1
|
Bahgat OT, Rizk DE, Kenawy HI, Barwa R. Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt. BMC Microbiol 2024; 24:488. [PMID: 39574016 PMCID: PMC11580514 DOI: 10.1186/s12866-024-03636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157 is implicated in serious food and water-borne diseases as hemorrhagic colitis (HC), and the potentially fatal hemolytic uremic syndrome (HUS). However, new players of non-O157 EHEC have been implicated in serious infections worldwide. This work aims at analyzing serotype and genotypic-based virulence profile of EHEC local isolates. METHODS A total of 335 samples were collected from different sources in Egypt. E. coli was isolated and subjected to serotyping. Non-O157 EHEC isolates were tested for virulence genes using PCR, phenotypic examination, phylogenetic typing, and molecular investigation by ERIC typing and MLST to disclose genetic relatedness of isolates. A heat map was used to identify potential associations between the origin of the isolates, their phenotypic and genotypic characteristics. RESULTS A total of 105 out of 335 isolates were identified as E. coli. Surprisingly, 49.5% of these isolates were EHEC, where O111, O91, O26 and O55 were the most prevalent serotypes including 38.46% from stool, 21.15% urine, 23.1% cheese, 9.62% meat products, 3.85% from both yogurt and sewage water. Screening 15 different virulence genes revealed that sheA, stx2 and eae were the most prevalent with abundance rates of 85%, 75% and 36%, respectively. Fifteen profiles of virulence gene association were identified, where the most abundant one was stx2/sheA (19%) followed by stx2/stx2g/sheA/eae (11.5%). Both stx2/sheA/eae and stx2/stx2g/sheA were equally distributed in 9.6% of total isolates. Phylogenetic typing revealed that pathogenic phylogroups B2 and D were detected among clinical isolates only. Forty-six different patterns were detected by ERIC genotyping. MLST resolved three sequence types of ST70, ST120 and ST394. The heat map showed that 21 isolates were of 70% similarity, 9 groups were of 100% clonality. CONCLUSIONS The prevalence of non-O157 EHEC pathotype was marginally higher among the food isolates compared to the clinical ones. The endemic ST120 was detected in cheese, necessitating crucial measures to prevent the spread of this clone. Clinical EHEC isolates exhibited a higher score, and combination of virulence genes compared to food and sewage water isolates, thereby posing a significant public health concern.
Collapse
Affiliation(s)
- Omnia T Bahgat
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dina E Rizk
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hany I Kenawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Kimura R, Kimura H, Shirai T, Hayashi Y, Sato-Fujimoto Y, Kamitani W, Ryo A, Tomita H. Molecular Evolutionary Analyses of Shiga toxin type 2 subunit A Gene in the Enterohemorrhagic Escherichia coli (EHEC). Microorganisms 2024; 12:1812. [PMID: 39338486 PMCID: PMC11434168 DOI: 10.3390/microorganisms12091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
To better understand the molecular genetics of the Shiga toxin type 2 subunit A gene (stx2A gene), we collected many subtypes of stx2A genes and performed detailed molecular evolutionary analyses of the gene. To achieve the aim of the study, we used several bioinformatics technologies, including time-scaled phylogenetic analyses, phylogenetic distance analyses, phylodynamics analyses, selective pressure analyses, and conformational epitope analyses. A time-scaled phylogeny showed that the common ancestor of the stx2A gene dated back to around 18,600 years ago. After that, the gene diverged into two major lineages (Lineage 1 and 2). Lineage 1 comprised the stx2a-2d subtypes, while Lineage 2 comprised the stx2e, 2g, 2h, and 2o subtypes. The evolutionary rates of the genes were relatively fast. Phylogenetic distances showed that the Lineage 2 strains had a wider genetic divergence than Lineage 1. Phylodynamics also indicated that the population size of the stx2A gene increased after the 1930s and spread globally. Moreover, negative selection sites were identified in the Stx2A proteins, and these sites were diffusely distributed throughout the protein. Two negative selection sites were located adjacent to an active site of the common Stx2A protein. Many conformational epitopes were also estimated in these proteins, while no conformational epitope was found adjacent to the active site. The results suggest that the stx2A gene has uniquely evolved and diverged over an extremely long time, resulting in many subtypes. The dominance of the strains belonging to Lineage 1 suggests that differences in virulence may be involved in the prosperity of the offspring. Furthermore, some subtypes of Stx2A proteins may be able to induce effective neutralizing antibodies against the proteins in humans.
Collapse
Affiliation(s)
- Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yuriko Hayashi
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Yuka Sato-Fujimoto
- Faculty of Healthcare, Tokyo Healthcare University, Tokyo 141-8648, Japan;
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi-shi 371-8511, Gunma, Japan;
| | - Akihide Ryo
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
| |
Collapse
|
3
|
Ikeuchi S, Hirose S, Shimada K, Koyama A, Ishida S, Katayama N, Suzuki T, Tokairin A, Tsukamoto M, Tsue Y, Yamaguchi K, Osako H, Hiwatashi S, Chiba Y, Akiyama H, Hayashidani H, Hara-Kudo Y. Isolation of Shiga Toxin-Producing Escherichia coli from the Surfaces of Beef Carcasses in Slaughterhouses in Japan. J Food Prot 2024; 87:100263. [PMID: 38484844 DOI: 10.1016/j.jfp.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Shiga toxin-producing E. coli (STEC) is an important foodborne pathogen worldwide. It is necessary to control and prevent STEC contamination on beef carcasses in slaughterhouses because STEC infection is associated with beef consumption. However, the frequencies of STEC contamination of beef carcasses in various slaughterhouses in Japan are not well known. Herein, we investigated the contamination of beef carcasses with STEC in slaughterhouses to assess the potential risks of STEC. In total, 524 gauze samples were collected from the surfaces of beef carcasses at 12 domestic slaughterhouses from November 2020 to February 2023. The samples were measured for aerobic plate counts and tested for pathogenic genes (stx and eae) and major O-serogroups (O26, O45, O103, O111, O121, O145, and O157) by real-time PCR screening. Subsequently, immunomagnetic separation (IMS) was performed on samples positive for stx, eae, and at least one of the seven O-serogroups of STEC. Isolation process without IMS was performed on samples positive for stx, including those subjected to IMS. STEC O157:H7 and stx-positive E. coli other than serotype O157:H7 were isolated from 0.6% and 4.6% of beef carcass surfaces, respectively. Although the STEC O157:H7 isolation rate was low and stx-positive E. coli other than serotype O157:H7 belonged to minor O-serogroups, the results mean a risk of foodborne illness. Furthermore, a moderate correlation was observed between aerobic plate counts and detection rates of stx-positive samples by real-time PCR screening. The STEC O157:H7 isolated facilities showed higher values on aerobic plate counts and detection rates of stx-positive samples than the mean values of total samples. Therefore, these results suggest that it is important to evaluate hygiene treatments against beef carcasses for the reduction of STEC contamination risk, particularly in facilities with high aerobic plate counts.
Collapse
Affiliation(s)
- Shunsuke Ikeuchi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Kohei Shimada
- Section of Meat Inspection, Division of Food Hygiene, Bureau of Health and Safety, Department of Health and Welfare, Hokkaido Government, Kita 3-jo, Nishi 6-chome, Chuo-ku, Sapporo, Hokkaido 060-8588, Japan
| | - Ayako Koyama
- Higashimokoto Meat Inspection Center, 72-1, Chigusa, Higashimokoto, Ozora, Abashiri District, Hokkaido 099-3231, Japan
| | - Shoji Ishida
- Hokkaido Hayakita Meat Inspection Center, 695, Toasa, Abira-cho, Yufutsu District, Hokkaido 059-1433, Japan
| | - Naoto Katayama
- Tokushima Prefectural Meat Inspection Centre, 2-140-3 Fudohon-machi, Tokushima, Tokushima 770-0063, Japan
| | - Takehiko Suzuki
- Hokkaido Obihiro Meat Inspection Center, North 2, West 25, Obihiro, Hokkaido 080-2465, Japan
| | - Akiko Tokairin
- Towada Meat Inspection Center, 1-13, Sambongi Nozaki, Towada, Aomori 034-0001, Japan
| | - Mayumi Tsukamoto
- Gifu Prefectural Hida Meat Inspection Office, 17-1 Maehara-machi, Takayama, Gifu 506-0048, Japan
| | - Yuki Tsue
- Miyazaki Prefecture Tsuno Meat Inspection Center, 15530, Kawakita, Tsuno-cho, Koyu-gun, Miyazaki 889-1201, Japan
| | - Kenichi Yamaguchi
- Akita City Meat Hygiene Inspection Office, 2-6 Dosaka, Jinnai, Kawabe, Akita, Akita 019-2631, Japan
| | - Hideo Osako
- Kumamoto Prefectural Meat Inspection Office, 1341 Sozaki, Shichijyo-machi, Kikuchi, Kumamoto 861-1344, Japan
| | - Sachiko Hiwatashi
- Nagasaki Prefectural Isahaya Meat Inspection Station, 79-20 Saiwai-machi, Isahaya, Nagasaki 854-0022, Japan
| | - Yumi Chiba
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hideki Hayashidani
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan; Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
5
|
Hur J, Jung HK, Park SW. Development of an indirect ELISA system for diagnosis of porcine edema disease using recombinant modified Stx2e antigen. J Appl Microbiol 2024; 135:lxae021. [PMID: 38285612 DOI: 10.1093/jambio/lxae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
AIM This study aimed to develop a sensitive and specific recombinant antigen protein indirect enzyme-linked immunosorbent assay (ELISA) kit to detect the Shiga toxin (Stx)-producing Escherichia coli (STEC) antibodies against porcine edema disease (ED). METHODS AND RESULTS The recombinant antigen was co-expressed with the STEC-derived Stx2e A2-fragment and Stx2e B protein in E. coli BL21(DE3) pLysS cells and purified using maltose-binding protein open columns. We used a Shiga-like toxin 2 antibody to test the specificity of the recombinant antigen in an indirect ELISA, which was detected in antigen-coated wells but not in uncoated wells. We tested the indirect ELISA system using samples from the STEC-immunized pig group, the commercial swine farm group, and healthy aborted fetal pleural effusion group; five and twenty samples, respectively, were positive for STEC in the former, whereas all three samples were negative for STEC in the latter. CONCLUSIONS This newly developed indirect ELISA may be a specific method for diagnosing STEC infections in pigs.
