radiological changes include modification of the vertebral bodies and epiphyseal dysplasia of the hip, as well as generalized metaphyseal dysplasia and severe brachydactyly. Recently, genetic heterogeneity for AAD was proposed, because a familial case (two affected sibs) with an AAD-identical phenotype had compound heterozygous mutations in POP1, encoding a molecule functionally related to the gene product of RMRP. We report here a 5-year-old boy with the same phenotype born to a consanguineous couple. We identified a novel homozygous POP1 mutation (c.1744C>T, p.P582S) in the boy and the heterozygosity in the parents. It may be rational to coin the POP1-associated skeletal phenotype AAD type 2. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siham Chafai Elalaoui
- Faculté de Médecine et de Pharmacie, Centre de Génomique Humaine, Université Mohammed V. Souissi, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| | | | - Maria Mansouri
- Faculté de Médecine et de Pharmacie, Centre de Génomique Humaine, Université Mohammed V. Souissi, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| | - Nidal Alaoui Mrani
- Faculté de Médecine et de Pharmacie, Centre de Génomique Humaine, Université Mohammed V. Souissi, Rabat, Morocco.,Service de Chirurgie Pédiatrique, Hôpital d'Enfants, Rabat, Morocco
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Abdelaziz Sefiani
- Faculté de Médecine et de Pharmacie, Centre de Génomique Humaine, Université Mohammed V. Souissi, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| |
Collapse
|
34
|
Kernohan KD, Tétreault M, Liwak-Muir U, Geraghty MT, Qin W, Venkateswaran S, Davila J, Holcik M, Majewski J, Richer J, Boycott KM. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability. Hum Mol Genet 2015; 24:6293-300. [PMID: 26307080 PMCID: PMC4614701 DOI: 10.1093/hmg/ddv337] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
Protein translation is an essential cellular process initiated by the association of a methionyl-tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B-PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases.
Collapse
Affiliation(s)
| | - Martine Tétreault
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada H3A 0G1
| | | | - Michael T Geraghty
- Children's Hospital of Eastern Ontario Research Institute, Division of Metabolics and Newborn Screening, Department of Pediatrics
| | - Wen Qin
- Children's Hospital of Eastern Ontario Research Institute
| | - Sunita Venkateswaran
- Division of Neurology, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada KIH 8L1
| | | | | | - Martin Holcik
- Children's Hospital of Eastern Ontario Research Institute
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada H3A 0G1
| | - Julie Richer
- Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| |
Collapse
|
35
|
Cherkaoui Jaouad I, Laarabi FZ, Chafai Elalaoui S, Lyonnet S, Henrion-Caude A, Sefiani A. Novel Mutation and Structural RNA Analysis of the Noncoding RNase MRP Gene in Cartilage-Hair Hypoplasia. Mol Syndromol 2015; 6:77-82. [PMID: 26279652 DOI: 10.1159/000430970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Cartilage-hair hypoplasia (CHH) is an autosomal recessive disorder which is characterized by bone metaphysis anomalies with manifestations that include short stature, defective cellular immunity, and predisposition to several cancers. It is caused by mutations in RMRP, which is transcribed as an RNA component of the mitochondrial RNA-processing ribonuclease. We report the clinical and molecular data of a Moroccan patient with CHH. Sequencing of RMRP identified 2 mutations in the patient: the known mutation g.97G>A and the variation g.27G>C, which has not been reported previously. Given the high mutational heterogeneity, the high frequency of variations in the region, and the fact that RMRP is a non-coding gene, assigning the pathogenicity to RMRP mutations remains a difficult task. Therefore, we compared the characteristics of the primary and secondary structures of mutated RMRP sequences. The location of our mutations within the secondary structure of the RMRP molecule revealed that the novel g.27G>C mutation causes a disruption in the Watson-Crick base pairing, which results in an impairment of a highly conserved P3 domain. Our work prompts considering the consequences of novel RMRP nucleotide variations on conserved RNA structures to gain insights into the pathogenicity of mutations.
