1
|
Levay E, Nasser H, Zelko M, Penman J, Johns T. Lemming and Vole Cycles: A New Intrinsic Model. Ecol Evol 2024; 14:e70440. [PMID: 39440212 PMCID: PMC11493491 DOI: 10.1002/ece3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
It is 100 years since the first paper described the multiannual cycles in Arctic rodents and lagomorphs. The mechanisms driving population cycles in animals like lemmings and voles are complex, often attributed to extrinsic factors, such as food availability and quality, pathogens, parasites and/or predators. While extrinsic factors provide insights into population cycles, none fully explain the phenomenon. We propose an underlying innate, intrinsic mechanism, based on epigenetic regulation, that drives population cycles under harsh arctic conditions. We propose that epigenetically driven phenotypic changes associated with sexual development, growth and behaviour accumulate over time in offspring, eventually producing a phase change from rising population density to eventual population collapse. Under this hypothesis, and unlike previous hypotheses, extrinsic factors modify population cycles but would not be primary drivers. The interaction between our intrinsic cycle and extrinsic factors explains established phenomena like delayed-density dependence, whereby population growth is controlled by time-dependent negative feedback. We advocate integrating a century of field research with the latest epigenetic analysis to better understand the drivers of population cycles.
Collapse
Affiliation(s)
- Elizabeth A. Levay
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | - Helen Nasser
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | | | - Jim Penman
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | - Terrance G. Johns
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Yakushov VD, Sheftel BI. Are population cycles recovering? Integr Zool 2024; 19:538-547. [PMID: 37853517 DOI: 10.1111/1749-4877.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The dynamics of populations of small mammals of Central Siberia was analyzed. The studies were carried out at the Yenisei ecological station "Mirnoye" of the A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences. The time series analysis was performed by the wavelet transform using the statistical data processing language R. In the 20th century, the dynamics of the population of the community and some of its constituent species (Sorex araneus; S. caecutiens; S. isodon; S. tundrensis; S. minutus; Craseomys rufocanus; Clethrionomys rutilus; Microtus oeconomus; M. agrestis) were characterized by a 4-year periodicity. The type of dynamics changed to noncyclic by the nineties, but by 2022, four species (S. araneus, S. isodon, C. rutilus, and M. oeconomus) and the community as a whole showed a tendency toward recovery of population cycles. The remaining species were characterized by consistently low numbers with irregular low amplitude fluctuations.
Collapse
Affiliation(s)
- Vasily D Yakushov
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Boris I Sheftel
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh–Nagumo Model of Nerve Cell Dynamics. Bull Math Biol 2022; 84:145. [DOI: 10.1007/s11538-022-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
|
4
|
Schuman IJ, Meier HS, Layden TJ, Fey SB. The relationship between thermal spatial variability and mean temperature alters movement and population dynamics. Ecosphere 2022. [DOI: 10.1002/ecs2.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | - Samuel B. Fey
- Department of Biology Reed College Portland Oregon USA
| |
Collapse
|
5
|
Roos D, Caminero-Saldaña C, Elston D, Mougeot F, García-Ariza MC, Arroyo B, Luque-Larena JJ, Revilla FJR, Lambin X. From pattern to process? Dual travelling waves, with contrasting propagation speeds, best describe a self-organised spatio-temporal pattern in population growth of a cyclic rodent. Ecol Lett 2022; 25:1986-1998. [PMID: 35908289 PMCID: PMC9543711 DOI: 10.1111/ele.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
The dynamics of cyclic populations distributed in space result from the relative strength of synchronising influences and the limited dispersal of destabilising factors (activators and inhibitors), known to cause multi‐annual population cycles. However, while each of these have been well studied in isolation, there is limited empirical evidence of how the processes of synchronisation and activation–inhibition act together, largely owing to the scarcity of datasets with sufficient spatial and temporal scale and resolution. We assessed a variety of models that could be underlying the spatio‐temporal pattern, designed to capture both theoretical and empirical understandings of travelling waves using large‐scale (>35,000 km2), multi‐year (2011–2017) field monitoring data on abundances of common vole (Microtus arvalis), a cyclic agricultural rodent pest. We found most support for a pattern formed from the summation of two radial travelling waves with contrasting speeds that together describe population growth rates across the region.
Collapse
Affiliation(s)
- Deon Roos
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Área de Plagas, Instituto Tecnológico Agrario de Castilla-y-León (ITACyL), Valladolid, Spain
| | | | - David Elston
- Biomathematics & Statistics Scotland, Aberdeen, UK
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Beatriz Arroyo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Palencia, Spain
| | | | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Sheftel BI, Yakushov VD. Impacts of Climate Warming on Terrestrial Species in the Middle Yenisei Taiga. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kubelka V, Sandercock BK, Székely T, Freckleton RP. Animal migration to northern latitudes: environmental changes and increasing threats. Trends Ecol Evol 2021; 37:30-41. [PMID: 34579979 DOI: 10.1016/j.tree.2021.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
Every year, many wild animals undertake long-distance migration to breed in the north, taking advantage of seasonally high pulses in food supply, fewer parasites, and lower predation pressure in comparison with equatorial latitudes. Growing evidence suggests that climate-change-induced phenological mismatches have reduced food availability. Furthermore, novel pathogens and parasites are spreading northwards, and nest or offspring predation has increased at many Arctic and northern temperate locations. Altered trophic interactions have decreased the reproductive success and survival of migratory animals. Reduced advantages for long-distance migration have potentially serious consequences for community structure and ecosystem function. Changes in the benefits of migration need to be integrated into projections of population and ecosystem dynamics and targeted by innovative conservation actions.
