1
|
Correll-Tash S, Lilley B, Salmons Iv H, Mlynarski E, Franconi CP, McNamara M, Woodbury C, Easley CA, Emanuel BS. Double strand breaks (DSBs) as indicators of genomic instability in PATRR-mediated translocations. Hum Mol Genet 2020; 29:3872-3881. [PMID: 33258468 DOI: 10.1093/hmg/ddaa251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability contributes to a variety of potentially damaging conditions, including DNA-based rearrangements. Breakage in the form of double strand breaks (DSBs) increases the likelihood of DNA damage, mutations and translocations. Certain human DNA regions are known to be involved in recurrent translocations, such as the palindrome-mediated rearrangements that have been identified at the breakpoints of several recurrent constitutional translocations: t(11;22)(q23;q11), t(17;22)(q11;q11) and t(8;22) (q24;q11). These breakpoints occur at the center of palindromic AT-rich repeats (PATRRs), which suggests that the structure of the DNA may play a contributory role, potentially through the formation of secondary cruciform structures. The current study analyzed the DSB propensity of these PATRR regions in both lymphoblastoid (mitotic) and spermatogenic cells (meiotic). Initial results found an increased association of sister chromatid exchanges (SCEs) at PATRR regions in experiments that used SCEs to assay DSBs, combining SCE staining with fluorescence in situ hybridization (FISH). Additional experiments used chromatin immunoprecipitation (ChIP) with antibodies for either markers of DSBs or proteins involved in DSB repair along with quantitative polymerase chain reaction to quantify the frequency of DSBs occurring at PATRR regions. The results indicate an increased rate of DSBs at PATRR regions. Additional ChIP experiments with the cruciform binding 2D3 antibody indicate an increased rate of cruciform structures at PATRR regions in both mitotic and meiotic samples. Overall, these experiments demonstrate an elevated rate of DSBs at PATRR regions, an indication that the structure of PATRR containing DNA may lead to increased breakage in multiple cellular environments.
Collapse
Affiliation(s)
- Sarah Correll-Tash
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brenna Lilley
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Harold Salmons Iv
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabeth Mlynarski
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Colleen P Franconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Meghan McNamara
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carson Woodbury
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charles A Easley
- Department of Environmental Health Sciences, College of Public Health at the University of Georgia, Athens, GA, 30602, USA
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Inheritance of imbalances in recurrent chromosomal translocation t(11;22): clarification by PGT-SR and sperm-FISH analysis. Reprod Biomed Online 2019; 39:40-48. [PMID: 31097322 DOI: 10.1016/j.rbmo.2019.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
RESEARCH QUESTION To analyse why unbalanced viable offspring are derived mainly from the 3:1 segregation mode in t(11;22)(q23;q11.2) reciprocal translocation. DESIGN Retrospective analysis of 24 pre-implantation genetic testing for chromosomal structural re-arrangements (PGT-SR) cycles was performed on seven male and five female carriers of t(11;22) translocation. Sperm analysis was performed on each male carrier. These patients were directed to the study centre after several years of miscarriages and/or abortions, primary infertility for male carriers or birth of an affected child. RESULTS Twenty-four PGT-SR cycles were performed to exclude imbalances in both male and female carriers. The unbalanced embryos derived from the adjacent-1 segregation mode were the most represented in both male and female carriers (68.4% and 50%, respectively). These results were positively related with meiotic segregation analysis of reciprocal translocation in spermatozoa. A thorough analysis of the unbalanced embryo karyotypes determined that the expected viable +der22 karyotype resulting from 3:1 malsegregation was less represented at 5.3%. CONCLUSIONS These findings highlight the divergence that may exist between meiotic segregation and post-zygotic selection. Post-zygotic selection would be responsible for the elimination of unbalanced embryos derived from the adjacent-1 segregation mode. The combined action of several factors occurs at the beginning of post-zygotic selection. Genetic counselling must consider the risk of a birth related to the adjacent-1 segregation mode, irrespective of the sex of the translocation carrier. These results will allow deeper understanding of the PGT results of t(11;22) carriers, which often include a high number of aneuploid embryos.
