1
|
Evans EF, Shyr ZA, Traynor BJ, Zheng W. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels. Drug Discov Today 2024; 29:104201. [PMID: 39384033 DOI: 10.1016/j.drudis.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Rare diseases affect one in ten people but only a small fraction of these diseases have an FDA-approved treatment. Haploinsufficiency, caused by a dominant loss-of-function mutation, is a unique rare disease group because patients have one normal allele of the affected gene. This makes rare haploinsufficiency diseases promising candidates for drug development by increasing expression of the normal gene allele, decreasing the target protein degradation and enhancing the target protein function. This review summarizes recent progresses and approaches used in the translational research of therapeutics to treat haploinsufficiency diseases including gene therapy, nucleotide-based therapeutics and small-molecule drug development. We hope that these drug development strategies will accelerate therapeutic development to treat haploinsufficiency diseases.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Bryan J Traynor
- National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20814, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
2
|
Singh K, Lall M, Agarwal S, D Puri R. Translocation t(X;Y) characterized by chromosomal microarray and FISH in a phenotypic male with Microphthalmia and linear skin defects. Clin Dysmorphol 2024; 33:50-54. [PMID: 38038053 DOI: 10.1097/mcd.0000000000000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Kanika Singh
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | | | | | | |
Collapse
|
3
|
Reis LM, Amor DJ, Haddad RA, Nowak CB, Keppler-Noreuil KM, Chisholm SA, Semina EV. Alternative Genetic Diagnoses in Axenfeld-Rieger Syndrome Spectrum. Genes (Basel) 2023; 14:1948. [PMID: 37895297 PMCID: PMC10606241 DOI: 10.3390/genes14101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Axenfeld-Rieger anomaly (ARA) is a specific ocular disorder that is frequently associated with other systemic abnormalities. PITX2 and FOXC1 variants explain the majority of individuals with Axenfeld-Rieger syndrome (ARS) but leave ~30% unsolved. Here, we present pathogenic/likely pathogenic variants in nine families with ARA/ARS or similar phenotypes affecting five different genes/regions. USP9X and JAG1 explained three families each. USP9X was recently linked with syndromic cognitive impairment that includes hearing loss, dental defects, ventriculomegaly, Dandy-Walker malformation, skeletal anomalies (hip dysplasia), and other features showing a significant overlap with FOXC1-ARS. Anterior segment anomalies are not currently associated with USP9X, yet our cases demonstrate ARA, congenital glaucoma, corneal neovascularization, and cataracts. The identification of JAG1 variants, linked with Alagille syndrome, in three separate families with a clinical diagnosis of ARA/ARS highlights the overlapping features and high variability of these two phenotypes. Finally, intragenic variants in CDK13, BCOR, and an X chromosome deletion encompassing HCCS and AMELX (linked with ocular and dental anomalies, correspondingly) were identified in three additional cases with ARS. Accurate diagnosis has important implications for clinical management. We suggest that broad testing such as exome sequencing be applied as a second-tier test for individuals with ARS with normal results for PITX2/FOXC1 sequencing and copy number analysis, with attention to the described genes/regions.
Collapse
Affiliation(s)
- Linda M. Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.M.R.); (S.A.C.)
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - David J. Amor
- Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Raad A. Haddad
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Catherine B. Nowak
- Division of Genetics and Metabolism, MassGeneral Hospital for Children, Boston, MA 02114, USA;
| | - Kim M. Keppler-Noreuil
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Smith Ann Chisholm
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.M.R.); (S.A.C.)
| | - Elena V. Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.M.R.); (S.A.C.)
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Franco E, Scanga HL, Nischal KK. Variable phenotype of secondary congenital corneal opacities associated with microphthalmia with linear skin defects syndrome. Am J Med Genet A 2023; 191:586-591. [PMID: 36369709 DOI: 10.1002/ajmg.a.63043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
To describe the anterior segment (AS) findings in patients with microphthalmia with linear skin defects syndrome (MLS), also known as microphthalmia, dermal aplasia, and sclerocornea (MIDAS). A retrospective chart review was conducted to identify patients with a diagnosis of MLS syndrome seen at UPMC Children's Hospital of Pittsburgh. Ophthalmic examination, high-frequency ultrasound, AS optical coherence tomography, and molecular testing were reviewed. Five female patients (10 eyes) were identified. One eye was anophthalmic, one was in a status post penetrating keratoplasty, and eight eyes presented with congenital corneal opacity (CCO). Of these, one showed a normal lens and a very small faint CCO; five showed congenital aphakia and characteristic silvery appearance of the cornea with vascularization; and two showed irido-corneal adhesions in association with normal or abnormal lens and localized avascular CCO. Genetic testing was performed and revealed involvement of HCCS in four patients. In MLS patients, kerato-irido-lenticular dysgenesis can be associated with secondary CCO. It is important to distinguish these CCO from sclerocornea, in order to refine the appropriate management and counseling the parents about the prognosis.