Collapse
Affiliation(s)
- Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Ho-Kyoung Jung
- CTCVAC Inc., 106, Saengmyeonggwahakgwan-gil, Hongcheon-eup, Hongcheon-gun, Gangwon-do 25142, Republic of Korea
| | - Seung-Won Park
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si, Gyeongsangbuk-do 38430, Republic of Korea
| |
Collapse
|
6
|
Rodwell EV, Greig DR, Godbole G, Jenkins C. Clinical and public health implications of increasing notifications of LEE-negative Shiga toxin-producing Escherichia coli in England, 2014-2022. J Med Microbiol 2024; 73. [PMID: 38299580 DOI: 10.1099/jmm.0.001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Introduction. Shiga toxin-producing Escherichia coli (STEC) belong to a diverse group of gastrointestinal pathogens. The pathogenic potential of STEC is enhanced by the presence of the pathogenicity island called the Locus of Enterocyte Effacement (LEE), including the intimin encoding gene eae.Gap statement. STEC serotypes O128:H2 (Clonal Complex [CC]25), O91:H14 (CC33), and O146:H21 (CC442) are consistently in the top five STEC serotypes isolated from patients reporting gastrointestinal symptoms in England. However, they are eae/LEE-negative and perceived to be a low risk to public health, and we know little about their microbiology and epidemiology.Aim. We analysed clinical outcomes and genome sequencing data linked to patients infected with LEE-negative STEC belonging to CC25 (O128:H2, O21:H2), CC33 (O91:H14) and, and CC442 (O146:H21, O174:H21) in England to assess the risk to public health.Results. There was an almost ten-fold increase between 2014 and 2022 in the detection of all STEC belonging to CC25, CC33 and CC442 (2014 n=38, 2022 n=336), and a total of 1417 cases. There was a higher proportion of female cases (55-70 %) and more adults than children, with patients aged between 20-40 and >70 most at risk across the different serotypes. Symptoms were consistent across the three dominant serotypes O91:H14 (CC33), O146:H21 (CC442) and O128:H2 (CC25) (diarrhoea >75 %; bloody diarrhoea 25-32 %; abdominal pain 64-72 %; nausea 37-45 %; vomiting 10-24 %; and fever 27-30 %). Phylogenetic analyses revealed multiple events of acquisition and loss of different stx-encoding prophage. Additional putative virulence genes were identified including iha, agn43 and subA.Conclusions. Continued monitoring and surveillance of LEE-negative STEC infections is essential due to the increasing burden of infectious intestinal disease, and the risk that highly pathogenic strains may emerge following acquisition of the Shiga toxin subtypes associated with the most severe clinical outcomes.
Collapse
Affiliation(s)
- Ella V Rodwell
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
| | - David R Greig
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5AT, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Lee K, Iguchi A, Terano C, Hataya H, Isobe J, Seto K, Ishijima N, Akeda Y, Ohnishi M, Iyoda S. Combined usage of serodiagnosis and O antigen typing to isolate Shiga toxin-producing Escherichia coli O76:H7 from a hemolytic uremic syndrome case and genomic insights from the isolate. Microbiol Spectr 2024; 12:e0235523. [PMID: 38092668 PMCID: PMC10790564 DOI: 10.1128/spectrum.02355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/12/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Hemolytic uremic syndrome (HUS) is a life-threatening disease caused by Shiga toxin-producing Escherichia coli (STEC) infection. The treatment approaches for STEC-mediated typical HUS and atypical HUS differ, underscoring the importance of rapid and accurate diagnosis. However, specific detection methods for STECs other than major serogroups, such as O157, O26, and O111, are limited. This study focuses on the utility of PCR-based O-serotyping, serum agglutination tests utilizing antibodies against the identified Og type, and isolation techniques employing antibody-conjugated immunomagnetic beads for STEC isolation. By employing these methods, we successfully isolated a STEC strain of a minor serotype, O76:H7, from a HUS patient.
Collapse
Affiliation(s)
- Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Chikako Terano
- Department of Nephrology and Rheumatology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
- Department of Nephrology, Aichi Children’s Health and Medical Center, Aichi, Japan
| | - Hiroshi Hataya
- Department of Nephrology and Rheumatology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Junko Isobe
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Kazuko Seto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - EHEC Working Group in JapanMorimotoYoOgawaKeikoIshiguroMakotoKikuchiMasayukiSampeiMikaAokiYokoSetoJunjiIshikawaKanakoSatoTakashiKikuchiKojiTomariKentaroUenoHiroyukiHazamaKyokoKikuchiTakashiYajimaMasayukiKanazawaSatokoKawaseMasaoKimataKeikoYuruzumeSayaShirozaMikaKitagawaEmikoYoshikawaMisaYokoyamaKojiOnoSatokoFurukawaYumiMatsuyamaMikiFurutaAyakoNodaMakikoKameyamaYoshihikoAotaTatsuakiKatamuneChiharuShimodaYukoAbeYuriTamuraSawakoFurukawaYurikaObaraAtsumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Nephrology and Rheumatology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
- Department of Nephrology, Aichi Children’s Health and Medical Center, Aichi, Japan
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| |
Collapse
|
8
|
Brown PI, Ojiakor A, Chemello AJ, Fowler CC. The diverse landscape of AB5-type toxins. ENGINEERING MICROBIOLOGY 2023; 3:100104. [PMID: 39628907 PMCID: PMC11610972 DOI: 10.1016/j.engmic.2023.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 12/06/2024]
Abstract
AB5-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae, Vibrio cholerae, Bordetella pertussis, and certain lineages of pathogenic Escherichia coli and Salmonella enterica. AB5 toxins are composed of an active (A) subunit that manipulates host cell biology in complex with a pentameric binding/delivery (B) subunit that mediates the toxin's entry into host cells and its subsequent intracellular trafficking. Broadly speaking, all known AB5-type toxins adopt similar structural architectures and employ similar mechanisms of binding, entering and trafficking within host cells. Despite this, there is a remarkable amount of diversity amongst AB5-type toxins; this includes different toxin families with unrelated activities, as well as variation within families that can have profound functional consequences. In this review, we discuss the diversity that exists amongst characterized AB5-type toxins, with an emphasis on the genetic and functional variability within AB5 toxin families, how this may have evolved, and its impact on human disease.
Collapse
Affiliation(s)
- Paris I. Brown
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Adaobi Ojiakor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| |
Collapse
|
9
|
Kavinesan K, Sugumar G, Chrisolite B, Muthiahsethupathy A, Sudarshan S, Parthiban F, Mansoor M. Phenotypic and genotypic characterization of pathogenic Escherichia coli identified in resistance mapping of β-lactam drug-resistant isolates from seafood along Tuticorin coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68111-68128. [PMID: 37120498 DOI: 10.1007/s11356-023-27008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
The ubiquity of pathogenic E. coli isolate possessing antimicrobial resistance was investigated in seafood samples procured from major seafood supply chain markets established for export and domestic consumption along Tuticorin coast. Out of 63 seafood samples examined, 29 (46%) were found to be contaminated by pathogenic E. coli harbouring one or more genes of virulent potential. Based on virulome profiling, 9.55% of isolates belonged to enterotoxigenic E. coli (ETEC), 8.08% to enteroaggregative E. coli (EAEC), 7.35% to enterohemorrhagic E. coli (EHEC), 2.20% to enteropathogenic E. coli (EPEC), and 2.20% to uropathogenic E. coli (UPEC). All the 34 virulome positive and haemolytic pathogenic E. coli have been serogrouped as O119, O76, O18, O134, O149, O120, O114, O25, O55, O127, O6, O78, O83, O17 and clinically significant O111, O121, O84, O26, O103, and O104 (non-O157 STEC) serotypes in this study. Multi-drug resistance (MDR) (≥ 3 antibiotic classes/sub-classes) was exhibited in 38.23% of the pathogenic E. coli, and 17.64% were extensive drug resistant (XDR). Extended spectrum of β-lactamase (ESBL) genotypes were confirmed in 32.35% isolates and 20.63% isolates harboured ampC gene. One sample (Penaeus semisulcatus) collected from landing centre (L1) harboured all ESBL genotypes blaCTX-M, blaSHV, blaTEM, and ampC genes. Hierarchical clustering of isolates revealed the separation of ESBL isolates into three clusters and non-ESBL isolates into three clusters based on phenotypic and genotypic variations. Based on dendrogram analysis on antibiotic efficacy pattern, carbapenems and β-lactam inhibitor drugs are the best available treatment for ESBL and non-ESBL infections. This study emphasizes the significance of comprehensive surveillance of pathogenic E. coli serogroups that pose serious threat to public health and compliance of AMR antimicrobial resistant genes in seafood that hinder seafood supply chain.