Collapse
|
3
|
Inagaki H, Kato T, Tsutsumi M, Ouchi Y, Ohye T, Kurahashi H. Palindrome-Mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements. Front Genet 2016; 7:125. [PMID: 27462347 PMCID: PMC4940405 DOI: 10.3389/fgene.2016.00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structure-single-stranded "hairpin" or double-stranded "cruciform"-has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements possibly induced by non-B DNA in humans. Recent advances in next-generation sequencing have not yet overcome the difficulty of palindromic sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences have been identified at the breakpoints of recurrent or non-recurrent chromosomal translocations in humans. The breakages always occur at the center of the palindrome. Analyses of polymorphisms within the palindromes indicate that the symmetry and length of the palindrome affect the frequency of the de novo occurrence of these palindrome-mediated translocations, suggesting the involvement of non-B DNA. Indeed, experiments using a plasmid-based model system showed that the formation of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some evidence implies a new mechanism that cruciform DNAs may come close together first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in humans will provide further understanding of gross chromosomal rearrangements in many organisms.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan; Genome and Transcriptome Analysis Center, Fujita Health UniversityToyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Makiko Tsutsumi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Yuya Ouchi
- Genome and Transcriptome Analysis Center, Fujita Health University Toyoake, Japan
| | - Tamae Ohye
- Department of Molecular Laboratory Medicine, Faculty of Medical Technology, School of Health Science, Fujita Health University Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan; Genome and Transcriptome Analysis Center, Fujita Health UniversityToyoake, Japan
| |
Collapse
|
4
|
The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 2014; 123:529-44. [PMID: 25053180 DOI: 10.1007/s00412-014-0477-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023]
Abstract
Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.
Collapse
|
5
|
Kato T, Franconi CP, Sheridan MB, Hacker AM, Inagakai H, Glover TW, Arlt MF, Drabkin HA, Gemmill RM, Kurahashi H, Emanuel BS. Analysis of the t(3;8) of hereditary renal cell carcinoma: a palindrome-mediated translocation. Cancer Genet 2014; 207:133-40. [PMID: 24813807 DOI: 10.1016/j.cancergen.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22), and t(8;22). To date, all reported PATRR-mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene, whereas the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, we detect de novo translocations similar to the t(11;22) and t(8;22), involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence-based etiologies responsible for chromosome 3p14.2 genomic rearrangements.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colleen P Franconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly B Sheridan
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - April M Hacker
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hidehito Inagakai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
White RR, Sung P, Vestal CG, Benedetto G, Cornelio N, Richardson C. Double-strand break repair by interchromosomal recombination: an in vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS One 2013; 8:e84379. [PMID: 24349572 PMCID: PMC3862804 DOI: 10.1371/journal.pone.0084379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/22/2013] [Indexed: 01/22/2023] Open
Abstract
Homologous recombination (HR) is essential for accurate genome duplication and maintenance of genome stability. In eukaryotes, chromosomal double strand breaks (DSBs) are central to HR during specialized developmental programs of meiosis and antigen receptor gene rearrangements, and form at unusual DNA structures and stalled replication forks. DSBs also result from exposure to ionizing radiation, reactive oxygen species, some anti-cancer agents, or inhibitors of topoisomerase II. Literature predicts that repair of such breaks normally will occur by non-homologous end-joining (in G1), intrachromosomal HR (all phases), or sister chromatid HR (in S/G2). However, no in vivo model is in place to directly determine the potential for DSB repair in somatic cells of mammals to occur by HR between repeated sequences on heterologs (i.e., interchromosomal HR). To test this, we developed a mouse model with three transgenes—two nonfunctional green fluorescent protein (GFP) transgenes each containing a recognition site for the I-SceI endonuclease, and a tetracycline-inducible I-SceI endonuclease transgene. If interchromosomal HR can be utilized for DSB repair in somatic cells, then I-SceI expression and induction of DSBs within the GFP reporters may result in a functional GFP+ gene. Strikingly, GFP+ recombinant cells were observed in multiple organs with highest numbers in thymus, kidney, and lung. Additionally, bone marrow cultures demonstrated interchromosomal HR within multiple hematopoietic subpopulations including multi-lineage colony forming unit–granulocyte-erythrocyte-monocyte-megakaryocte (CFU-GEMM) colonies. This is a direct demonstration that somatic cells in vivo search genome-wide for homologous sequences suitable for DSB repair, and this type of repair can occur within early developmental populations capable of multi-lineage differentiation.