Collapse
Affiliation(s)
- Imane Cherkaoui Jaouad
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, France ; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco, France
| | - Fatima Z Laarabi
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, France ; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco, France
| | - Siham Chafai Elalaoui
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, France ; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco, France
| | - Stanislas Lyonnet
- INSERM UMR-781, Hôpital Necker-Enfants Malades, Université Paris Descartes, France ; Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Alexandra Henrion-Caude
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, France ; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco, France
| |
Collapse
|
36
|
Clinical and molecular diagnostics of a cartilage-hair hypoplasia: Two new cases. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.anpede.2015.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Fenollar-Cortés M, Lara-Orejas E, González-Meneses A, Ruibal-Francisco J, Trujillo-Tiebas M. El diagnóstico clínico-molecular en la hipoplasia de cartílago-pelo: dos nuevos casos. An Pediatr (Barc) 2015; 82:436-9. [DOI: 10.1016/j.anpedi.2014.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/24/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
|
38
|
Saito Y, Takeda J, Adachi K, Nobe Y, Kobayashi J, Hirota K, Oliveira DV, Taoka M, Isobe T. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway. PLoS One 2014; 9:e112488. [PMID: 25401760 PMCID: PMC4234475 DOI: 10.1371/journal.pone.0112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/17/2014] [Indexed: 01/07/2023] Open
Abstract
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Jun Takeda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Kousuke Adachi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Junya Kobayashi
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Douglas V. Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Kenis V, Grill F, Al Kaissi A. Axial correction of the lower limb deformities in a girl with anauxetic dysplasia. Musculoskelet Surg 2014; 98:71-75. [PMID: 22528854 DOI: 10.1007/s12306-012-0200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Valgus subtrochanteric osteotomies and hemiepiphyseodesis around the knees have been performed to correct severe coxa vara and genua valga in a girl patient who manifested extreme dwarfism associated with spondylometaepiphyseal dysplasia consistent with anauxetic dysplasia. To the best of our knowledge, this is the first description of the combined orthopaedic intervention in a girl with anauxetic dysplasia.
Collapse
Affiliation(s)
- Vladimir Kenis
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Parkovaya str., 64-68, Pushkin, Saint Petersburg, Russia
| | | | | |
Collapse
|
40
|
Mehawej C, Delahodde A, Legeai-Mallet L, Delague V, Kaci N, Desvignes JP, Kibar Z, Capo-Chichi JM, Chouery E, Munnich A, Cormier-Daire V, Mégarbané A. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia. PLoS Genet 2014; 10:e1004311. [PMID: 24786642 PMCID: PMC4006740 DOI: 10.1371/journal.pgen.1004311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/03/2014] [Indexed: 12/17/2022] Open
Abstract
Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS) in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16), is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process. Skeletal dysplasias (SD) refer to a complex group of rare genetic disorders affecting the growth and development of the skeleton. The identification of the molecular basis of a considerable number of SD has greatly expanded our knowledge of the ossification process. Among SD, spondylodysplastic dysplasia is a generic term describing different conditions characterized by severe vertebral abnormalities and distinct by additional specific features. Several entities within this group are well defined. However, a few cases remain unclassified, of which a novel autosomal recessive spondylometaphyseal dysplasia recently reported by Mégarbané et al. in two Lebanese families. Here, we identified MAGMAS as a candidate gene responsible for this severe SD. MAGMAS, also referred to as PAM16, is a mitochondria-associated protein, involved in pre-proteins import into mitochondria and essential for cell growth and development. We demonstrated that MAGMAS is expressed in bone and cartilage in early developmental stages underlining its specific role in skeletogenesis. We also give strong evidence of the deleterious effect of the identified mutation on the in-vivo activity of Magmas and the viability of yeast strains. Reporting deleterious MAGMAS mutation in a SD supports a key and specific role for this mitochondrial protein in ossification.
Collapse
Affiliation(s)
- Cybel Mehawej
- Unité de Génétique Médicale et Laboratoire International associé INSERM à l'Unité UMR_S 910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
- Département de Génétique, Unité INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Fondation Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Agnès Delahodde
- University of Paris-Sud, CNRS, UMR 8621, Institute of Genetics and Microbiology, Orsay, France
| | - Laurence Legeai-Mallet
- Département de Génétique, Unité INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Fondation Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Delague
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
| | - Nabil Kaci
- Département de Génétique, Unité INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Fondation Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Jean-Pierre Desvignes
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
| | - Zoha Kibar
- Center of Excellence in Neuroscience of Université de Montréal, Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montréal, Canada
| | - José-Mario Capo-Chichi
- Center of Excellence in Neuroscience of Université de Montréal, Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montréal, Canada
| | - Eliane Chouery
- Unité de Génétique Médicale et Laboratoire International associé INSERM à l'Unité UMR_S 910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - Arnold Munnich
- Département de Génétique, Unité INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Fondation Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Cormier-Daire