Collapse
Affiliation(s)
- Vojtěch Kubelka
- School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK; Department of Zoology and Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic; Department of Evolutionary Zoology and Human Biology, Faculty of Science, University of Debrecen, Egyetem tér 1, Debrecen, Hungary; Department of Biodiversity Research, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, Brno, 603 00, Czech Republic.
| | - Brett K Sandercock
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Høgskoleringen 9, Trondheim, 7485, Norway
| | - Tamás Székely
- Department of Evolutionary Zoology and Human Biology, Faculty of Science, University of Debrecen, Egyetem tér 1, Debrecen, Hungary; Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Robert P Freckleton
- School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
8
|
Selås V, Framstad E, Rolstad J, Sonerud GA, Spidsø TK, Wegge P. Bilberry seed production explains spatiotemporal synchronicity in bank vole population fluctuations in Norway. Ecol Res 2021. [DOI: 10.1111/1440-1703.12204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Vidar Selås
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | - Erik Framstad
- The Norwegian Institute for Nature Research Oslo Norway
| | - Jørund Rolstad
- Department of Forest Genetics and Biodiversity Norwegian Institute of Bioeconomy Research Ås Norway
| | - Geir A. Sonerud
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | | | - Per Wegge
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| |
Collapse
|
9
|
Fluctuating Asymmetry and Population Dynamics of the Common Shrew, Sorex araneus, in Central Siberia under Climate Change Conditions. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We examine possible temporal variation in a measure of developmental stability, providing insight into the degree of fluctuating asymmetry of several characters of skull morphology, of the common shrew, Sorex araneus L., 1758, in Central Siberia. The level of fluctuating asymmetry during the study period in the beginning of this century (2002–2013) is not correlated with population abundance, while at the end of the last century it was correlated with population abundance, suggesting that high density was the important negative factor affecting breeding females. The absence of an adverse effect of high abundance on developmental stability in the current situation can be related to both an impact of oscillations in environmental conditions and an increase in habitat carrying capacity due to the climate change. Positive correlation of population abundance with the number of adults born last summer and young specimens born this summer indicates the influence of winter and summer conditions on population size. If in the last century developmental stability was correlated with breeding success, indicating that both parameters were affected by the physiological condition of breeding females, in this century these two parameters vary independently, suggesting that breeding success may be affected by other population and habitat factors. Thus, the situation in the population under study is more similar to the noncyclic dynamics than to the four-year cycles, which were revealed for the population in the last century. The results indicate an importance of monitoring possible changes in developmental stability measure, as another population parameter, under climate change.
Collapse
|
10
|
Sharikov AV, Volkov SV, Sviridova TV, Buslakov VV. Cumulative Effect of Trophic and Weather–Climatic Factors on the Population Dynamics of the Vole-Eating Birds of Prey in Their Breeding Habitats. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019090139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kubelka V, Šálek M, Tomkovich P, Végvári Z, Freckleton RP, Székely T. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 2019; 362:680-683. [PMID: 30409881 DOI: 10.1126/science.aat8695] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Ongoing climate change is thought to disrupt trophic relationships, with consequences for complex interspecific interactions, yet the effects of climate change on species interactions are poorly understood, and such effects have not been documented at a global scale. Using a single database of 38,191 nests from 237 populations, we found that shorebirds have experienced a worldwide increase in nest predation over the past 70 years. Historically, there existed a latitudinal gradient in nest predation, with the highest rates in the tropics; however, this pattern has been recently reversed in the Northern Hemisphere, most notably in the Arctic. This increased nest predation is consistent with climate-induced shifts in predator-prey relationships.
Collapse
Affiliation(s)
- Vojtěch Kubelka
- Department of Ecology, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic. .,Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Miroslav Šálek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague, Czech Republic
| | - Pavel Tomkovich
- Zoological Museum, Moscow MV Lomonosov State University, Bolshaya Nikitskaya Str 6, Moscow 125009, Russia
| | - Zsolt Végvári
- Department of Conservation Zoology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.,Hortobágy National Park Directorate, Sumen u. 2, H-4024 Debrecen, Hungary
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK. .,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary.,State Key Laboratory of Biocontrol and College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China.,Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Abstract
Elevation is one of the most important natural gradients that is strongly shaping communities across relatively small areas. However, few studies have followed the temporal dynamics of elevational patterns, even in organisms for which population and community fluctuations have been extensively studied, such as rodents. Here we report the multiannual dynamics of small-mammal communities along an elevational gradient in the Southern Carpathians. During a 5-year survey, we conducted live-trapping in forested and shrubby habitats, at elevations between 820 and 2040 m. We used partial constrained multivariate analysis and mixed-effects models to test the effect of elevation, year, and their interaction. Community metrics differed significantly between even and odd years and temporal changes had stronger effect on small-mammal communities than elevation. The 2-year pattern of dynamics was especially marked in the yellow-necked field mouse (Apodemus flavicollis (Melchior, 1834)). Species abundance was predicted not only by year and elevation, but also by their interaction. The dominant rodent species, the bank vole (Myodes glareolus (Schreber, 1780)) and A. flavicollis, showed opposite annual patterns in relation to elevation, possibly as a strategy to avoid competition. Failure to consider the fluctuations in montane small-mammal communities may lead to wrong assessment of species’ state and distribution.
Collapse
Affiliation(s)
- A.M. Benedek
- Lucian Blaga University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, 5-7 Raţiu Street, 550012 Sibiu, Romania
- Lucian Blaga University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, 5-7 Raţiu Street, 550012 Sibiu, Romania
| | - I. Sîrbu
- Lucian Blaga University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, 5-7 Raţiu Street, 550012 Sibiu, Romania
- Lucian Blaga University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, 5-7 Raţiu Street, 550012 Sibiu, Romania
| |
Collapse
|
13
|
The Common Buzzard Buteo buteo Population in a Changing Environment, Central Poland as a Case Study. DIVERSITY 2019. [DOI: 10.3390/d11030035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Common buzzard is the most abundant bird of prey in Europe, and its population has undergone serious changes. In this study, we focused on a population in Central Poland (study area 105 km2, forests around 24 km2, seven forest complexes) to analyze how certain environmental factors influenced population abundance, breeding parameters, and diet composition. The study was undertaken from 2011 to 2018, and the results were compared with data from two study periods (1982–1992; 2001–2003). Current population density was 3.5 pairs/10 km2 of total area and 14.3 pairs/10 km2 of forested area, it was negatively correlated to the abundance of northern goshawk, and it grew in the last few decades. Mammals were dominant prey (72.6% prey items, 38.6% of biomass), but their share in diet changed following rodent availability. A decrease in the share of voles was recorded, reflecting drop in their abundance and dampening of abundance cycles. Breeding parameters were similar to those in the past, and the number of offspring depended on small rodent availability. Buzzards adapted to changes in the stand structure, i.e., when share of Scots pine decreased, they chose it as their nesting tree less frequently. All this showed that buzzard is a very adaptable species.