Collapse
Affiliation(s)
- Ryan R. White
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Patricia Sung
- Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - C. Greer Vestal
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Gregory Benedetto
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Noelle Cornelio
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Christine Richardson
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Different patterns of Robertsonian fusion pairing in Bovidae and the house mouse: the relationship between chromosome size and nuclear territories. Genet Res (Camb) 2012; 94:97-111. [DOI: 10.1017/s0016672312000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SummaryUsing a dataset of karyotypic changes reported for bovids and the house mouse (Mus musculus domesticus) together with information from the cattle (Bos taurus) and mouse genomes, we examined two principal variables that have been proposed to predict chromosomal positioning in the nucleus, chromosome size and GC content. These were expected to influence the distribution of Robertsonian (Rb) fusions, the predominant mode of chromosomal change in both taxa. We found the largest chromosomes to be most frequently involved in fusions in bovids, and confirm earlier reports that chromosomes of intermediate size were the most frequent fusers in mice. We then tested whether chromosomal positioning can explain Rb fusion frequencies. We classified chromosomes into groups by size and considered the frequency of interactions between specific groups. Among the interactions, mouse chromosomes showed a slight tendency to fuse with neighbouring chromosomes, in line with expectations of chromosomal positioning, but also resembling predictions from meiotic spindle-induced bias. Bovids, on the other hand, showed no trend in interactions, with small chromosomes being the least frequent partner for all size classes. We discuss the results in terms of nuclear organization at various cell cycle stages and the proposed mechanisms of Rb fusion formation, and note that the difference can be explained by (i) considering bovid species generally to be characterized by a greater intermingling of chromosomal size classes than the house mouse, or (ii) by the vastly different timescales underpinning their evolutionary histories.
Collapse
|
8
|
Simmons AD, Carvalho CMB, Lupski JR. What have studies of genomic disorders taught us about our genome? Methods Mol Biol 2012; 838:1-27. [PMID: 22228005 DOI: 10.1007/978-1-61779-507-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of genomic disorders began with molecular technologies that enabled detection of genomic changes which were (a) smaller than those resolved by traditional cytogenetics (less than 5 Mb) and (b) larger than what could be determined by conventional gel electrophoresis. Methods such as pulsed field gel electrophoresis (PFGE) and fluorescent in situ hybridization (FISH) could resolve such changes but were limited to locus-specific studies. The study of genomic disorders has rapidly advanced with the development of array-based techniques. These enabled examination of the entire human genome at a higher level of resolution, thus allowing elucidation of the basis of many new disorders, mechanisms that result in genomic changes that can result in copy number variation (CNV), and most importantly, a deeper understanding of the characteristics, features, and plasticity of our genome. In this chapter, we focus on the structural and architectural features of the genome, which can potentially result in genomic instability, delineate how mechanisms, such as NAHR, NHEJ, and FoSTeS/MMBIR lead to disease-causing rearrangements, and briefly describe the relationship between the leading methods presently used in studying genomic disorders. We end with a discussion on our new understanding about our genome including: the contribution of new mutation CNV to disease, the abundance of mosaicism, the extent of subtelomeric rearrangements, the frequency of de novo rearrangements associated with sporadic birth defects, the occurrence of balanced and unbalanced translocations, the increasing discovery of insertional translocations, the exploration of complex rearrangements and exonic CNVs. In the postgenomic era, our understanding of the genome has advanced very rapidly as the level of technical resolution has become higher. This leads to a greater understanding of the effects of rearrangements present both in healthy subjects and individuals with clinically relevant phenotypes.
Collapse
|
9
|
Czuchlewski DR, Farzanmehr H, Robinett S, Haines S, Reichard KK. t(9;22)(q34;q11.2) is a recurrent constitutional non-Robertsonian translocation and a rare cytogenetic mimic of chronic myeloid leukemia. Cancer Genet 2012; 204:572-6. [PMID: 22137489 DOI: 10.1016/j.cancergen.2011.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 01/26/2023]
Abstract
The diagnosis of hematologic malignancy can be greatly aided by the detection of a cytogenetic abnormality. However, care must be taken to ensure that constitutional chromosomal abnormalities are not misattributed to a putative population of malignant cells. Here we present an unusual case in which a constitutional balanced t(9;22)(q34;q11.2) cytogenetically mimicked the acquired, t(9;22)(q34;q11.2), that is characteristic of chronic myeloid leukemia. Of special note, fluorescence in situ hybridization (FISH) analysis for this constitutional translocation (9;22)(q34;q11.2) using standard probes for BCR and ABL1 resulted in an abnormal pattern that was potentially misinterpretable as a BCR-ABL1 fusion. This is the first reported FISH analysis of a constitutional t(9;22)(q34;q11.2), and overall only the second report of such an abnormality. In light of the isolated prior report, our case also suggests that the constitutional t(9;22)(q34;q11.2) is one of the very few recurrent constitutional non-Robertsonian translocations described in humans. Our case underscores the necessity of complete clinical and laboratory correlation to avoid misdiagnosis of myeloid malignancy in the setting of rare constitutional cytogenetic abnormalities.