- Département de Génétique, Unité INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Fondation Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - André Mégarbané
- Unité de Génétique Médicale et Laboratoire International associé INSERM à l'Unité UMR_S 910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
41
|
Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett 2014; 588:1491-500. [PMID: 24657617 DOI: 10.1016/j.febslet.2014.03.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
42
|
Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:769-78. [PMID: 24252615 DOI: 10.1016/j.bbadis.2013.11.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
The skeleton affords a framework and structural support for vertebrates, while also facilitating movement, protecting vital organs, and providing a reservoir of minerals and cells for immune system and vascular homeostasis. The mechanical and biological functions of the skeleton are inextricably linked to the size and shape of individual bones, the diversity of which is dependent in part upon differential growth and proliferation. Perturbation of bone development, growth and proliferation, can result in congenital skeletal anomalies, which affect approximately 1 in 3000 live births [1]. Ribosome biogenesis is integral to all cell growth and proliferation through its roles in translating mRNAs and building proteins. Disruption of any steps in the process of ribosome biogenesis can lead to congenital disorders termed ribosomopathies. In this review, we discuss the role of ribosome biogenesis in skeletal development and in the pathogenesis of congenital skeletal anomalies. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Makrythanasis P, Antonarakis SE. Pathogenic variants in non-protein-coding sequences. Clin Genet 2013; 84:422-428. [DOI: 10.1111/cge.12272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- P Makrythanasis
- Department of Genetic Medicine and Development; University of Geneva Medical School; Geneva Switzerland
| | - SE Antonarakis
- Department of Genetic Medicine and Development; University of Geneva Medical School; Geneva Switzerland
- Service of Genetic Medicine; University Hospitals of Geneva; Geneva Switzerland
| |
Collapse
|
44
|
Cartilage hair hypoplasia and celiac disease: report of an Indian girl with novel genotype. Indian J Gastroenterol 2013; 32:409-12. [PMID: 23949991 DOI: 10.1007/s12664-013-0358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/20/2013] [Indexed: 02/04/2023]
Abstract
Cartilage hair hypoplasia is a genetic disease, characterized by generalized metaphyseal dysplasia mainly affecting the knee joints. Variable extraskeletal features like anemia, malabsorption, impaired spermatogenesis, impaired immunity, and malignancies have been reported. The work up of malabsorption and short stature led to the diagnosis of celiac disease in three previous cases of cartilage hair hypoplasia. Here, we report an Indian girl with a novel genotype, diagnosed as celiac disease with cartilage hair hypoplasia, and review the previous three cases.
Collapse
|
45
|
Rogler LE, Kosmyna B, Moskowitz D, Bebawee R, Rahimzadeh J, Kutchko K, Laederach A, Notarangelo LD, Giliani S, Bouhassira E, Frenette P, Roy-Chowdhury J, Rogler CE. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet 2013; 23:368-82. [PMID: 24009312 DOI: 10.1093/hmg/ddt427] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional processing of some long non-coding RNAs (lncRNAs) reveals that they are a source of miRNAs. We show that the 268-nt non-coding RNA component of mitochondrial RNA processing endoribonuclease, (RNase MRP), is the source of at least two short (∼20 nt) RNAs designated RMRP-S1 and RMRP-S2, which function as miRNAs. Point mutations in RNase MRP cause human cartilage-hair hypoplasia (CHH), and several disease-causing mutations map to RMRP-S1 and -S2. SHAPE chemical probing identified two alternative secondary structures altered by disease mutations. RMRP-S1 and -S2 are significantly reduced in two fibroblast cell lines and a B-cell line derived from CHH patients. Tests of gene regulatory activity of RMRP-S1 and -S2 identified over 900 genes that were significantly regulated, of which over 75% were down-regulated, and 90% contained target sites with seed complements of RMRP-S1 and -S2 predominantly in their 3' UTRs. Pathway analysis identified regulated genes that function in skeletal development, hair development and hematopoietic cell differentiation including PTCH2 and SOX4 among others, linked to major CHH phenotypes. Also, genes associated with alternative RNA splicing, cell proliferation and differentiation were highly targeted. Therefore, alterations RMRP-S1 and -S2, caused by point mutations in RMRP, are strongly implicated in the molecular mechanism of CHH.
Collapse
|
46
|
Raiser DM, Narla A, Ebert BL. The emerging importance of ribosomal dysfunction in the pathogenesis of hematologic disorders. Leuk Lymphoma 2013; 55:491-500. [DOI: 10.3109/10428194.2013.812786] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Esakova O, Perederina A, Berezin I, Krasilnikov AS. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate. Nucleic Acids Res 2013; 41:7084-91. [PMID: 23700311 PMCID: PMC3737539 DOI: 10.1093/nar/gkt432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/19/2023] Open
Abstract
Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.
Collapse
Affiliation(s)
| | | | | | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology and Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
48
|
Crahes M, Saugier-Veber P, Patrier S, Aziz M, Pirot N, Brasseur-Daudruy M, Layet V, Frébourg T, Laquerrière A. Foetal presentation of cartilage hair hypoplasia with extensive granulomatous inflammation. Eur J Med Genet 2013; 56:365-70. [DOI: 10.1016/j.ejmg.2013.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/17/2013] [Indexed: 12/01/2022]
|
49
|
Aulds J, Wierzbicki S, McNairn A, Schmitt ME. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP). J Biol Chem 2012; 287:37089-97. [PMID: 22977255 DOI: 10.1074/jbc.m112.389023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.
Collapse
Affiliation(s)
- Jason Aulds
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
50
|
Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 2012; 13:523-36. [DOI: 10.1038/nrg3253] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|