Collapse
Affiliation(s)
- Kumar Kavinesan
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Gopalrajan Sugumar
- Tamil Nadu Dr. J.Jayalalithaa Fisheries University, Nagapattinam, Tamil Nadu, India, 611 002
| | - Bagthasingh Chrisolite
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008.
| | | | - Shanmugam Sudarshan
- TNJFU-Dr.MGR Fisheries College and Research Institute, TNJFU, Thalainayeru, Tamil Nadu, India, 614712
| | - Fathiraja Parthiban
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Mohamed Mansoor
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| |
Collapse
|
10
|
Bonino MP, Crivelli XB, Petrina JF, Galateo S, Gomes TAT, Navarro A, Cundon C, Broglio A, Sanin M, Bentancor A. Detection and analysis of Shiga toxin producing and enteropathogenic Escherichia coli in cattle from Tierra del Fuego, Argentina. Braz J Microbiol 2023; 54:1257-1266. [PMID: 37041346 PMCID: PMC10235289 DOI: 10.1007/s42770-023-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are pathovars that affect mainly infants' health. Cattle are the main reservoir of STEC. Uremic hemolytic syndrome and diarrheas can be found at high rates in Tierra del Fuego (TDF). This study aimed to establish the prevalence of STEC and EPEC in cattle at slaughterhouses in TDF and to analyze the isolated strains. Out of 194 samples from two slaughterhouses, STEC prevalence was 15%, and EPEC prevalence was 5%. Twenty-seven STEC strains and one EPEC were isolated. The most prevalent STEC serotypes were O185:H19 (7), O185:H7 (6), and O178:H19 (5). There were no STEC eae + strains (AE-STEC) or serogroup O157 detected in this study. The prevalent genotype was stx2c (10/27) followed by stx1a/stx2hb (4/27). Fourteen percent of the strains presented at least one stx non-typeable subtype (4/27). Shiga toxin production was detected in 25/27 STEC strains. The prevalent module for the Locus of Adhesion and Autoaggregation (LAA) island was module III (7/27). EPEC strain was categorized as atypical and with the ability to cause A/E lesion. The ehxA gene was present in 16/28 strains, 12 of which were capable of producing hemolysis. No hybrid strains were detected in this work. Antimicrobial susceptibility tests showed that all strains were resistant to ampicillin and 20/28 were resistant to aminoglycosides. No statistical differences could be seen in the detection of STEC or EPEC either by slaughterhouse location or by production system (extensive grass or feedlot). The rate of STEC detection was lower than the one reported for the rest of Argentina. STEC/EPEC relation was 3 to 1. This is the first study on cattle from TDF as reservoir for strains that are potentially pathogenic to humans.
Collapse
Affiliation(s)
- Maria Paz Bonino
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ximena Blanco Crivelli
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Juan Facundo Petrina
- Departamento de Epidemiología, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | - Sebastian Galateo
- Dirección de Fiscalización Sanitaria, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | | | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Cecilia Cundon
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Alicia Broglio
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Sanin
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Adriana Bentancor
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| |
Collapse
|
11
|
Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny. J Microbiol 2022; 60:689-704. [DOI: 10.1007/s12275-022-1616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 10/17/2022]
|
12
|
Escherichia coli Strains Responsible for Cystitis in Female Pediatric Patients with Normal and Abnormal Urinary Tracts Have Different Virulence Profiles. Pathogens 2022; 11:pathogens11020231. [PMID: 35215173 PMCID: PMC8876236 DOI: 10.3390/pathogens11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The role of uropathogenic Escherichia coli (UPEC) in colonization and infection of female patients with anatomical and functional abnormalities of the urinary system is elusive. In this study, the phenotype, genotype and the phylogeny of UPEC strains isolated from the urine of pediatric female patients with cystitis of normal and abnormal urinary tract were determined. Multiplex PCR results demonstrated that 86% of the strains isolated from female patients with normal urinary tract (NUT), belonged to the phylo-groups B2 and D. Their prevalence decreased to 23% in strains isolated from patients with abnormal urinary tract (AUT). More of the isolates from AUT patients produced a biofilm on polystyrene and polyvinyl chloride (PVC), adhered to epithelial cells, and encoded pap and sfa genes than strains isolated from female patients with NUT. In contrast, a higher number of hemolysin-producing strains with serogroups associated with UPEC were isolated from patients with NUT. In summary, the results suggest that cystitis in female patients with NUT is associated with ExPEC, whereas cystitis in female patients with AUT is associated with pathogenic intestinal E. coli strains that have acquired the ability to colonize the bladder.
Collapse
|
13
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
14
|
Elsayed MSAE, Eldsouky SM, Roshdy T, Bayoume AMA, Nasr GM, Salama ASA, Akl BA, Hasan AS, Shahat AK, Khashaba RA, Abdelhalim WA, Nasr HE, Mohammed LA, Salah A. Genetic and antimicrobial resistance profiles of non-O157 Shiga toxin-producing Escherichia coli from different sources in Egypt. BMC Microbiol 2021; 21:257. [PMID: 34556033 PMCID: PMC8461963 DOI: 10.1186/s12866-021-02308-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Shiga toxin-producing Escherichia coli (STEC) represented a great risk to public health. In this study, 60 STEC strains recovered from broiler and duck fecal samples, cow's milk, cattle beef, human urine, and ear discharge were screened for 12 virulence genes, phenotypic and genotypic antimicrobial resistance, and multiple-locus variable-number tandem-repeat analysis (MLVA). RESULTS The majority of strains harbored Shiga toxin 1 (stx1) and stx1d, stx2 and stx2e, and ehxA genes, while a minority harbored stx2c subtype and eaeA. We identified 10 stx gene combinations; most of strains 31/60 (51.7%) exhibited four copies of stx genes, namely the stx1, stx1d, stx2, and stx2e, and the strains exhibited a high range of multiple antimicrobial resistance indices. The resistance genes blaCTX-M-1 and blaTEM were detected. For the oxytetracycline resistance genes, most of strains contained tetA, tetB, tetE, and tetG while the tetC was present at low frequency. MLVA genotyping resolved 26 unique genotypes; genotype 21 was highly prevalent. The six highly discriminatory loci DI = 0.9138 are suitable for the preliminary genotyping of STEC from animals and humans. CONCLUSIONS The STEC isolated from animals are virulent, resistant to antimicrobials, and genetically diverse, thus demands greater attention for the potential risk to human.
Collapse
Affiliation(s)
- Mohamed Sabry Abd Elraheam Elsayed
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt.
| | - Samah Mahmoud Eldsouky
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Abeer Mohamed Ahmed Bayoume
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Ghada M Nasr
- Department of Molecular Diagnostics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Ali S A Salama
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Behiry A Akl
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Al Shaimaa Hasan
- Department of Medical Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Amany Kasem Shahat
- Department of Medical Microbiology and Immunology, Benha University, Benha, Egypt
| | - Rana Atef Khashaba
- Department of Clinical Pathology and Chemistry, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Hend E Nasr
- Department of Medical Biochemistry and Molecular Biology, Benha University, Benha, Egypt
| | | | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
15
|
Huang X, Yang X, Shi X, Erickson DL, Nagaraja TG, Meng J. Whole-genome sequencing analysis of uncommon Shiga toxin-producing Escherichia coli from cattle: Virulence gene profiles, antimicrobial resistance predictions, and identification of novel O-serogroups. Food Microbiol 2021; 99:103821. [PMID: 34119106 DOI: 10.1016/j.fm.2021.103821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Shiga toxin-producing E. coli (STEC) are major foodborne pathogens. While many studies have focused on the "top-7 STEC", little is known for minor serogroups. A total of 284 non-top-7 STEC strains isolated from cattle feces were subjected to whole-genome sequencing (WGS) to determine the serotypes, the presence of virulence genes and antimicrobial resistance (AMR) determinants. Nineteen typeable and three non-typeable serotypes with novel O-antigen loci were identified. Twenty-one AMR genes and point mutations in another six genes that conferred resistance to 10 antimicrobial classes were detected, as well as 46 virulence genes. The distribution of 33 virulence genes and 15 AMR determinants exhibited significant differences among serotypes (p < 0.05). Among all strains, 81.7% (n = 232) and 14.1% (n = 40) carried stx2 and stx1 only, respectively; only 4.2% (n = 12) carried both. Subtypes stx1a, stx1c, stx2a, stx2c, stx2d, and stx2g were identified. Forty-six strains carried eae and stx2a and therefore had the potential cause severe diseases; 47 strains were genetically related to human clinical strains inferred from a pan-genome phylogenetic tree. We were able to demonstrate the utility of WGS as a surveillance tool to characterize the novel serotypes, as well as AMR and virulence profiles of uncommon STEC that could potentially cause human illness.