Collapse
|
14
|
Johnsen K, Devineau O, Andreassen HP. The Effects of Winter Climate and Intrinsic Factors on Survival of Cyclic Vole Populations in Southeastern Norway. ANN ZOOL FENN 2018. [DOI: 10.5735/086.055.0604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kaja Johnsen
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, NO-2480 Koppang, Norway
| | - Olivier Devineau
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, NO-2480 Koppang, Norway
| | - Harry P. Andreassen
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, NO-2480 Koppang, Norway
| |
Collapse
|
15
|
Schmidt JH, Rexstad EA, Roland CA, McIntyre CL, MacCluskie MC, Flamme MJ. Weather-driven change in primary productivity explains variation in the amplitude of two herbivore population cycles in a boreal system. Oecologia 2017; 186:435-446. [PMID: 29170821 DOI: 10.1007/s00442-017-4004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Vertebrate populations throughout the circumpolar north often exhibit cyclic dynamics, and predation is generally considered to be a primary driver of these cycles in a variety of herbivore species. However, weather and climate play a role in entraining cycles over broad landscapes and may alter cyclic dynamics, although the mechanism by which these processes operate is uncertain. Experimental and observational work has suggested that weather influences primary productivity over multi-year time periods, suggesting a pathway through which weather and climate may influence cyclic herbivore dynamics. Using long-term monitoring data, we investigated the relationships among multi-year weather conditions, measures of primary productivity, and the abundance of two cyclic herbivore species: snowshoe hare and northern red-backed vole. We found that precipitation (rain and snow) and growing season temperatures were strongly associated with variation in primary productivity over multi-year time horizons. In turn, fourfold variation in the amplitude of both the hare and vole cycles observed in our study area corresponded to long-term changes in primary productivity. The congruence of our results for these two species suggests a general mechanism by which weather and climate might influence cyclic herbivore population dynamics. Our findings also suggested that the association between climate warming and the disappearance of cycles might be initiated by changes in primary productivity. This work provides an explanation for observed influences of weather and climate on primary productivity and population cycles and will help our collective understanding of how future climate warming may influence these ecological phenomena in the future.
Collapse
Affiliation(s)
- Joshua H Schmidt
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA.
| | - Eric A Rexstad
- Research Unit for Wildlife Population Assessment, Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St Andrews, KY16 9LZ, UK
| | - Carl A Roland
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA.,US National Park Service, Denali National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Carol L McIntyre
- US National Park Service, Denali National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Margaret C MacCluskie
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Melanie J Flamme
- US National Park Service, Yukon-Charley Rivers Preserve and Gates of the Arctic National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| |
Collapse
|
16
|
Row JR, Fedy BC. Spatial and temporal variation in the range-wide cyclic dynamics of greater sage-grouse. Oecologia 2017; 185:687-698. [PMID: 29052009 DOI: 10.1007/s00442-017-3970-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/27/2017] [Indexed: 01/17/2023]
Abstract
Periodic changes in abundance, or population cycles, are common in a variety of species and is one of the most widely studied ecological phenomena. The strength of, and synchrony between population cycles can vary across time and space and understanding these patterns can provide insight into the mechanisms generating population cycles and their variability within and among species. Here, we used wavelet and spectral analysis on a range-wide dataset of abundance for the greater sage-grouse (Centrocercus urophasianus) to test for regional differences in temporal cyclicity. Overall, we found that most populations (11 of 15) were cyclic at some point in a 50-year time series (1965-2015), but the patterns varied over both time and space. Several peripheral populations demonstrated amplitude dampening or loss of cyclicity following population lows in the mid-1990s. Populations through the core of the range in the Great and Wyoming Basins had more consistent cyclic dynamics, but period length appeared to shorten from 10-12 to 6-8 years. In one time period, where cyclicity was greatest overall, increased pairwise population synchrony was correlated with cycle intensity. Our work represents a comprehensive range-wide assessment of cyclic dynamics and revealed substantial variation in temporal and spatial trends of cyclic dynamics across populations.
Collapse
Affiliation(s)
- Jeffrey R Row
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.
| | - Bradley C Fedy
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
17
|
Mathias MDL, Hart EB, Ramalhinho MDG, Jaarola M. Microtus agrestis (Rodentia: Cricetidae). ACTA ACUST UNITED AC 2017. [DOI: 10.1093/mspecies/sex003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Pomara LY, Zuckerberg B. Climate variability drives population cycling and synchrony. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lars Y. Pomara
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; Madison WI 53706 USA
| |
Collapse
|
19
|
Solonen T, Karhunen J, Kekkonen JA, Kolunen H, Pietiäinen H. Tawny owl prey remains indicate differences in the dynamics of coastal and inland vole populations in southern Finland. POPUL ECOL 2016. [DOI: 10.1007/s10144-016-0556-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Hoy SR, Millon A, Petty SJ, Whitfield DP, Lambin X. Food availability and predation risk, rather than intrinsic attributes, are the main factors shaping the reproductive decisions of a long-lived predator. J Anim Ecol 2016; 85:892-902. [PMID: 26990178 DOI: 10.1111/1365-2656.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Abstract
Deciphering the causes of variation in reproductive success is a fundamental issue in ecology, as the number of offspring produced is an important driver of individual fitness and population dynamics. Little is known, however, about how different factors interact to drive variation in reproduction, such as whether an individual's response to extrinsic conditions (e.g. food availability or predation) varies according to its intrinsic attributes (e.g. age, previous allocation of resources towards reproduction). We used 29 years of reproductive data from marked female tawny owls and natural variation in food availability (field vole) and predator abundance (northern goshawk) to quantify the extent to which extrinsic and intrinsic factors interact to influence owl reproductive traits (breeding propensity, clutch size and nest abandonment). Extrinsic and intrinsic factors appeared to interact to affect breeding propensity (which accounted for 83% of the variation in owl reproductive success). Breeding propensity increased with vole density, although increasing goshawk abundance reduced the strength of this relationship. Owls became slightly more likely to breed as they aged, although this was only apparent for individuals who had fledged chicks the year before. Owls laid larger clutches when food was more abundant. When owls were breeding in territories less exposed to goshawk predation, 99·5% of all breeding attempts reached the fledging stage. In contrast, the probability of breeding attempts reaching the fledging stage in territories more exposed to goshawk predation depended on the amount of resources an owl had already allocated towards reproduction (averaging 87·7% for owls with clutches of 1-2 eggs compared to 97·5% for owls with clutches of 4-6 eggs). Overall, our results suggested that changes in extrinsic conditions (predominantly food availability, but also predator abundance) had the greatest influence on owl reproduction. In response to deteriorating extrinsic conditions (fewer voles and more goshawks), owls appeared to breed more frequently, but allocated fewer resources per breeding attempt. However, intrinsic attributes also appeared to have a relatively small influence on how an individual responded to variation in extrinsic conditions, which indicates that owl reproductive decisions were shaped by a complex series of extrinsic and intrinsic trade-offs.