Collapse
|
10
|
Kato T, Kurahashi H, Emanuel BS. Chromosomal translocations and palindromic AT-rich repeats. Curr Opin Genet Dev 2012; 22:221-8. [PMID: 22402448 DOI: 10.1016/j.gde.2012.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Repetitive DNA sequences constitute 30% of the human genome, and are often sites of genomic rearrangement. Recently, it has been found that several constitutional translocations, especially those that involve chromosome 22, take place utilizing palindromic sequences on 22q11 and on the partner chromosome. Analysis of translocation junction fragments shows that the breakpoints of such palindrome-mediated translocations are localized at the center of palindromic AT-rich repeats (PATRRs). The presence of PATRRs at the breakpoints indicates a palindrome-mediated mechanism involved in the generation of these constitutional translocations. Identification of these PATRR-mediated translocations suggests a universal pathway for gross chromosomal rearrangement in the human genome. De novo occurrences of PATRR-mediated translocations can be detected by PCR in normal sperm samples but not somatic cells. Polymorphisms of various PATRRs influence their propensity for adopting a secondary structure, which in turn affects de novo translocation frequency. We propose that the PATRRs form an unstable secondary structure, which leads to double-strand breaks at the center of the PATRR. The double-strand breaks appear to be followed by a non-homologous end-joining repair pathway, ultimately leading to the translocations. This review considers recent findings concerning the mechanism of meiosis-specific, PATRR-mediated translocations.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
11
|
Cri du chat syndrome after preimplantation genetic diagnosis for reciprocal translocation. Fertil Steril 2011; 96:e71-5. [PMID: 21601848 DOI: 10.1016/j.fertnstert.2011.04.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To report the first case of cri du chat syndrome after preimplantation genetic diagnosis (PGD) for reciprocal translocation. DESIGN Case report. SETTING In vitro fertilization center in a university affiliated hospital. PATIENT(S) A woman carrying a t(11;22)(q23;q11.2) translocation. INTERVENTION(S) Preimplantation genetic diagnosis was performed, and the woman became pregnant. MAIN OUTCOME MEASURE(S) Successful PGD for reciprocal translocation and diagnosis of Cri du chat syndrome for the baby. RESULT(S) A male baby was born at 36 weeks' gestation. However, the baby presented with a high-pitched, cat-like cry. Cytogenetic study revealed a rare case of cri du chat syndrome associated with t(11;22)(q23;q11.2) translocation. CONCLUSION(S) Chromosomal abnormalities, including the rare cru du chat syndrome, may occur after fluorescent in situ hybridization-based preimplantation genetic diagnosis.
Collapse
|
12
|
Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hedon B, Sarda P. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 2011; 17:476-94. [DOI: 10.1093/humupd/dmr010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Kurahashi H, Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements. Clin Genet 2011; 78:299-309. [PMID: 20507342 DOI: 10.1111/j.1399-0004.2010.01445.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The constitutional t(11;22)(q23;q11) is the most common recurrent non-Robertsonian translocation in humans. The breakpoint sequences of both chromosomes are characterized by several hundred base pairs of palindromic AT-rich repeats (PATRRs). Similar PATRRs have also been identified at the breakpoints of other nonrecurrent translocations, suggesting that PATRR-mediated chromosomal translocation represents one of the universal pathways for gross chromosomal rearrangement in the human genome. We propose that PATRRs have the potential to form cruciform structures through intrastrand-base pairing in single-stranded DNA, creating a source of genomic instability and leading to translocations. Indeed, de novo examples of the t(11;22) are detected at a high frequency in sperm from normal healthy males. This review synthesizes recent data illustrating a novel paradigm for an apparent spermatogenesis-specific translocation mechanism. This observation has important implications pertaining to the predominantly paternal origin of de novo gross chromosomal rearrangements in humans.