Collapse
Affiliation(s)
- Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA
| | - Xun Yang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David L Erickson
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Carter MQ, Pham A, He X, Hnasko R. Genomic Insight into Natural Inactivation of Shiga Toxin 2 Production in an EnvironmentalEscherichia coliStrain Producing Shiga Toxin 1. Foodborne Pathog Dis 2020; 17:555-567. [DOI: 10.1089/fpd.2019.2767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Xiaohua He
- Foodborne Toxin Prevention and Detection Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| |
Collapse
|
17
|
Remfry SE, Amachawadi RG, Shi X, Bai J, Woodworth JC, Tokach MD, Dritz SS, Goodband RD, DeRouchey JM, Nagaraja TG. Polymerase Chain Reaction-Based Prevalence of Serogroups of Escherichia coli Known to Carry Shiga Toxin Genes in Feces of Finisher Pigs. Foodborne Pathog Dis 2020; 17:782-791. [PMID: 32833570 DOI: 10.1089/fpd.2020.2814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens and seven serogroups, O26, O45, O103, O111, O121, O145, and O157, that account for the majority of the STEC-associated illness in humans. Similar to cattle, swine also harbor STEC and shed them in the feces and can be a source of human STEC infections. Information on the prevalence of STEC in swine feces is limited. Therefore, our objective was to utilize polymerase chain reaction (PCR) assays to determine prevalence of major virulence genes and serogroups of STEC. Fecal samples (n = 598), collected from finisher pigs within 3 weeks before marketing in 10 pig flows located in 8 states, were included in the study. Samples enriched in E. coli broth were subjected to a real-time PCR assay targeting three virulence genes, Shiga toxin 1 (stx1), Shiga toxin 2 (stx2), and intimin (eae), which encode for Shiga toxins 1 and 2, and intimin, respectively. A novel PCR assay was designed and validated to detect serogroups, O8, O20, O59, O86, O91, O100, O120, and O174, previously reported to be commonly present in swine feces. In addition, enriched fecal samples positive for Shiga toxin genes were subjected to a multiplex PCR assay targeting O26, O45, O103, O104, O111, O121, O145, and O157 serogroups implicated in human clinical infections. Of the 598 fecal samples tested by real-time PCR, 25.9%, 65.1%, and 67% were positive for stx1, stx2, and eae, respectively. The novel eight-plex PCR assay indicated the predominant prevalence of O8 (88.6%), O86 (35.5%), O174 (24.1%), O100 (20.2%), and O91 (15.6%) serogroups. Among the seven serogroups relevant to human infections, three serogroups, O121 (17.6%), O157 (14%), and O26 (11%) were predominant. PCR-based detection indicated high prevalence of Shiga toxin genes and serogroups that are known to carry Shiga toxin genes, including serogroups commonly prevalent in cattle feces and implicated in human infections and in edema disease in swine.
Collapse
Affiliation(s)
- Sarah E Remfry
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Steve S Dritz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
18
|
Role of the Nitric Oxide Reductase NorVW in the Survival and Virulence of Enterohaemorrhagic Escherichia coli during Infection. Pathogens 2020; 9:pathogens9090683. [PMID: 32825770 PMCID: PMC7558590 DOI: 10.3390/pathogens9090683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/20/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are bacterial pathogens responsible for life-threatening diseases in humans, such as hemolytic and uremic syndrome. It has been previously demonstrated that the interplay between EHEC and nitric oxide (NO), a mediator of the host immune innate response, is critical for infection outcome, since NO affects both Shiga toxin (Stx) production and adhesion to enterocytes. In this study, we investigated the role of the NO reductase NorVW in the virulence and fitness of two EHEC strains in a murine model of infection. We determined that the deletion of norVW in the strain O91:H21 B2F1 has no impact on its virulence, whereas it reduces the ability of the strain O157:H7 620 to persist in the mouse gut and to produce Stx. We also revealed that the fitness defect of strain 620 ΔnorVW is strongly attenuated when mice are treated with an NO synthase inhibitor. Altogether, these results demonstrate that the NO reductase NorVW participates in EHEC resistance against NO produced by the host and promotes virulence through the modulation of Stx synthesis. The contribution of NorVW in the EHEC infectious process is, however, strain-dependent and suggests that the EHEC response to nitrosative stress is complex and multifactorial.
Collapse
|
19
|
Long J, Xu Y, Ou L, Yang H, Xi Y, Chen S, Duan G. Utilization of Clustered Regularly Interspaced Short Palindromic Repeats to Genotype Escherichia coli Serogroup O80. Front Microbiol 2020; 11:1708. [PMID: 32793166 PMCID: PMC7390953 DOI: 10.3389/fmicb.2020.01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in Europe and is involved in hemolytic uremic syndrome with bacteremia. However, whether STEC O80 strains can be genotyped using CRISPR has not been evaluated. In this study, we aimed to characterize the genetic diversity of 81 E. coli serogroup O80 isolates deposited in the National Center for Biotechnology Information databases using CRISPR typing and to explore the association between virulence potential and CRISPR types (CTs). A total of 21 CTs were identified in 80 O80 strains. CRISRP typing provided discrimination with variants of a single serotype, which suggested a stronger discriminatory power. Based on CRISPR spacer profiles, 70 O80:H2 isolates were further divided into four lineages (lineage LI, LII, LIII, and LIV), which correlated well with whole-genome single nucleotide polymorphisms typing and virulence gene profiles. Moreover, the association between CRISPR lineages and virulence gene profiles hinted that STEC O80:H2 strains may originate from O80:H19 or O80:H26 and that lineage LI may have been evolved from lineage LII. CT2 and CT13 were shared by human and cattle isolates, suggesting that there might be the potential transmission between cattle and human. Collectively, CRISPR typing is one technology that can be used to monitor the transmission of STEC O80 strains and provide new insights into microevolution of serogroup O80.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yake Xu
- Institute for AIDS/STD Control and Prevention, Henan Province Center for Disease Control and Prevention, Henan, China
| | - Liuyang Ou
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
20
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
21
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Monteiro Pires S, Morabito S, Niskanen T, Scheutz F, da Silva Felício MT, Messens W, Bolton D. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5967] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
22
|
Gardette M, Le Hello S, Mariani-Kurkdjian P, Fabre L, Gravey F, Garrivier A, Loukiadis E, Jubelin G. Identification and prevalence of in vivo-induced genes in enterohaemorrhagic Escherichia coli. Virulence 2019; 10:180-193. [PMID: 30806162 PMCID: PMC6550539 DOI: 10.1080/21505594.2019.1582976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne pathogens responsible for bloody diarrhoea and renal failure in humans. While Shiga toxin (Stx) is the cardinal virulence factor of EHEC, its production by E. coli is not sufficient to cause disease and many Shiga-toxin producing E. coli (STEC) strains have never been implicated in human infection. So far, the pathophysiology of EHEC infection is not fully understood and more knowledge is needed to characterize the "auxiliary" factors that enable a STEC strain to cause disease in humans. In this study, we applied a recombinase-based in vivo expression technology (RIVET) to the EHEC reference strain EDL933 in order to identify genes specifically induced during the infectious process, using mouse as an infection model. We identified 31 in vivo-induced (ivi) genes having functions related to metabolism, stress adaptive response and bacterial virulence or fitness. Eight of the 31 ivi genes were found to be heterogeneously distributed in EHEC strains circulating in France these last years. In addition, they are more prevalent in strains from the TOP seven priority serotypes and particularly strains carrying significant virulence determinants such as Stx2 and intimin adhesin. This work sheds further light on bacterial determinants over-expressed in vivo during infection that may contribute to the potential of STEC strains to cause disease in humans.