Collapse
Affiliation(s)
- Sarah R Hoy
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Alexandre Millon
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix-Marseille Université-CNRS-IRD-Avignon Université, Technopôle Arbois-Méditerranée, F-13545, Aix-en-Provence, France
| | - Steve J Petty
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | | | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
21
|
Long-term pattern of population dynamics in the field vole from central Europe: cyclic pattern with amplitude dampening. POPUL ECOL 2015. [DOI: 10.1007/s10144-015-0504-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
TURNER AK, BELDOMENICO PM, BOWN K, BURTHE SJ, JACKSON JA, LAMBIN X, BEGON M. Host-parasite biology in the real world: the field voles of Kielder. Parasitology 2014; 141:997-1017. [PMID: 24612619 PMCID: PMC4047648 DOI: 10.1017/s0031182014000171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
Research on the interactions between the field voles (Microtus agrestis) of Kielder Forest and their natural parasites dates back to the 1930s. These early studies were primarily concerned with understanding how parasites shape the characteristic cyclic population dynamics of their hosts. However, since the early 2000s, research on the Kielder field voles has expanded considerably and the system has now been utilized for the study of host-parasite biology across many levels, including genetics, evolutionary ecology, immunology and epidemiology. The Kielder field voles therefore represent one of the most intensely and broadly studied natural host-parasite systems, bridging theoretical and empirical approaches to better understand the biology of infectious disease in the real world. This article synthesizes the body of work published on this system and summarizes some important insights and general messages provided by the integrated and multidisciplinary study of host-parasite interactions in the natural environment.
Collapse
Affiliation(s)
- A. K. TURNER
- Institute of Integrative Biology, University of
Liverpool, UK
| | - P. M. BELDOMENICO
- Institute of Integrative Biology, University of
Liverpool, UK
- National Centre for Zoonosis Research, University
of Liverpool, UK
- Laboratorio de Ecología de Enfermedades,
Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del
Litoral – Consejo de Investigaciones Científicas y Técnicas (UNL – CONICET),
Esperanza, Argentina
| | - K. BOWN
- Institute of Integrative Biology, University of
Liverpool, UK
- School of Environment & Life Sciences,
University of Salford, UK
| | - S. J. BURTHE
- Institute of Integrative Biology, University of
Liverpool, UK
- National Centre for Zoonosis Research, University
of Liverpool, UK
- Centre for Ecology & Hydrology, Natural
Environmental Research Council, Edinburgh,
UK
| | - J. A. JACKSON
- Institute of Integrative Biology, University of
Liverpool, UK
- Institute of Biological, Environmental and Rural
Sciences, University of Aberystwyth, UK
| | - X. LAMBIN
- School of Biological Sciences, University of
Aberdeen, UK
| | - M. BEGON
- Institute of Integrative Biology, University of
Liverpool, UK
| |
Collapse
|
23
|
Millon A, Petty SJ, Little B, Gimenez O, Cornulier T, Lambin X. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls. GLOBAL CHANGE BIOLOGY 2014; 20:1770-1781. [PMID: 24634279 PMCID: PMC4320692 DOI: 10.1111/gcb.12546] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/17/2014] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe.
Collapse
Affiliation(s)
- Alexandre Millon
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Avignon Université, Technopôle Arbois-Méditerranée Bât. Villemin - BP 80, Aix-en-Provence Cedex 04, F-13545, France; School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | | | | | | | | | | |
Collapse
|
24
|
Zakharov VM, Trofimov IE. Homeostatic mechanisms of biological systems: Development homeostasis. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414030096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Berthier K, Piry S, Cosson JF, Giraudoux P, Foltête JC, Defaut R, Truchetet D, Lambin X. Dispersal, landscape and travelling waves in cyclic vole populations. Ecol Lett 2013; 17:53-64. [DOI: 10.1111/ele.12207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/26/2013] [Accepted: 10/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Karine Berthier
- INRA; UMR CBGP 1062; Campus international de Baillarguet; CS 30016 F-34988 Montferrier-sur-Lez Cedex France
- INRA; UR 407, Pathologie Végétale; Domaine Saint-Maurice, PB 94 84143 Montfavet Cedex France
| | - Sylvain Piry
- INRA; UMR CBGP 1062; Campus international de Baillarguet; CS 30016 F-34988 Montferrier-sur-Lez Cedex France
| | - Jean-François Cosson
- INRA; UMR CBGP 1062; Campus international de Baillarguet; CS 30016 F-34988 Montferrier-sur-Lez Cedex France
| | - Patrick Giraudoux
- Chrono-environment Department; CNRS UMR6249; INRA; Université de Franche-Comté; Place Leclerc 25030 Besançon Cedex France
- Institut Universitaire de France; Paris France
| | | | - Régis Defaut
- FREDON; Franche-Comté; BP 989 25022 Besançon Cedex France
| | - Denis Truchetet
- DRAF-SRPV Franche-Comté; 191, rue Belfort 25043 Besançon Cedex France
| | - Xavier Lambin
- School of Biological Sciences; University of Aberdeen; Zoology building, Tillydrone Avenue Aberdeen AB24 2TZ UK
| |
Collapse
|
26
|
Martínez-Padilla J, Redpath SM, Zeineddine M, Mougeot F. Insights into population ecology from long-term studies of red grouseLagopus lagopus scoticus. J Anim Ecol 2013; 83:85-98. [DOI: 10.1111/1365-2656.12098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Jesus Martínez-Padilla
- Museo Nacional de Ciencias Naturales; Department of Evolutionary Biology; José Guitérrez Abascal 2 28006 Madrid Spain
| | - Steve M. Redpath
- ACES; Department of Biological Sciences; University of Aberdeen; Zoology Building Tillydrone Av. Aberdeen AB24 2TZ UK
| | - Mohammed Zeineddine
- ACES; Department of Biological Sciences; University of Aberdeen; Zoology Building Tillydrone Av. Aberdeen AB24 2TZ UK
| | - François Mougeot
- EEZA-CSIC; La Cañada de San Urbano; 04120 Almeria Spain
- IREC (CSIC-UCLM-JCCM); Ronda de Toledo s/n 13005 Ciuada Real Spain
| |
Collapse
|
27
|
Cornulier T, Yoccoz NG, Bretagnolle V, Brommer JE, Butet A, Ecke F, Elston DA, Framstad E, Henttonen H, Hörnfeldt B, Huitu O, Imholt C, Ims RA, Jacob J, Jędrzejewska B, Millon A, Petty SJ, Pietiäinen H, Tkadlec E, Zub K, Lambin X. Europe-wide dampening of population cycles in keystone herbivores. Science 2013; 340:63-6. [PMID: 23559246 DOI: 10.1126/science.1228992] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suggestions of collapse in small herbivore cycles since the 1980s have raised concerns about the loss of essential ecosystem functions. Whether such phenomena are general and result from extrinsic environmental changes or from intrinsic process stochasticity is currently unknown. Using a large compilation of time series of vole abundances, we demonstrate consistent cycle amplitude dampening associated with a reduction in winter population growth, although regulatory processes responsible for cyclicity have not been lost. The underlying syndrome of change throughout Europe and grass-eating vole species suggests a common climatic driver. Increasing intervals of low-amplitude small herbivore population fluctuations are expected in the future, and these may have cascading impacts on trophic webs across ecosystems.