Collapse
Affiliation(s)
- H Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ou Z, Stankiewicz P, Xia Z, Breman AM, Dawson B, Wiszniewska J, Szafranski P, Cooper ML, Rao M, Shao L, South ST, Coleman K, Fernhoff PM, Deray MJ, Rosengren S, Roeder ER, Enciso VB, Chinault AC, Patel A, Kang SHL, Shaw CA, Lupski JR, Cheung SW. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res 2011; 21:33-46. [PMID: 21205869 PMCID: PMC3012924 DOI: 10.1101/gr.111609.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022]
Abstract
Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs of ∼130 kb in length and 94.7% DNA sequence identity located in olfactory receptor gene clusters, indicating nonallelic homologous recombination (NAHR) as the mechanism for translocation formation. To investigate the potential involvement of interchromosomal LCRs in recurrent chromosomal translocation formation, we performed computational genome-wide analyses and identified 1143 interchromosomal LCR substrate pairs, >5 kb in size and sharing >94% sequence identity that can potentially mediate chromosomal translocations. Additional evidence for interchromosomal NAHR mediated translocation formation was provided by sequencing the breakpoints of another recurrent translocation, der(8)t(8;12)(p23.1;p13.31). The NAHR sites were mapped within 55 bp in ∼7.8-kb paralogous subunits of 95.3% sequence identity located in the ∼579-kb (chr 8) and ∼287-kb (chr 12) LCR clusters. We demonstrate that NAHR mediates recurrent constitutional translocations t(4;11) and t(8;12) and potentially many other interchromosomal translocations throughout the human genome. Furthermore, we provide a computationally determined genome-wide "recurrent translocation map."
Collapse
Affiliation(s)
- Zhishuo Ou
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhilian Xia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M. Breman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Brian Dawson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joanna Wiszniewska
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - M. Lance Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mitchell Rao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lina Shao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah T. South
- Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karlene Coleman
- Children's Healthcare of Atlanta, Atlanta, Georgia 30033, USA
| | | | - Marcel J. Deray
- Department of Neurology, Miami Children's Hospital, Miami, Florida 33155, USA
| | | | | | | | - A. Craig Chinault
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ankita Patel
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sung-Hae L. Kang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sau W. Cheung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Sheridan MB, Kato T, Haldeman-Englert C, Jalali GR, Milunsky JM, Zou Y, Klaes R, Gimelli G, Gimelli S, Gemmill RM, Drabkin HA, Hacker AM, Brown J, Tomkins D, Shaikh TH, Kurahashi H, Zackai EH, Emanuel BS. A palindrome-mediated recurrent translocation with 3:1 meiotic nondisjunction: the t(8;22)(q24.13;q11.21). Am J Hum Genet 2010; 87:209-18. [PMID: 20673865 DOI: 10.1016/j.ajhg.2010.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/07/2010] [Accepted: 07/11/2010] [Indexed: 01/18/2023] Open
Abstract
Palindrome-mediated genomic instability has been associated with chromosomal translocations, including the recurrent t(11;22)(q23;q11). We report a syndrome characterized by extremity anomalies, mild dysmorphia, and intellectual impairment caused by 3:1 meiotic segregation of a previously unrecognized recurrent palindrome-mediated rearrangement, the t(8;22)(q24.13;q11.21). There are at least ten prior reports of this translocation, and nearly identical PATRR8 and PATRR22 breakpoints were validated in several of these published cases. PCR analysis of sperm DNA from healthy males indicates that the t(8;22) arises de novo during gametogenesis in some, but not all, individuals. Furthermore, demonstration that de novo PATRR8-to-PATRR11 translocations occur in sperm suggests that palindrome-mediated translocation is a universal mechanism producing chromosomal rearrangements.
Collapse
Affiliation(s)
- Molly B Sheridan
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Le Coutre P, Reinke P, Neuhaus R, Trappe R, Ringel F, Lalancette M, Hemmati PG, Dörken B, Daniel PT. BCR-ABL positive cells and chronic myeloid leukemia in immune suppressed organ transplant recipients. Eur J Haematol 2010; 84:26-33. [DOI: 10.1111/j.1600-0609.2009.01357.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Kantidze OL, Razin SV. Chromatin loops, illegitimate recombination, and genome evolution. Bioessays 2009; 31:278-86. [PMID: 19260023 DOI: 10.1002/bies.200800165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromosomal rearrangements frequently occur at specific places ("hot spots") in the genome. These recombination hot spots are usually separated by 50-100 kb regions of DNA that are rarely involved in rearrangements. It is quite likely that there is a correlation between the above-mentioned distances and the average size of DNA loops fixed at the nuclear matrix. Recent studies have demonstrated that DNA loop anchorage regions can be fairly long and can harbor DNA recombination hot spots. We previously proposed that chromosomal DNA loops may constitute the basic units of genome organization in higher eukaryotes. In this review, we consider recombination between DNA loop anchorage regions as a possible source of genome evolution.
Collapse
Affiliation(s)
- Omar L Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
18
|
Gimelli S, Beri S, Drabkin HA, Gambini C, Gregorio A, Fiorio P, Zuffardi O, Gemmill RM, Giorda R, Gimelli G. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma. Mol Cancer 2009; 8:52. [PMID: 19642973 PMCID: PMC2727492 DOI: 10.1186/1476-4598-8-52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 12/22/2022] Open
Abstract
Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC) and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22) in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR) involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN), a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.