Collapse
Affiliation(s)
- Marion Gardette
- UCA, INRA, UMR454 MEDIS, Clermont-Ferrand, France
- Laboratoire d’écologie microbienne de Lyon, Université de Lyon, CNRS, INRA, UCBL, VetAgro Sup, Marcy l’Etoile, France
| | - Simon Le Hello
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
- Université de Normandie, EA 2656 GRAM 2.0, UNICAEN, Caen, France
| | - Patricia Mariani-Kurkdjian
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Laetitia Fabre
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - François Gravey
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
- Université de Normandie, EA 2656 GRAM 2.0, UNICAEN, Caen, France
| | | | - Estelle Loukiadis
- Laboratoire d’écologie microbienne de Lyon, Université de Lyon, CNRS, INRA, UCBL, VetAgro Sup, Marcy l’Etoile, France
- Laboratoire national de référence des E. coli, Université de Lyon, VetAgro Sup, Marcy l’Etoile, France
| | | |
Collapse
|
23
|
Peng Z, Liang W, Hu Z, Li X, Guo R, Hua L, Tang X, Tan C, Chen H, Wang X, Wu B. O-serogroups, virulence genes, antimicrobial susceptibility, and MLST genotypes of Shiga toxin-producing Escherichia coli from swine and cattle in Central China. BMC Vet Res 2019; 15:427. [PMID: 31783837 PMCID: PMC6883634 DOI: 10.1186/s12917-019-2177-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/15/2019] [Indexed: 11/12/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is a leading cause of worldwide food-borne and waterborne infections. Despite an increase in the number of STEC outbreaks, there is a lack of data on prevalence of STEC at the farm level, distribution of serogroups, and virulence factors. Results In the present study, a total of 91 (6.16%) STEC strains were isolated from 1477 samples including pig intestines, pig feces, cattle feces, milk, and water from dairy farms. The isolation rates of STEC strains from pig intestines, pig feces, and cattle feces were 7.41% (32/432), 4.38% (21/480), and 9.57% (38/397), respectively. No STEC was isolated from the fresh milk and water samples. By O-serotyping methods, a total of 30 types of O-antigens were determined, and the main types were O100, O97, O91, O149, O26, O92, O102, O157, and O34. Detection of selected virulence genes (stx1, stx2, eae, ehxA, saa) revealed that over 94.51% (86/91) of the isolates carried more than two types of virulence associated genes, and approximately 71.43% (65/91) of the isolates carried both stx1 and stx2, simultaneously. Antimicrobial susceptibility tests showed that most of the STEC isolates were susceptible to ofloxacin and norfloxacin, but showed resistance to tetracycline, kanamycin, trimethoprim-sulfamethoxazole, streptomycin, amoxicillin, and ampicillin. MLST determined 13 categories of sequence types (STs), and ST297 (31.87%; 29/91) was the most dominant clone. This clone displayed a close relationship to virulent strains STEC ST678 (O104: H4). The prevalence of ST297 clones should receive more attentions. Conclusions Our preliminary data revealed that a heterogeneous group of STEC is present, but the non-O157 serogroups and some ST clones such as ST297 should receive more attentions.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zizhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaosong Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Guo
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell. Infect Immun 2019; 87:IAI.00428-19. [PMID: 31527121 DOI: 10.1128/iai.00428-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.
Collapse
|
25
|
Smith AM, Tau NP, Kalule BJ, Nicol MP, McCulloch M, Jacobs CA, McCarthy KM, Ismail A, Allam M, Kleynhans J. Shiga toxin-producing Escherichia coli O26:H11 associated with a cluster of haemolytic uraemic syndrome cases in South Africa, 2017. Access Microbiol 2019; 1:e000061. [PMID: 32974561 PMCID: PMC7472548 DOI: 10.1099/acmi.0.000061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that may cause diarrhoeal outbreaks and occasionally are associated with haemolytic-uraemic syndrome (HUS). We report on STEC O26:H11 associated with a cluster of four HUS cases in South Africa in 2017. METHODOLOGY All case-patients were female and aged 5 years and under. Standard microbiological tests were performed for culture and identification of STEC from specimens (human stool and food samples). Further analysis of genomic DNA extracted from bacterial cultures and specimens included PCR for specific virulence genes, whole-genome sequencing and shotgun metagenomic sequencing. RESULTS For 2/4 cases, stool specimens revealed STEC O26:H11 containing eae, stx2a and stx2b virulence genes. All food samples were found to be negative for STEC. No epidemiological links could be established between the HUS cases. Dried meat products were the leading food item suspected to be the vehicle of transmission for these cases, as 3/4 case-patients reported they had eaten this. However, testing of dried meat products could not confirm this. CONCLUSION Since STEC infection does not always lead to severe symptoms, it is possible that many more cases were associated with this cluster and largely went unrecognized.
Collapse
Affiliation(s)
- Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nomsa P. Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Bosco J. Kalule
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P. Nicol
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Mignon McCulloch
- Red Cross Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Charlene A. Jacobs
- Communicable Disease Control, Department of Health, Cape Town, South Africa
| | - Kerrigan M. McCarthy
- Division of Public Health Surveillance and Response, NICD, NHLS, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, NICD, NHLS, Johannesburg, South Africa
| | - Mushal Allam
- Sequencing Core Facility, NICD, NHLS, Johannesburg, South Africa
| | - Jackie Kleynhans
- South African Field Epidemiology Training Programme, NICD, NHLS, Johannesburg, South Africa
| |
Collapse
|
26
|
The importance of integrating genetic strain information for managing cases of Shiga toxin-producing E. coli infection. Epidemiol Infect 2019; 147:e264. [PMID: 31496452 PMCID: PMC6805796 DOI: 10.1017/s0950268819001602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Shiga toxin-producing Escherichia coli in British Columbia, 2011-2017: Analysis to inform exclusion guidelines. ACTA ACUST UNITED AC 2019; 45:238-243. [PMID: 31556405 DOI: 10.14745/ccdr.v45i09a03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) can cause severe illness including bloody diarrhea and hemolytic-uremic syndrome (HUS) through the production of Shiga toxins 1 (Stx1) and 2 (Stx2). E. coli O157:H7 was the most common serotype detected in the 1980s to 1990s, but improvements in laboratory methods have led to increased detection of non-O157 STEC. Non-O157 STEC producing only Stx1 tend to cause milder clinical illness. Exclusion guidelines restrict return to high-risk work or settings for STEC cases, but most do not differentiate between STEC serogroups and Stx type. Objective To analyze British Columbia (BC) laboratory and surveillance data to inform the BC STEC exclusion guideline. Methods For all STEC cases reported in BC in 2011-2017, laboratory and epidemiological data were obtained through provincial laboratory and reportable disease electronic systems, respectively. Incidence was measured for all STEC combined as well as by serogroup. Associations were measured between serogroups, Stx types and clinical outcomes. Results Over the seven year period, 984 cases of STEC were reported. A decrease in O157 incidence was observed, while non-O157 rates increased. The O157 serogroup was significantly associated with Stx2. Significant associations were observed between Stx2 and bloody diarrhea, hospitalization and HUS. Conclusion The epidemiology of STEC has changed in BC as laboratories increasingly distinguish between O157 and non-O157 cases and identify Stx type. It appears that non-O157 cases with Stx1 are less severe than O157 cases with Stx2. The BC STEC exclusion guidelines were updated as a result of this analysis.
Collapse
|
28
|
Karama M, Mainga AO, Cenci-Goga BT, Malahlela M, El-Ashram S, Kalake A. Molecular profiling and antimicrobial resistance of Shiga toxin-producing Escherichia coli O26, O45, O103, O121, O145 and O157 isolates from cattle on cow-calf operations in South Africa. Sci Rep 2019; 9:11930. [PMID: 31417098 PMCID: PMC6695430 DOI: 10.1038/s41598-019-47948-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/26/2019] [Indexed: 01/16/2023] Open
Abstract
In this study, 140 cattle STEC isolates belonging to serogroups O157, O26, O145, O121, O103 and O45 were characterized for 38 virulence-associated genes, antimicrobial resistance profiles and genotyped by PFGE. The majority of isolates carried both stx1 and stx2 concurrently, stx2c, and stx2d; plasmid-encoded genes ehxA, espP, subA and saa but lacked katP and etpD and eaeA. Possession of eaeA was significantly associated with the presence of nle genes, katP, etpD, ureC and terC. However, saa and subA, stx1c and stx1d were only detected in eaeA negative isolates. A complete OI-122 and most non-LEE effector genes were detected in only two eaeA positive serotypes, including STEC O157:H7 and O103:H2. The eaeA gene was detected in STEC serotypes that are commonly implicated in severe humans disease and outbreaks including STEC O157:H7, STEC O145:H28 and O103:H2. PFGE revealed that the isolates were highly diverse with very low rates of antimicrobial resistance. In conclusion, only a small number of cattle STEC serotypes that possessed eaeA, had the highest number of virulence-associated genes, indicative of their high virulence. Further characterization of STEC O157:H7, STEC O145:H28 and O103:H2 using whole genome sequencing will be needed to fully understand their virulence potential for humans.
Collapse
Affiliation(s)
- Musafiri Karama
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - Alfred O Mainga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Beniamino T Cenci-Goga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Dipartimento di Scienze Biopatologiche, Laboratorio di Ispezione degli Alimenti di Origine Animale, Facoltà di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Alan Kalake
- Gauteng Department of Agriculture and Rural Development (GDARD), Johannesburg, South Africa
| |
Collapse
|
29
|
Dynamic Gene Network Analysis of Caco-2 Cell Response to Shiga Toxin-Producing Escherichia coli-Associated Hemolytic-Uremic Syndrome. Microorganisms 2019; 7:microorganisms7070195. [PMID: 31288487 PMCID: PMC6680469 DOI: 10.3390/microorganisms7070195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/26/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic-uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e. expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria-enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte-bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte-bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.