Collapse
Affiliation(s)
- Thomas Cornulier
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Korpela K, Delgado M, Henttonen H, Korpimäki E, Koskela E, Ovaskainen O, Pietiäinen H, Sundell J, Yoccoz NG, Huitu O. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. GLOBAL CHANGE BIOLOGY 2013; 19:697-710. [PMID: 23504828 DOI: 10.1111/gcb.12099] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/10/2012] [Indexed: 05/14/2023]
Abstract
Small rodents are key species in many ecosystems. In boreal and subarctic environments, their importance is heightened by pronounced multiannual population cycles. Alarmingly, the previously regular rodent cycles appear to be collapsing simultaneously in many areas. Climate change, particularly decreasing snow quality or quantity in winter, is hypothesized as a causal factor, but the evidence is contradictory. Reliable analysis of population dynamics and the influence of climate thereon necessitate spatially and temporally extensive data. We combined data on vole abundances and climate, collected at 33 locations throughout Finland from 1970 to 2011, to test the hypothesis that warming winters are causing a disappearance of multiannual vole cycles. We predicted that vole population dynamics exhibit geographic and temporal variation associated with variation in climate; reduced cyclicity should be observed when and where winter weather has become milder. We found that the temporal patterns in cyclicity varied between climatically different regions: a transient reduction in cycle amplitude in the coldest region, low-amplitude cycles or irregular dynamics in the climatically intermediate regions, and strengthening cyclicity in the warmest region. Our results did not support the hypothesis that mild winters are uniformly leading to irregular dynamics in boreal vole populations. Long and cold winters were neither a prerequisite for high-amplitude multiannual cycles, nor were mild winters with reduced snow cover associated with reduced winter growth rates. Population dynamics correlated more strongly with growing season than with winter conditions. Cyclicity was weakened by increasing growing season temperatures in the cold, but strengthened in the warm regions. High-amplitude multiannual vole cycles emerge in two climatic regimes: a winter-driven cycle in cold, and a summer-driven cycle in warm climates. Finally, we show that geographic climatic gradients alone may not reliably predict biological responses to climate change.
Collapse
Affiliation(s)
- Katri Korpela
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FI-40014, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nolet BA, Bauer S, Feige N, Kokorev YI, Popov IY, Ebbinge BS. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J Anim Ecol 2013; 82:804-13. [PMID: 23419215 PMCID: PMC3744762 DOI: 10.1111/1365-2656.12060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/16/2013] [Indexed: 11/28/2022]
Abstract
1. The huge changes in population sizes of Arctic-nesting geese offer a great opportunity to study population limitation in migratory animals. In geese, population limitation seems to have shifted from wintering to summering grounds. There, in the Arctic, climate is rapidly changing, and this may impact reproductive performance, and perhaps population size of geese, both directly (e.g. by changes in snow melt) or indirectly (e.g. by changes in trophic interactions). 2. Dark-bellied brent geese (Branta bernicla bernicla L.) increased 20-fold since the 1950s. Its reproduction fluctuates strongly in concert with the 3-year lemming cycle. An earlier analysis, covering the growth period until 1988, did not find evidence for density dependence, but thereafter the population levelled off and even decreased. The question is whether this is caused by changes in lemming cycles, population density or other factors like carry-over effects. 3. Breeding success was derived from proportions of juveniles. We used an information-theoretical approach to investigate which environmental factors best explained the variation in breeding success over nearly 50 years (1960–2008). We subsequently combined GLM predictions of breeding success with published survival estimates to project the population trajectory since 1991 (year of maximum population size). In this way, we separated the effects of lemming abundance and population density on population development. 4. Breeding success was mainly dependent on lemming abundance, the onset of spring at the breeding grounds, and the population size of brent goose. No evidence was found for carry-over effects (i.e. effects of conditions at main spring staging site). Negative density dependence was operating at a population size above c. 200 000 individuals, but the levelling off of the population could be explained by faltering lemming cycles alone. 5. Lemmings have long been known to affect population productivity of Arctic-nesting migratory birds and, more recently, possibly population dynamics of resident bird species, but this is the first evidence for effects of lemming abundance on population size of a migratory bird species. Why lemming cycles are faltering in the last two decades is unclear, but this may be associated with changes in winter climate at Taimyr Peninsula (Siberia).
Collapse
Affiliation(s)
- Bart A Nolet
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, Wageningen, NL-6700, AB, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Travis JMJ, Palmer SCF, Coyne S, Millon A, Lambin X. Evolution of predator dispersal in relation to spatio-temporal prey dynamics: how not to get stuck in the wrong place! PLoS One 2013; 8:e54453. [PMID: 23408940 PMCID: PMC3569443 DOI: 10.1371/journal.pone.0054453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
The eco-evolutionary dynamics of dispersal are recognised as key in determining the responses of populations to environmental changes. Here, by developing a novel modelling approach, we show that predators are likely to have evolved to emigrate more often and become more selective over their destination patch when their prey species exhibit spatio-temporally complex dynamics. We additionally demonstrate that the cost of dispersal can vary substantially across space and time. Perhaps as a consequence of current environmental change, many key prey species are currently exhibiting major shifts in their spatio-temporal dynamics. By exploring similar shifts in silico, we predict that predator populations will be most vulnerable when prey dynamics shift from stable to complex. The more sophisticated dispersal rules, and greater variance therein, that evolve under complex dynamics will enable persistence across a broader range of prey dynamics than the rules which evolve under relatively stable prey conditions.