Collapse
Affiliation(s)
- Stefania Gimelli
- Biologia Generale e Genetica Medica, Università di Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 2009; 54:253-60. [PMID: 19373258 DOI: 10.1038/jhg.2009.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The completion of the human genome project has enabled researchers to characterize the breakpoints for various chromosomal structural abnormalities including deletions, duplications or translocations. This in turn has shed new light on the molecular mechanisms underlying the onset of gross chromosomal rearrangements. On the other hand, advances in genetic manipulation technologies for various model organisms has increased our knowledge of meiotic chromosome segregation, errors which, contribute to chromosomal aneuploidy. This review focuses on the current understanding of germ line chromosomal abnormalities and provides an overview of the mechanisms involved. We refer to our own recent data and those of others to illustrate some of the new paradigms that have arisen in this field. We also discuss some perspectives on the sexual dimorphism of some of the pathways that leads to these chromosomal abnormalities.
Collapse
|
20
|
Sirleto P, Surace C, Santos H, Bertini E, Tomaiuolo AC, Lombardo A, Boenzi S, Bevivino E, Dionisi-Vici C, Angioni A. Lyonization effects of the t(X;16) translocation on the phenotypic expression in a rare female with Menkes disease. Pediatr Res 2009; 65:347-51. [PMID: 19092723 DOI: 10.1203/pdr.0b013e3181973b4e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Menkes disease (MD) is a rare and severe X-linked recessive disorder of copper metabolism. The MD gene, ATP7A (ATPase Cu++ transporting alpha polypeptide), encodes an ATP-dependent copper-binding membrane protein. In this report, we describe a girl with typical clinical features of MD, carrying a balanced translocation between the chromosomes X and 16 producing the disruption of one copy of ATP7A gene and the silencing of the other copy because of the chromosome X inactivation. Fluorescence in situ hybridization experiments with bacterial derived artificial chromosome probes revealed that the breakpoints were located within Xq13.3 and 16p11.2. Replication pattern analysis demonstrated that the normal X chromosome was late replicating and consequently inactivated, whereas the der(X)t(X;16), bearing the disrupted ATP7A gene, was active. An innovative approach, based on FMR1 (fragile X mental retardation 1) gene polymorphism, has been used to disclose the paternal origin of the rearrangement providing a new diagnostic tool for determining the parental origin of defects involving the X chromosome and clarifying the mechanism leading to the cytogenetic rearrangement that occurred in our patient.
Collapse
Affiliation(s)
- Pietro Sirleto
- Cytogenetics and Molecular Genetics, Bambino Gesù Children's Hospital, Roma 00165, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Thomas NS, Maloney V, Bryant V, Huang S, Brewer C, Lachlan K, Jacobs PA. Breakpoint mapping and haplotype analysis of three reciprocal translocations identify a novel recurrent translocation in two unrelated families: t(4;11)(p16.2;p15.4). Hum Genet 2008; 125:181-8. [PMID: 19104840 DOI: 10.1007/s00439-008-0611-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/13/2008] [Indexed: 10/21/2022]
Abstract
The majority of constitutional reciprocal translocations appear to be unique rearrangements arising from independent events. However, a small number of translocations are recurrent, most significantly the t(11;22)(q23;q11). Among large series of translocations there may be multiple independently ascertained cases with the same cytogenetic breakpoints. Some of these could represent additional recurrent rearrangements, alternatively they could be identical by descent (IBD) or have subtly different breakpoints when examined under higher resolution. We have used molecular breakpoint mapping and haplotyping to determine the origin of three pairs of reciprocal constitutional translocations, each with the same cytogenetic breakpoints. FISH mapping showed one pair to have different breakpoints and thus to be distinct rearrangements. Another pair of translocations were IBD with identical breakpoint intervals and highly conserved haplotypes on the derived chromosomes. The third pair, t(4;11)(p16.2;p15.4), had the same breakpoint intervals by aCGH and fosmid mapping but had very different haplotypes, therefore they represent a novel recurrent translocation. Unlike the t(11;22)(q23;q11), the formation of the t(4;11)(p16.2;p15.4) may have involved segmental duplications and sequence homology at the breakpoints. Additional examples of recurrent translocations could be identified if the resources were available to study more translocations using the approaches described here. However, like the t(4;11)(p16.2;p15.4), such translocations are likely to be rare with the t(11;22) remaining the only common recurrent constitutional reciprocal translocation.