Collapse
|
30
|
Cointe A, Birgy A, Mariani-Kurkdjian P, Liguori S, Courroux C, Blanco J, Delannoy S, Fach P, Loukiadis E, Bidet P, Bonacorsi S. Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin-Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Emerg Infect Dis 2019; 24:2262-2269. [PMID: 30457551 PMCID: PMC6256387 DOI: 10.3201/eid2412.180272] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-ξ, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum β-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.
Collapse
|
31
|
Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens †. J Food Prot 2019; 82:724-767. [PMID: 30969806 DOI: 10.4315/0362-028x.jfp-18-479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
-
- NACMCF Executive Secretariat, * U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, PP3, 9-178, 1400 Independence Avenue S.W., Washington, D.C. 20250-3700, USA
| |
Collapse
|
32
|
Bai X, Zhang J, Ambikan A, Jernberg C, Ehricht R, Scheutz F, Xiong Y, Matussek A. Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden. Sci Rep 2019; 9:5619. [PMID: 30948755 PMCID: PMC6449507 DOI: 10.1038/s41598-019-42122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid E. coli pathotypes are representing emerging public health threats with enhanced virulence from different pathotypes. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) have been reported to be associated with diarrheal disease and hemolytic uremic syndrome (HUS) in humans. Here, we identified and characterized four clinical STEC/ETEC hybrids from diarrheal patients with or without fever or abdominal pain and healthy contact in Sweden. Rare stx2 subtypes were present in STEC/ETEC hybrids. Stx2 production was detectable in stx2a and stx2e containing strains. Different copies of ETEC virulence marker, sta gene, were found in two hybrids. Three sta subtypes, namely, sta1, sta4 and sta5 were designated, with sta4 being predominant. The hybrids represented diverse and rare serotypes (O15:H16, O187:H28, O100:H30, and O136:H12). Genome-wide phylogeny revealed that these hybrids exhibited close relatedness with certain ETEC, STEC/ETEC hybrid and commensal E. coli strains, implying the potential acquisition of Stx-phages or/and ETEC virulence genes in the emergence of STEC/ETEC hybrids. Given the emergence and public health significance of hybrid pathotypes, a broader range of virulence markers should be considered in the E. coli pathotypes diagnostics, and targeted follow up of cases is suggested to better understand the hybrid infection.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Massey, New Zealand
| | - Anoop Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Ralf Ehricht
- InfectoGnostics Research Campus e.V., Philosophenweg 7, Jena, Germany.,Leibniz Institute of Photonic Technology e.V. Jena (Leibniz-IPHT), Jena, Germany
| | - Flemming Scheutz
- The International Centre for Reference and Research on Escherichia and Klebsiella, Unit of Foodborne Bacteria and Typing, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden. .,Karolinska University Laboratory, Stockholm, Sweden. .,Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.
| |
Collapse
|
33
|
González-Escalona N, Kase JA. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010-2017. PLoS One 2019; 14:e0214620. [PMID: 30934002 PMCID: PMC6443163 DOI: 10.1371/journal.pone.0214620] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/15/2019] [Indexed: 11/19/2022] Open
Abstract
Illnesses caused by Shiga toxin-producing Escherichia coli (STECs) can be life threatening, such as hemolytic uremic syndrome (HUS). The STECs most frequently identified by USDA's Microbiological Data Program (MDP) carried toxin gene subtypes stx1a and/or stx2a. Here we described the genome sequences of 331 STECs isolated from foods regulated by the FDA 2010-2017, and determined their genomic identity, serotype, sequence type, virulence potential, and prevalence of antimicrobial resistance. Isolates were selected from the MDP archive, routine food testing by FDA field labs (ORA), and food testing by a contract company. Only 276 (83%) strains were confirmed as STECs by in silico analysis. Foods from which STECs were recovered included cilantro (6%), spinach (25%), lettuce (11%), and flour (9%). Phylogenetic analysis using core genome MLST revealed these STEC genomes were highly variable, with some clustering associated with ST types and serotypes. We detected 95 different sequence types (ST); several ST were previously associated with HUS: ST21 and ST29 (O26:H11), ST11 (O157:H7), ST33 (O91:H14), ST17 (O103:H2), and ST16 (O111:H-). in silico virulome analyses showed ~ 51% of these strains were potentially pathogenic [besides stx gene they also carried eae (25%) or 26% saa (26%)]. Virulence gene prevalence was also determined: stx1 only (19%); stx2 only (66%); and stx1/sxt2 (15%). Our data form a new WGS dataset that can be used to support food safety investigations and monitor the recurrence/emergence of E. coli in foods.
Collapse
Affiliation(s)
- Narjol González-Escalona
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Julie Ann Kase
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
34
|
Silva CJ, Lee BG, Yambao JC, Erickson-Beltran ML, Quiñones B. Using Nanospray Liquid Chromatography and Mass Spectrometry to Quantitate Shiga Toxin Production in Environmental Escherichia coli Recovered from a Major Produce Production Region in California. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1554-1562. [PMID: 30485086 DOI: 10.1021/acs.jafc.8b05324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A set of 45 environmental strains of Shiga toxin producing Escherichia coli (STEC) from three California counties were analyzed for Shiga toxin production by nanospray liquid chromatography-mass spectrometry and Vero cell bioassay. The STEC in this set comprised six serotypes ((O113:H21, O121:H19, O157:H7, O6:H34, O177:H25, and O185:H7) each containing either the stx2a or stx2c operon. Six of the seven O113:H21 were found to contain two distinct stx2a operons. Eight strains of O157:H7 possessed a stx2c operon whose A subunit gene was interrupted by an insertion sequence (IS1203v). Shiga toxin production was induced by nutrient depletion and quantitated by mass spectrometry. The 37 strains produced Shiga toxins in a near 50-fold range (1.4-49 ng/mL). The IS-interrupted strains expressed low but measurable amounts of the B subunits (0.5-1.9 ng/mL). Another strain possessed an identical stx operon without an IS interruption and produced intact Stx2c (5.7 ng/mL).
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Bertram G Lee
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Jaszemyn C Yambao
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Melissa L Erickson-Beltran
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Beatriz Quiñones
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| |
Collapse
|
35
|
Hazard Identification and Characterization: Criteria for Categorizing Shiga Toxin-Producing Escherichia coli on a Risk Basis †. J Food Prot 2019; 82:7-21. [PMID: 30586326 DOI: 10.4315/0362-028x.jfp-18-291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a large, highly diverse group of strains. Since the emergence of STEC serotype O157:H7 as an important foodborne pathogen, serotype data have been used for identifying STEC strains, and this use continued as other serotypes were implicated in human infections. An estimated 470 STEC serotypes have been identified, which can produce one or more of the 12 known Shiga toxin (Stx) subtypes. The number of STEC serotypes that cause human illness varies but is probably higher than 100. However, many STEC virulence genes are mobile and can be lost or transferred to other bacteria; therefore, STEC strains that have the same serotype may not carry the same virulence genes or pose the same risk. Although serotype information is useful in outbreak investigations and surveillance studies, it is not a reliable means of assessing the human health risk posed by a particular STEC serotype. To contribute to the development of a set of criteria that would more reliably support hazard identification, this review considered each of the factors contributing to a negative human health outcome: mild diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). STEC pathogenesis involves entry into the human gut (often via ingestion), attachment to the intestinal epithelial cells, and elaboration of Stx. Production of Stx, which disrupts normal cellular functions and causes cell damage, alone without adherence of bacterial cells to gut epithelial cells is insufficient to cause severe illness. The principal adherence factor in STEC is the intimin protein coded by the eae gene. The aggregative adherence fimbriae adhesins regulated by the aggR gene of enteroaggregative E. coli strains are also effective adherence factors. The stx2a gene is most often present in locus of enterocyte effacement ( eae)-positive STEC strains and has consistently been associated with HUS. The stx2a gene has also been found in eae-negative, aggR-positive STEC that have caused HUS. HUS cases where other stx gene subtypes were identified indicate that other factors such as host susceptibility and the genetic cocktail of virulence genes in individual isolates may affect their association with severe diseases.