Collapse
Affiliation(s)
- Justin M J Travis
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
31
|
Jeltsch F, Bonte D, Pe'er G, Reineking B, Leimgruber P, Balkenhol N, Schröder B, Buchmann CM, Mueller T, Blaum N, Zurell D, Böhning-Gaese K, Wiegand T, Eccard JA, Hofer H, Reeg J, Eggers U, Bauer S. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics. MOVEMENT ECOLOGY 2013; 1:6. [PMID: 25709820 PMCID: PMC4337763 DOI: 10.1186/2051-3933-1-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/03/2013] [Indexed: 05/03/2023]
Abstract
Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.
Collapse
Affiliation(s)
- Florian Jeltsch
- Department of Plant Ecology and Nature Conservation, Intitute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany ; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195 Germany
| | - Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent, 9000 Belgium
| | - Guy Pe'er
- Department of Conservation Biology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr 15, Leipzig, 04318 Germany
| | - Björn Reineking
- Biogeographical Modelling, BayCEER, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447 Germany ; Irstea, UR EMGR Écosystèmes Montagnards, 2 rue de la Papeterie-BP 76, St-Martin-d'Hères, F-38402 France
| | - Peter Leimgruber
- National Zoological Park, Smithsonian, Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630 USA
| | - Niko Balkenhol
- Department of Forest Zoology and Forest Conservation, University of Göttingen, Buesgenweg 3, Göttingen, 37077 Germany
| | - Boris Schröder
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195 Germany ; Landscape Ecology, Technische Universität München, Emil-Ramann-Str. 6, 85354 Freising-Weihenstephan, Germany ; Environmental Systems Analysis, Institute of Geoecology, Technical University of Braunschweig, Langer Kamp 19c, Braunschweig, 38106 Germany
| | - Carsten M Buchmann
- Department of Landscape Ecology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318 Germany
| | - Thomas Mueller
- National Zoological Park, Smithsonian, Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630 USA ; Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Niels Blaum
- Department of Plant Ecology and Nature Conservation, Intitute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Damaris Zurell
- Department of Plant Ecology and Nature Conservation, Intitute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Katrin Böhning-Gaese
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt (Main), 60325 Germany ; Department of Biological Sciences, Goethe Universität, Max-von-Laue-Straße 9, Frankfurt (Main), 60438 Germany
| | - Thorsten Wiegand
- Department of Ecological Modelling, Helmholz Centre for Environmental Research (UFZ), Permoserstr. 15, Leipzig, 04318 Germany
| | - Jana A Eccard
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195 Germany ; Department of Animal Ecology, Institute of Biochemistry and Biology, Universität Potsdam, Maulbeerallee 1, Potsdam, 14469 Germany
| | - Heribert Hofer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Alfred-Kowalke-Str. 17, Berlin, 10315 Germany
| | - Jette Reeg
- Department of Plant Ecology and Nature Conservation, Intitute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Ute Eggers
- Department of Plant Ecology and Nature Conservation, Intitute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Silke Bauer
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, AB 6700 The Netherlands ; Swiss Ornithological Institute, Seerose 1, Sempach, 6204 Switzerland
| |
Collapse
|
32
|
Topping CJ, Dalkvist T, Grimm V. Post-hoc pattern-oriented testing and tuning of an existing large model: lessons from the field vole. PLoS One 2012; 7:e45872. [PMID: 23049882 PMCID: PMC3457952 DOI: 10.1371/journal.pone.0045872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 08/27/2012] [Indexed: 11/24/2022] Open
Abstract
Pattern-oriented modeling (POM) is a general strategy for modeling complex systems. In POM, multiple patterns observed at different scales and hierarchical levels are used to optimize model structure, to test and select sub-models of key processes, and for calibration. So far, POM has been used for developing new models and for models of low to moderate complexity. It remains unclear, though, whether the basic idea of POM to utilize multiple patterns, could also be used to test and possibly develop existing and established models of high complexity. Here, we use POM to test, calibrate, and further develop an existing agent-based model of the field vole (Microtus agrestis), which was developed and tested within the ALMaSS framework. This framework is complex because it includes a high-resolution representation of the landscape and its dynamics, of the individual’s behavior, and of the interaction between landscape and individual behavior. Results of fitting to the range of patterns chosen were generally very good, but the procedure required to achieve this was long and complicated. To obtain good correspondence between model and the real world it was often necessary to model the real world environment closely. We therefore conclude that post-hoc POM is a useful and viable way to test a highly complex simulation model, but also warn against the dangers of over-fitting to real world patterns that lack details in their explanatory driving factors. To overcome some of these obstacles we suggest the adoption of open-science and open-source approaches to ecological simulation modeling.
Collapse
|
33
|
The nature of lemming cycles on Wrangel: an island without small mustelids. Oecologia 2012; 170:363-71. [DOI: 10.1007/s00442-012-2319-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
34
|
Riotte-Lambert L, Rémy A, Andreassen HP. The Disturbance of Resident Populations of Field Voles (Microtus agrestis) by Immigrants. ANN ZOOL FENN 2012. [DOI: 10.5735/086.049.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Zub K, Jędrzejewska B, Jędrzejewski W, Bartoń KA. Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. ACTA ACUST UNITED AC 2012; 57:205-216. [PMID: 22707756 PMCID: PMC3374125 DOI: 10.1007/s13364-012-0072-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew.
Collapse
Affiliation(s)
- K. Zub
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | - B. Jędrzejewska
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | - W. Jędrzejewski
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | - K. A. Bartoń
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| |
Collapse
|
36
|
Estay SA, Lima M, Labra FA, Harrington R. Increased outbreak frequency associated with changes in the dynamic behaviour of populations of two aphid species. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19525.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
|
38
|
Ergon T, Ergon R, Begon M, Telfer S, Lambin X. Delayed density-dependent onset of spring reproduction in a fluctuating population of field voles. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18983.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia 2010; 165:349-55. [PMID: 20665047 DOI: 10.1007/s00442-010-1730-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
The ongoing climate change has improved our understanding of how climate affects the reproduction of animals. However, the interaction between food availability and climate on breeding has rarely been examined. While it has been shown that breeding of boreal birds of prey is first and foremost determined by prey abundance, little information exists on how climatic conditions influence this relationship. We studied the joint effects of main prey abundance and ambient weather on timing of breeding and reproductive success of two smaller (pygmy owl Glaucidium passerinum and Tengmalm's owl Aegolius funereus) and two larger (tawny owl Strix aluco and Ural owl Strix uralensis) avian predator species using long-term nation-wide datasets during 1973-2004. We found no temporal trend either in vole abundance or in hatching date and brood size of any studied owl species. In the larger species, increasing late winter or early spring temperature advanced breeding at least as much as did high autumn abundance of prey (voles). Furthermore, increasing snow depth delayed breeding of the largest species (Ural owl), presumably by reducing the availability of voles. Brood size was strongly determined by spring vole abundance in all four owl species. These results show that climate directly affects the breeding performance of vole-eating boreal avian predators much more than previously thought. According to earlier studies, small-sized species should advance their breeding more than larger species in response to increasing temperature. However, we found an opposite pattern, with larger species being more sensitive to temperature. We argue that this pattern is caused by a difference in the breeding tactics of larger mostly capital breeding and smaller mostly income breeding owl species.