Collapse
Affiliation(s)
- N Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury, SP2 8BJ, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Horbinski C, Carter EM, Heard PL, Sathanoori M, Hu J, Vockley J, Gunn S, Hale DE, Surti U, Cody JD. Molecular and clinical characterization of a recurrent cryptic unbalanced t(4q;18q) resulting in an 18q deletion and 4q duplication. Am J Med Genet A 2008; 146A:2898-904. [PMID: 18932219 DOI: 10.1002/ajmg.a.32557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recurrent constitutional non-Robertsonian translocations are very rare. We present the third instance of cryptic, unbalanced translocation between 4q and 18q. This individual had an apparently normal karyotype; however, after subtelomere fluorescence in situ hybridization (FISH), he was found to have a cryptic unbalanced translocation between 4q and 18q [ish der(18)t(4;18)(q35;q23)(4qtel+,18qtel-)]. Oligonucleotide array comparative genomic hybridization (aCGH) refined the breakpoints in this child and in the previously reported child and indicated that the breakpoints were within 20 kb of each other, suggesting that this translocation is, indeed, recurrent. A comparison of the clinical presentation of these individuals identified features that are characteristic of both 18q- and 4q+ as well as features that are not associated with either condition, such as a prominent metopic ridge, bitemporal narrowing, prominent, and thick eyebrows. Individuals with features suggestive of this 4q;18q translocation but a normal karyotype warrant aCGH or subtelomere studies.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Koss LG. The mystery of chromosomal translocations in cancer. Cytogenet Genome Res 2007; 118:247-51. [PMID: 18000377 DOI: 10.1159/000108307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/06/2007] [Indexed: 02/02/2023] Open
Abstract
Chromosomal translocations in human cancer may result in products that can be suppressed by targeting drugs. An example is bcr-abl tyrosine kinase in chronic myelogenous leukemia that can be treated with imatinib mesylate. However, the mechanisms of translocations or exchanges of chromosomal segments are virtually unknown. In this summary, chromosomal translocations in human cancer are compared with 'crossing over' of chromosomal segments occurring during the first meiotic division. Several proposed mechanisms of the exchange of DNA between and among chromosomes are discussed. The conditions that appear essential for these events to occur are listed. Among them are proximity of the involved DNA segments, mechanisms of excising the target DNA, its transport to the new location, and integration into the pre-existing chromosome. The conclusion based on extensive review of the literature is that practically nothing is known about the mechanism of 'crossing over' or translocation. Based on prior work on normal human cells, it is suggested that only one of the two autosomes participates in these events that may include loss of heterozygozity, another common abnormality in human cancer.
Collapse
Affiliation(s)
- L G Koss
- Department of Pathology, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
24
|
De Gregori M, Ciccone R, Magini P, Pramparo T, Gimelli S, Messa J, Novara F, Vetro A, Rossi E, Maraschio P, Bonaglia MC, Anichini C, Ferrero GB, Silengo M, Fazzi E, Zatterale A, Fischetto R, Previderé C, Belli S, Turci A, Calabrese G, Bernardi F, Meneghelli E, Riegel M, Rocchi M, Guerneri S, Lalatta F, Zelante L, Romano C, Fichera M, Mattina T, Arrigo G, Zollino M, Giglio S, Lonardo F, Bonfante A, Ferlini A, Cifuentes F, Van Esch H, Backx L, Schinzel A, Vermeesch JR, Zuffardi O. Cryptic deletions are a common finding in "balanced" reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet 2007; 44:750-62. [PMID: 17766364 PMCID: PMC2652810 DOI: 10.1136/jmg.2007.052787] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 11/04/2022]
Abstract
Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as "balanced" by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a "chromosomal phenotype" and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome-wide array CGH may be advisable in all carriers of "balanced" CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customized platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.
Collapse
Affiliation(s)
- M De Gregori
- Biologia Generale e Genetica Medica, Universitè di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Emanuel BS, Saitta SC. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 2007; 8:869-83. [PMID: 17943194 DOI: 10.1038/nrg2136] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Submicroscopic chromosomal rearrangements that lead to copy-number changes have been shown to underlie distinctive and recognizable clinical phenotypes. The sensitivity to detect copy-number variation has escalated with the advent of array comparative genomic hybridization (CGH), including BAC and oligonucleotide-based platforms. Coupled with improved assemblies and annotation of genome sequence data, these technologies are facilitating the identification of new syndromes that are associated with submicroscopic genomic changes. Their characterization reveals the role of genome architecture in the aetiology of many clinical disorders. We review a group of genomic disorders that are mediated by segmental duplications, emphasizing the impact that high-throughput detection methods and the availability of the human genome sequence have had on their dissection and diagnosis.