Collapse
Affiliation(s)
-
- The Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) Secretariat, * Food Safety and Quality Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
36
|
Varcasia BM, Tomassetti F, De Santis L, Di Giamberardino F, Lovari S, Bilei S, De Santis P. Presence of Shiga Toxin-Producing Escherichia coli (STEC) in Fresh Beef Marketed in 13 Regions of ITALY (2017). Microorganisms 2018; 6:E126. [PMID: 30563244 PMCID: PMC6313577 DOI: 10.3390/microorganisms6040126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the prevalence of Shiga toxin-producing Escherichia coli in fresh beef marketed in 2017 in 13 regions of Italy, to evaluate the potential risk to human health. According to the ISO/TS 13136:2012 standard, 239 samples were analysed and nine were STEC positive, from which 20 strains were isolated. The STEC-positive samples were obtained from Calabria (n = 1), Campania (n = 1), Lazio (n = 2), Liguria (n = 1), Lombardia (n = 1) and Veneto (n = 3). All STEC strains were analysed for serogroups O26, O45, O55, O91, O103, O104, O111, O113, O121, O128, O145, O146 and O157, using Real-Time PCR. Three serogroups were identified amongst the 20 strains: O91 (n = 5), O113 (n = 2), and O157 (n = 1); the O-group for each of the 12 remaining STEC strains was not identified. Six stx subtypes were detected: stx1a, stx1c, stx2a, stx2b, stx2c and stx2d. Subtype stx2c was the most common, followed by stx2d and stx2b. Subtype stx2a was identified in only one eae-negative strain and occurred in combination with stx1a, stx1c and stx2b. The presence in meat of STEC strains being potentially harmful to human health shows the importance, during harvest, of implementing additional measures to reduce contamination risk.
Collapse
Affiliation(s)
- Bianca Maria Varcasia
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Francesco Tomassetti
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | | | - Sarah Lovari
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Stefano Bilei
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| |
Collapse
|
37
|
Tarr GAM, Oltean HN, Phipps AI, Rabinowitz P, Tarr PI. Case definitions of hemolytic uremic syndrome following Escherichia coli O157:H7 infection vary in validity. Int J Med Microbiol 2018; 308:1121-1127. [PMID: 30466555 PMCID: PMC6260930 DOI: 10.1016/j.ijmm.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple case definitions for post-diarrheal hemolytic uremic syndrome (D+ HUS) associated with Shiga toxin-producing Escherichia coli (STEC) are used across public health, research, and clinical practice. METHODS To identify a single definition of D+ HUS for standardized use, we evaluated the comparability and validity of four common, heterogeneous definitions: the Council of State and Territorial Epidemiologists (CSTE) definition, hematology-focused and age-focused definitions from the literature, and hospital diagnosis. We reviewed medical records from 471 hospitalized E. coli O157:H7 cases reported in Washington State, 2005-2014. We assessed 1) reliability across definitions, 2) comparability of temporal trends, and 3) sensitivity and specificity using an omnibus reference standard, developed using a combination of definition agreement and clinical outcomes. With the standard, we classified cases as definite, borderline, or unlikely/not post-diarrheal D+ HUS. RESULTS Reliability was highest between the age-focused definition and hospital diagnosis (κ = 0.84), and temporal trends were largely comparable across definitions. For definite D+ HUS cases, the age-focused definition had the highest overall validity [100% sensitivity, 95% confidence interval (CI): 94%, 100%; 96% specificity, 95% CI: 94%, 98%]. The CSTE definition had low specificity (75%, 95% CI: 70%, 79%). CONCLUSIONS In this review, the CSTE definition overestimated the burden of D+ HUS, and the age-focused definition provided the best overall reliability and validity to define post-diarrheal D+ HUS. Disease monitoring and research activities should consider using the age-focused D+ HUS definition.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA, 98195, USA.
| | - Hanna N Oltean
- Washington State Department of Health, 1610 NE 150th15 St., Shoreline, WA, 98155, USA.
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA, 98195, USA.
| | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences and Center for One Health Research, University of Washington, Box 357234, Seattle, WA, 98195, USA.
| | - Phillip I Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, MO, 63110, USA.
| |
Collapse
|
38
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
39
|
Suerbaum S. Helge Karch-The EHEC hunter. Int J Med Microbiol 2018; 308:1065-1066. [PMID: 30279076 DOI: 10.1016/j.ijmm.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Microbiology and Hospital Epidemiology, Pettenkoferstr. 9a, 80336 München, Germany.
| |
Collapse
|
40
|
Tarr GAM, Oltean HN, Phipps AI, Rabinowitz P, Tarr PI. Strength of the association between antibiotic use and hemolytic uremic syndrome following Escherichia coli O157:H7 infection varies with case definition. Int J Med Microbiol 2018; 308:921-926. [PMID: 30257808 PMCID: PMC6287940 DOI: 10.1016/j.ijmm.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The veracity of the association between antibiotic use and hemolytic uremic syndrome (HUS) caused by Escherichia coli O157:H7 has been a topic of debate. We postulated that criteria used to define HUS affect this association. METHODS We reviewed 471 hospitalized E. coli O157:H7 cases reported in Washington State, 2005-2014, to determine HUS status by various case definitions and antibiotic treatment. We used age-adjusted logistic regression models to estimate the effect of treatment on HUS status according to four common, but heterogeneous, definitions: the Council of State and Territorial Epidemiologists (CSTE) definition, hematology-focused and age-focused definitions from the literature, and hospital diagnosis. RESULTS Inter-annual variation in antibiotic use was high, but no meaningful change in antibiotic use was observed over this ten-year period. Thirteen percent of cases <18 years-old received antibiotics, compared to 54% of cases ≥18 years-old. The CSTE, hematology-focused, age-focused, and hospital diagnosis definitions identified 149, 57, 74, and 89 cases of HUS, respectively. The association between antibiotic treatment and HUS varied by definition: CSTE odds ratio (OR) 1.57 [95% confidence interval (CI) 0.98, 2.55]; hematology-focused OR 1.73 (95% CI 0.83, 3.54); age-focused OR 2.29 (95% CI 1.20, 4.39); and hospital diagnosis OR 1.94 (95% CI 1.01, 3.72). CONCLUSIONS Each definition yielded an estimate of the association in the direction of increased risk of HUS with antibiotics. While the range of OR point estimates was relatively small, confidence intervals for two HUS definitions crossed the null and two did not, potentially altering the inference an investigator makes. Discrepant reports of the association between antibiotic use and HUS in the literature might be due in part to the choice of HUS definition, and a consistent definition of HUS should be adopted for research and public health purposes.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Epidemiology, University of Washington, Box 357236, Seattle, Washington, 98195, USA.
| | - Hanna N Oltean
- Washington State Department of Health, 1610 NE 150th St., Shoreline, Washington, 98155, USA.
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Box 357236, Seattle, Washington, 98195, USA.
| | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences and Center for One Health Research, University of Washington, Box 357234, Seattle, Washington, 98195, USA.
| | - Phillip I Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
41
|
Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. Epidemiol Infect 2018; 147:e10. [PMID: 30229714 PMCID: PMC6518528 DOI: 10.1017/s0950268818002595] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diarrhoeagenic Escherichia coli (DEC) is a leading cause of infectious diarrhoea worldwide. In recent years, Escherichia albertii has also been implicated as a cause of human enteric diseases. This study describes the occurrence of E. coli pathotypes and serotypes associated with enteric illness and haemolytic uremic syndrome (HUS) isolated in Brazil from 2011 to 2016. Pathotypes isolated included enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and Shiga toxin-producing E. coli (STEC). PCR of stool enrichments for DEC pathotypes was employed, and E. albertii was also sought. O:H serotyping was performed on all DEC isolates. A total of 683 DEC and 10 E. albertii strains were isolated from 5047 clinical samples. The frequencies of DEC pathotypes were 52.6% (359/683) for EPEC, 32.5% for EAEC, 6.3% for ETEC, 4.4% for EIEC and 4.2% for STEC. DEC strains occurred in patients from 3 months to 96 years old, but EPEC, EAEC and STEC were most prevalent among children. Both typical and atypical isolates of EPEC and EAEC were recovered and presented great serotype heterogeneity. HUS cases were only associated with STEC serotype O157:H7. Two E. albertii isolates belonged to serogroup O113 and one had the stx2f gene. The higher prevalence of atypical EPEC in relation to EAEC in community-acquired diarrhoea in Brazil suggests a shift in the trend of DEC pathotypes circulation as previously EAEC predominated. This is the first report of E. albertii isolation from active surveillance. These results highlight the need of continuing DEC and E. albertii surveillance, as a mean to detect changes in the pattern of pathotypes and serotypes circulation and provide useful information for intervention and control strategies.
Collapse
|
42
|
Sánchez S, Llorente MT, Herrera-León L, Ramiro R, Nebreda S, Remacha MA, Herrera-León S. Mucus-Activatable Shiga Toxin Genotype stx2d in Escherichia coli O157:H7. Emerg Infect Dis 2018; 23:1431-1433. [PMID: 28726627 PMCID: PMC5547771 DOI: 10.3201/eid2308.170570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We identified the mucus-activatable Shiga toxin genotype stx2d in the most common hemolytic uremic syndrome–associated Escherichia coli serotype, O157:H7. stx2d was detected in a strain isolated from a 2-year-old boy with bloody diarrhea in Spain, and whole-genome sequencing was used to confirm and fully characterize the strain.