Collapse
|
40
|
Solonen T, Ahola P. Intrinsic and extrinsic factors in the dynamics of local small-mammal populations. CAN J ZOOL 2010. [DOI: 10.1139/z09-138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied dynamics of local small-mammal assemblages consisting of shrews, voles, and mice by small-scale snap trapping in each spring and autumn from 1981 to 2006 in southern Finland. Our aim was to search for relative roles of possible regulatory associations within and between species, as well as to find reflections of the effects of large-scale climatic phenomena on local populations. Preceding intraspecific densities had a dominating role in seasonal changes in small-mammal numbers. Their relationships with weather-related factors indicated by the indices of the North Atlantic Oscillation (NAO) were most pronounced during winter. Relationships with the NAO indices, increasing values of which indicate milder weather in the north, were negative in voles but positive in shrews and mice. Spring densities were governed by the largely compensatory effects of the growth rate of the preceding summer and subsequent population decline during winter in the field vole ( Microtus agrestis (L., 1761)) and mice, while the effects of winter decline dominated in shrews. The bank vole ( Myodes glareolus (Schreber, 1780) = Clethrionomys glareolus (Schreber, 1780)) showed decreasing winter decline, which had a considerable positive effect on population densities.
Collapse
Affiliation(s)
- T. Solonen
- Luontotutkimus Solonen Oy, Neitsytsaarentie 7b B 147, Helsinki FI-00960, Finland
- Kolsintie 12 B, Helsinki FI-00920, Finland
| | - P. Ahola
- Luontotutkimus Solonen Oy, Neitsytsaarentie 7b B 147, Helsinki FI-00960, Finland
- Kolsintie 12 B, Helsinki FI-00920, Finland
| |
Collapse
|
41
|
Millon A, Petty SJ, Lambin X. Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls. J Anim Ecol 2009; 79:426-35. [PMID: 19912425 DOI: 10.1111/j.1365-2656.2009.01637.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. According to life-history theory, environmental variability and costs of reproduction account for the prevalence of delayed reproduction in many taxa. Empirical estimates of the fitness consequences of different ages at first breeding in a variable environment are few however such that the contributions of environmental and individual variability remains poorly known. 2. Our objectives were to elucidate processes that underpin variation in delayed reproduction and to assess lifetime consequences of the age of first breeding in a site-faithful predator, the tawny owl Strix aluco L. subjected to fluctuating selection linked to cyclical variation in vole density (typically 3-year cycles with low, increasing and decreasing vole densities in successive years). 3. A multistate capture-recapture model revealed that owl cohorts had strikingly different juvenile survival prospects, with estimates ranging from 0.08 to 0.33 respectively for birds born in Decrease and Increase phases of the vole cycle. This resulted in a highly skewed population structure with >75% of local recruits being reared during Increase years. In contrast, adult survival remained constant throughout a vole cycle. The probability of commencing reproduction was lower at age 1 than at older ages, and especially so for females. From age 2 onwards, pre-breeders had high probabilities of entering the breeding population. 4. Variation in lifetime reproductive success was driven by the phase of the vole cycle in which female owls started their breeding career (26-47% of variance explained, whether based on the number of local recruits or fledglings), more than by age at first breeding or by conditions experienced at birth. Females who postponed reproduction to breed for the first time at age 3 during an Increase phase, produced more recruits, even when accounting for birds that may have died before reproduction. No such effects were detected for males. 5. Sex-specific costs of early reproduction may have accounted for females being more prone to delay reproduction. Contrary to expectations from a best-of-a-bad job strategy, early-hatched, hence potentially higher-quality females were more likely to breed at age 1, but then experienced rapidly declining food resources and so seemed caught in a life-history trap set by the multiannual vole cycle.
Collapse
Affiliation(s)
- A Millon
- Institute of Biological and Environmental Sciences, Aberdeen University, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | |
Collapse
|
42
|
Sherratt JA, Smith MJ, Rademacher JDM. Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion. Proc Natl Acad Sci U S A 2009; 106:10890-5. [PMID: 19553205 PMCID: PMC2701342 DOI: 10.1073/pnas.0900161106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Indexed: 11/18/2022] Open
Abstract
In systems with cyclic dynamics, invasions often generate periodic spatiotemporal oscillations, which undergo a subsequent transition to chaos. The periodic oscillations have the form of a wavetrain and occur in a band of constant width. In applications, a key question is whether one expects spatiotemporal data to be dominated by regular or irregular oscillations or to involve a significant proportion of both. This depends on the width of the wavetrain band. Here, we present mathematical theory that enables the direct calculation of this width. Our method synthesizes recent developments in stability theory and computation. It is developed for only 1 equation system, but because this is a normal form close to a Hopf bifurcation, the results can be applied directly to a wide range of models. We illustrate this by considering a classic example from ecology: wavetrains in the wake of the invasion of a prey population by predators.
Collapse
Affiliation(s)
- Jonathan A Sherratt
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| | | | | |
Collapse
|
43
|
Getz LL, McGuire B. Demography of fluctuating vole populations: Phase homogeneity of demographic variables. Basic Appl Ecol 2009. [DOI: 10.1016/j.baae.2008.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Hoset KS, Le Galliard JF, Gundersen G. Demographic responses to a mild winter in enclosed vole populations. POPUL ECOL 2009. [DOI: 10.1007/s10144-008-0130-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Abstract
The population cycles of rodents at northern latitudes have puzzled people for centuries, and their impact is manifest throughout the alpine ecosystem. Climate change is known to be able to drive animal population dynamics between stable and cyclic phases, and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators. But although predator-rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles, the role of the environment in the modulation of such dynamics is often poorly understood in natural systems. Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings (Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large-scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change.