Collapse
Affiliation(s)
- Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Abramson Research Center, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Philadelphia 19104-4318, USA.
| | | |
Collapse
|
26
|
Gotter AL, Nimmakayalu MA, Jalali GR, Hacker AM, Vorstman J, Conforto Duffy D, Medne L, Emanuel BS. A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies. Genome Res 2007; 17:470-81. [PMID: 17351131 PMCID: PMC1832094 DOI: 10.1101/gr.6130907] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constitutional translocations at the same 22q11.21 low copy repeat B (LCR-B) breakpoint involved in the recurrent t(11;22) are relatively abundant. A novel 46,XY,t(8;22)(q24.13;q11.21) rearrangement was investigated to determine whether the recurrent LCR-B breakpoint is involved. Investigations demonstrated an inversion of the 3Mb region typically deleted in patients with the 22q11.2 deletion syndrome. The 22q11.21 inversion appears to be mediated by low copy repeats, and is presumed to have taken place prior to translocation with 8q24.13. Despite predictions based on inversions observed in other chromosomes harboring low copy repeats, this 22q11.2 inversion has not been observed previously. The current studies utilize novel laser microdissection and MLPA (multiplex ligation-dependent probe amplification) approaches, as adjuncts to FISH, to map the breakpoints of the complex rearrangements of 22q11.21 and 8q24.21. The t(8;22) occurs between the recurrent site on 22q11.21 and an AT-rich site at 8q24.13, making it the fifth different chromosomal locus characterized at the nucleotide level engaged in a translocation with the unstable recurrent breakpoint at 22q11.21. Like the others, this breakpoint occurs at the center of a palindromic sequence. This sequence appears capable of forming a perfect 145 bp stem-loop. Remarkably, this site appears to have been involved in a previously reported t(3;8) occurring between 8q24.13 and FRA3B on 3p14.2. Further, the fragile site-like nature of all of the breakpoint sites involved in translocations with the recurrent site on 22q11.21, suggests a mechanism based on delay of DNA replication in the initiation of these chromosomal rearrangements.
Collapse
Affiliation(s)
- Anthony L. Gotter
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Manjunath A. Nimmakayalu
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - G. Reza Jalali
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - April M. Hacker
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Jacob Vorstman
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Danielle Conforto Duffy
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Livija Medne
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Beverly S. Emanuel
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Corresponding author.E-mail ; fax (215) 590-3764
| |
Collapse
|
27
|
Kurahashi H, Inagaki H, Hosoba E, Kato T, Ohye T, Kogo H, Emanuel BS. Molecular cloning of a translocation breakpoint hotspot in 22q11. Genome Res 2007; 17:461-9. [PMID: 17267815 PMCID: PMC1832093 DOI: 10.1101/gr.5769507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been well documented that 22q11 contains one of the most rearrangement-prone sites in the human genome, where the breakpoints of a number of constitutional translocations cluster. This breakage-sensitive region is located within one of the remaining unclonable gaps from the human genome project, suggestive of a specific sequence recalcitrant to cloning. In this study, we cloned a part of this gap and identified a novel 595-bp palindromic AT-rich repeat (PATRR). To date we have identified three translocation-associated PATRRs. They have common characteristics: (1) they are AT-rich nearly perfect palindromes, which are several hundred base pairs in length; (2) they possess non-AT-rich regions at both ends of the PATRR; (3) they display another nearby AT-rich region on one side of the PATRR. All of these features imply a potential for DNA secondary structure. Sequence analysis of unrelated individuals indicates no major size polymorphism, but shows minor nucleotide polymorphisms among individuals and cis-morphisms between the proximal and distal arms. Breakpoint analysis of various translocations indicates that double-strand-breakage (DSB) occurs at the center of the palindrome, often accompanied by a small symmetric deletion at the center. The breakpoints share only a small number of identical nucleotides between partner chromosomes. Taken together, these features imply that the DSBs are repaired through nonhomologous end joining or single-strand annealing rather than a homologous recombination pathway. All of these results support a previously proposed paradigm that unusual DNA secondary structure plays a role in the mechanism by which palindrome-mediated translocations occur.
Collapse
MESH Headings
- AT Rich Sequence
- Animals
- Base Sequence
- Chromosome Breakage
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 22/genetics
- Cloning, Molecular
- Cricetinae
- DNA/chemistry
- DNA/genetics
- Humans
- Hybrid Cells
- Mice
- Polymerase Chain Reaction
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Translocation, Genetic
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|