Collapse
|
43
|
Shridhar PB, Patel IR, Gangiredla J, Noll LW, Shi X, Bai J, Elkins CA, Strockbine NA, Nagaraja TG. Genetic Analysis of Virulence Potential of Escherichia coli O104 Serotypes Isolated From Cattle Feces Using Whole Genome Sequencing. Front Microbiol 2018; 9:341. [PMID: 29545780 PMCID: PMC5838399 DOI: 10.3389/fmicb.2018.00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O104:H4, a Shiga toxin-producing hybrid pathotype that was implicated in a major foodborne outbreak in Germany in 2011, has not been detected in cattle. However, serotypes of O104, other than O104:H4, have been isolated from cattle feces, with O104:H7 being the most predominant. In this study, we investigated, based on whole genome sequence analyses, the virulence potential of E. coli O104 strains isolated from cattle feces, since cattle are asymptomatic carriers of E. coli O104. The genomes of ten bovine E. coli O104 strains (six O104:H7, one O104:H8, one O104:H12, and two O104:H23) and five O104:H7 isolated from human clinical cases were sequenced. Of all the bovine O104 serotypes (H7, H8, H12, and H23) that were included in the study, only E. coli O104:H7 serotype possessed Shiga toxins. Four of the six bovine O104:H7 strains and one of the five human strains carried stx1c. Three human O104 strains carried stx2, two were of subtype 2a, and one was 2d. Genomes of stx carrying bovine O104:H7 strains were larger than the stx-negative strains of O104:H7 or other serotypes. The genome sizes were proportional to the number of genes carried on the mobile genetic elements (phages, prophages, transposable elements and plasmids). Both bovine and human strains were negative for intimin and other genes associated with the type III secretory system and non-LEE encoded effectors. Plasmid-encoded virulence genes (ehxA, epeA, espP, katP) were also present in bovine and human strains. All O104 strains were negative for antimicrobial resistance genes, except one human strain. Phylogenetic analysis indicated that bovine E. coli O104 strains carrying the same flagellar antigen clustered together and STEC strains clustered separately from non-STEC strains. One of the human O104:H7 strains was phylogenetically closely related to and belonged to the same sequence type (ST-1817) as the bovine O104:H7 STEC strains. This suggests that the bovine feces could be a source of human illness caused by E. coli O104:H7 serotype. Because bovine O104:H7 strains carried virulence genes similar to human clinical strains and one of the human clinical strains was phylogenetically related to bovine strains, the serotype has the potential to be a diarrheagenic pathogen in humans.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Isha R Patel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Lance W Noll
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States.,Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Christopher A Elkins
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Nancy A Strockbine
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
44
|
Vázquez-Sánchez D, Antunes Galvão J, Oetterer M. Contamination sources, biofilm-forming ability and biocide resistance of Shiga toxin-producingEscherichia coliO157:H7 and non-O157 isolated from tilapia-processing facilities. J Food Saf 2018. [DOI: 10.1111/jfs.12446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel Vázquez-Sánchez
- Laboratory of Freshwater Fish and Seafood Technology, Department of Agri-Food Industry, Food and Nutrition; “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, Bairro Agronomia, CEP: 13418-900; Piracicaba/SP Brasil
| | - Juliana Antunes Galvão
- Laboratory of Freshwater Fish and Seafood Technology, Department of Agri-Food Industry, Food and Nutrition; “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, Bairro Agronomia, CEP: 13418-900; Piracicaba/SP Brasil
| | - Marília Oetterer
- Laboratory of Freshwater Fish and Seafood Technology, Department of Agri-Food Industry, Food and Nutrition; “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, Bairro Agronomia, CEP: 13418-900; Piracicaba/SP Brasil
| |
Collapse
|
45
|
Nakamura H, Iguchi A, Maehara T, Fujiwara K, Fujiwara A, Ogasawara J. Comparison of Three Molecular Subtyping Methods among O157 and Non-O157 Shiga Toxin-Producing Escherichia coli Isolates from Japanese Cattle. Jpn J Infect Dis 2017; 71:45-50. [PMID: 29279448 DOI: 10.7883/yoken.jjid.2017.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To determine the infection source, route, and extent of an outbreak, it is important to subtype Shiga toxin-producing Escherichia coli (STEC) isolates belonging to the same serotype for clustering into clonally related groups. In this study, we compared 3 molecular subtyping methods-multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and multiple-locus variable-number of tandem repeat analysis (MLVA)-using O157 and non-O157 STEC isolates from Japanese beef cattle. A total of 73 STEC isolates belonging to 9 O-serogroups were analyzed. By means of 3 molecular subtyping methods, the strains were subdivided into 9 MLST sequence types (STs), 23 PFGE types, and 26 MLVA types. The STEC classification by O-serogrouping and MLST was almost identical. Furthermore, PFGE and MLVA could systematically classify STEC isolates of the same serotypes and STs. MLVA and PFGE were found to be highly efficient subtyping methods after O-serogrouping for the classification of not only O157 but also non-O157 STEC isolates in an outbreak investigation.
Collapse
Affiliation(s)
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki
| | | | | | | | - Jun Ogasawara
- Microbiology Section, Osaka Institute of Public Health
| |
Collapse
|
46
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
47
|
Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina. Int J Food Microbiol 2017; 261:57-61. [DOI: 10.1016/j.ijfoodmicro.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022]
|
48
|
Falardeau J, Johnson RP, Pagotto F, Wang S. Occurrence, characterization, and potential predictors of verotoxigenic Escherichia coli, Listeria monocytogenes, and Salmonella in surface water used for produce irrigation in the Lower Mainland of British Columbia, Canada. PLoS One 2017; 12:e0185437. [PMID: 28953937 PMCID: PMC5617201 DOI: 10.1371/journal.pone.0185437] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
Produce has become a major source of foodborne illness, and may become contaminated through surface water irrigation. The objectives of this study were to (i) determine the frequency of verotoxigenic E. coli (VTEC), Listeria monocytogenes, and Salmonella in surface waters used for irrigation in the Lower Mainland of British Columbia, (ii) assess the suitability of fecal coliforms and generic E. coli as hygiene indicators, and (iii) investigate the correlations of environmental factors with pathogen occurrence. Water samples were collected semi-monthly for 18 months from seven irrigation ditches across the Serpentine and Sumas watersheds. VTEC colonies on water filters were detected using a verotoxin colony immunoblot, and the presence of virulence genes vt1 and vt2 was ascertained via multiplex PCR. Detection of L. monocytogenes and Salmonella was completed using standard, Health Canada Compendium of Analytical Methods. Fecal coliforms and generic E. coli were enumerated by 3M™ Petrifilm™ and filtration methods, and meteorological and geographic data were collected from government records. VTEC, L. monocytogenes, and Salmonella were detected in 4.93%, 10.3%, and 2.69% of 223 samples, respectively. L. monocytogenes occurrence was greatest in the Serpentine watershed (χ2; p < 0.05), and was most common during the winter and fall (Fisher exact test; p < 0.05). Site dependence of VTEC and Salmonella occurrence was observed within watersheds (Fisher's exact test; p < 0.10). Pathogen occurrence correlated with fecal coliform counts (r = 0.448), while VTEC occurrence also correlated with precipitation over the five days before sampling (r = 0.239). The density of upstream livestock correlated with VTEC (rs = 0.812), and L. monocytogenes (rs = 0.841) detection. These data show that foodborne pathogens are present in the waters used for irrigation in the Lower Mainland of British Columbia, but their frequency may depend on spatial and temporal factors.
Collapse
Affiliation(s)
- Justin Falardeau
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Franco Pagotto
- Listeriosis Reference Service, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
49
|
Shiga Toxin-Producing Serogroup O91 Escherichia coli Strains Isolated from Food and Environmental Samples. Appl Environ Microbiol 2017; 83:AEM.01231-17. [PMID: 28687651 DOI: 10.1128/aem.01231-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/01/2017] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains of the O91:H21 serotype have caused severe infections, including hemolytic-uremic syndrome. Strains of the O91 serogroup have been isolated from food, animals, and the environment worldwide but are not well characterized. We used a microarray and other molecular assays to examine 49 serogroup O91 strains (environmental, food, and clinical strains) for their virulence potential and phylogenetic relationships. Most of the isolates were identified to be strains of the O91:H21 and O91:H14 serotypes, with a few O91:H10 strains and one O91:H9 strain being identified. None of the strains had the eae gene, which codes for the intimin adherence protein, and many did not have some of the genetic markers that are common in other STEC strains. The genetic profiles of the strains within each serotype were similar but differed greatly between strains of different serotypes. The genetic profiles of the O91:H21 strains that we tested were identical or nearly identical to those of the clinical O91:H21 strains that have caused severe diseases. Multilocus sequence typing and clustered regularly interspaced short palindromic repeat analyses showed that the O91:H21 strains clustered within the STEC 1 clonal group but the other O91 serotype strains were phylogenetically diverse.IMPORTANCE This study showed that food and environmental O91:H21 strains have similar genotypic profiles and Shiga toxin subtypes and are phylogenetically related to the O91:H21 strains that have caused hemolytic-uremic syndrome, suggesting that these strains may also have the potential to cause severe illness.
Collapse
|
50
|
|