Collapse
|
46
|
Hipkiss T, Stefansson O, Hörnfeldt B. Effect of cyclic and declining food supply on great grey owls in boreal Sweden. CAN J ZOOL 2008. [DOI: 10.1139/z08-131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study of 35 years of data, we examine the short-term (cyclic) and long-term relationship between breeding success of great grey owls ( Strix nebulosa Forster, 1772) and their food supply (bank voles ( Clethrionomys glareolus (Schreber, 1780)), grey-sided voles ( Clethrionomys rufocanus (Sundevall, 1846)), and field voles ( Microtus agrestis (L., 1761))) in northern Sweden. Annual number of owl nests showed a 3 year cyclicity, which as predicted, corresponded to the length of the vole cycle in the region. Mean annual brood size also fluctuated and was positively dependent on the vole supply during the same spring. In this region, there has also been a decline in vole numbers in recent decades, from high-amplitude cycles in the 1970s to subsequent low-amplitude cycles. Correspondingly, and as predicted, mean annual brood size of the owls also declined, although only during the third years of the vole cycle when vole supply in spring and brood size of the owls is at its highest level in high-amplitude cycles. We predict that in the long run the vole decline, associated with increasingly milder winters, and the reduction of the brood size of the owls, especially in years of high owl breeding success, will have serious implications for the population of great grey owls in Scandinavia.
Collapse
Affiliation(s)
- T. Hipkiss
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Bindevägen 5, SE-961 37 Boden, Sweden
| | - O. Stefansson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Bindevägen 5, SE-961 37 Boden, Sweden
| | - B. Hörnfeldt
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Bindevägen 5, SE-961 37 Boden, Sweden
| |
Collapse
|
47
|
Henden JA, Ims RA, Yoccoz NG. Nonstationary spatio-temporal small rodent dynamics: evidence from long-term Norwegian fox bounty data. J Anim Ecol 2008; 78:636-45. [PMID: 19040680 DOI: 10.1111/j.1365-2656.2008.01510.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. The geographical pattern in Fennoscandian small rodent population dynamics with a southern noncyclic and a northern cyclic region, and with latitudinal gradients in density-dependent structure, cycle period length and spatial synchrony within the northern cyclic region, has been widely publicized and interpreted in the ecological literature. However, the time-series data on which these inferences have been established are relatively short and originate from a specific time period (mostly around 1970-90). Hence, it can be questioned whether the geographical population dynamics patterns are consistent over time (i.e. whether they are stationary). 2. Here we analyse an almost century long (1880-1976) panel of fox bounty time series including 18 counties of Norway, thus spanning the whole range of latitudes of Fennoscandia (i.e. 15 latitudinal degrees). These fox time series mirror the dynamics of their dominant small rodent prey, in particular, with respect to cycle period length and spatial synchrony. 3. While we found some evidence consistent with previous analyses showing a clearly patterned dynamics according to latitude, such patterns were not stationary on a longer time-scale. In particular, we observed a shift from an extensively synchronous (i.e. regionalized) 4-year cycle north of 60 degrees N just after the 'Little Ice Age' (1880-1910) to a diversification of cycle period length (3-5 years) and eventually, partial loss of cyclicity and synchronicity in later periods. Incidents of loss of cyclicity appeared to be preceded by changes in cycle period (i.e. period lengthening and shortening). 4. These results show that the dynamics of Fennoscandian small rodents, and their associated guild of predators, are more prone to change than previously acknowledged.
Collapse
Affiliation(s)
- John-André Henden
- Department of Biology, University of Tromsø, Tromsø NO-9037, Norway.
| | | | | |
Collapse
|
48
|
Effects of abundance on infection in natural populations: field voles and cowpox virus. Epidemics 2008; 1:35-46. [PMID: 21352750 DOI: 10.1016/j.epidem.2008.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/01/2008] [Accepted: 10/06/2008] [Indexed: 11/24/2022] Open
Abstract
Detailed results on the dynamics of cowpox virus infection in four natural populations of the field vole, Microtus agrestis, are presented. Populations were sampled every 4 weeks (8 weeks in mid-winter) for 6 years. The purpose was to examine the relationships between overall or susceptible host abundance (N, S) and both the number of infected hosts (I) and the prevalence of infection (I/N). Overall, both I and I/N increased with N. However, evidence for a threshold abundance, below which infection was not found, was at best equivocal in spite of the wide range of abundances sampled. Cross-correlation analyses reflected annual and multi-annual cycles in N, I, S and I/N, but whereas N was most strongly correlated with contemporary values of I and I/N, in the case of S, the strongest correlations were with values 1 to 2 months preceding the values of I and I/N. There was no evidence for a 'juvenile dilution effect' (prevalence decreasing with abundance as new susceptibles flush into the population) and only weak evidence of a time-delayed effect of abundance on the number infected. We argue that these effects may occur only in systems with characteristics that are not found here. Transfer function analyses, which have been neglected in epidemiology, were applied. These models, with ln(S) as the input parameter, in spite of their simplicity, could be linked closely to conventional formulations of the transmission process and were highly effective in predicting the number infected. By contrast, transfer function models with ln(N) as the input parameter were less successful in predicting the number infected and/or were more complex and more difficult to interpret. Nonetheless, overall, we contend that while monitoring numbers susceptible has most to offer, monitoring overall abundance may provide valuable insights into the dynamics of infection.
Collapse
|
49
|
Massey FP, Smith MJ, Lambin X, Hartley SE. Are silica defences in grasses driving vole population cycles? Biol Lett 2008; 4:419-22. [PMID: 18482904 PMCID: PMC2474966 DOI: 10.1098/rsbl.2008.0106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the factors that drive species population dynamics is fundamental to biology. Cyclic populations of microtine rodents have been the most intensively studied to date, yet there remains great uncertainty over the mechanisms determining the dynamics of most of these populations. For one such population, we present preliminary evidence for a novel mechanism by which herbivore-induced reductions in plant quality alter herbivore life-history parameters and subsequent population growth. We tested the effect of high silica levels on the population growth and individual performance of voles (Microtus agrestis) reared on their winter food plant (Deschampsia caespitosa). In sites where the vole population density was high, silica levels in D. caespitosa leaves collected several months later were also high and vole populations subsequently declined; in sites where the vole densities were low, levels of silica were low and population density increased. High silica levels in their food reduced vole body mass by 0.5% a day. We argue that silica-based defences in grasses may play a key role in driving vole population cycles.
Collapse
Affiliation(s)
- F P Massey
- Department of Biology and Environmental Science, University of Sussex, Falmer, Brighton, UK.
| | | | | | | |
Collapse
|
50
|
Comparative population dynamics of
Peromyscus leucopus
in North America: influences of climate, food, and density dependence. POPUL ECOL 2008. [DOI: 10.1007/s10144-008-0094-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|