Collapse
Affiliation(s)
- Elena Franco
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | - Hannah L Scanga
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Chen CP, Chen SW, Wu CY, Chern SR, Wu FT, Pan YT, Wu PS, Lee CC, Chen LF, Wang W. Molecular cytogenetic characterization of de novo concomitant proximal 21q deletion of 21q11.2q21.3 and distal Xp deletion of Xp22.33p22.2 due to an unbalanced X;21 translocation detected by amniocentesis. Taiwan J Obstet Gynecol 2023; 62:123-127. [PMID: 36720524 DOI: 10.1016/j.tjog.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE We present molecular cytogenetic characterization of de novo concomitant proximal 21q deletion of 21q11.2q21.3 and distal Xp deletion of Xp22.33p22.2 due to an unbalanced X; 21 translocation detected by amniocentesis. CASE REPORT A 35-year-old, primigravid woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 45,X,der(X)t(X; 21) (p22.2; q21.3),-21. Simultaneous array comparative genomic hybridization (aCGH) revealed the result of an 11.9-Mb Xp22.33p22.2 deletion encompassing HCCS, SHOX, AMELX and OFD1 and a 15.4-Mb 21q11.2q21.3 deletion encompassing NRIP1 and APP. The pregnancy was subsequently terminated, and a malformed fetus was delivered with craniofacial dysmorphism. The parental karyotypes were normal. Polymorphic DNA marker analysis by quantitative fluorescence polymerase chain reaction (QF-PCR) confirmed a paternal origin of the 21q proximal deletion. Cytogenetic analysis of cord blood confirmed the karyotype of 45,X,der(X)t(X; 21) (p22.2; q21.3),-21. aCGH analysis of the cord blood confirmed the prenatal diagnosis. CONCLUSION QF-PCR analysis is useful for determination of the parental origin of a de novo unbalanced X; autosome translocation detected by prenatal diagnosis. The information acquired is useful for genetic counseling under such a circumstance.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chao-Yun Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Silva AV, Firmino MO, Costa NL, Louro RO, Paquete CM. Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System. Biomolecules 2022; 12:biom12040549. [PMID: 35454139 PMCID: PMC9028165 DOI: 10.3390/biom12040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochromes-c are ubiquitous heme proteins with enormous impact at the cellular level, being key players in metabolic processes such as electron transfer chains and apoptosis. The assembly of these proteins requires maturation systems that catalyse the formation of the covalent thioether bond between two cysteine residues and the vinyl groups of the heme. System III is the maturation system present in Eukaryotes, designated CcHL or HCCS. This System requires a specific amino acid sequence in the apocytochrome to be recognized as a substrate and for heme insertion. To explore the recognition mechanisms of CcHL, the bacterial tetraheme cytochrome STC from Shewanella oneidensis MR-1, which is not a native substrate for System III, was mutated to be identified as a substrate. The results obtained show that it is possible to convert a bacterial cytochrome as a substrate by CcHL, but the presence of the recognition sequence is not the only factor that induces the maturation of a holocytochrome by System III. The location of this sequence in the polypeptide also plays a role in the maturation of the c-type cytochrome. Furthermore, CcHL appears to be able to catalyse the binding of only one heme per polypeptide chain, being unable to assemble multiheme cytochromes c, in contrast with bacterial maturation systems.
Collapse
|
7
|
Accurate interpretation of genetic variants in sudden unexpected death in infancy by trio-targeted gene-sequencing panel analysis. Sci Rep 2021; 11:21532. [PMID: 34728707 PMCID: PMC8563990 DOI: 10.1038/s41598-021-00962-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
In sudden unexpected death in infancy cases, postmortem genetic analysis with next-generation sequencing potentially can extract candidate genes associated with sudden death. However, it is difficult to accurately interpret the clinically significant genetic variants. The study aim was to conduct trio analysis of cases of sudden unexpected death in infancy and their parents to more accurately interpret the clinically significant disease-associated gene variants associated with cause of death. From the TruSight One panel targeting 4813 genes we extracted candidate genetic variants of 66 arrhythmia-, 63 inherited metabolic disease-, 81 mitochondrial disease-, and 6 salt-losing tubulopathy-related genes in 7 cases and determined if they were de novo or parental-derived variants. Thirty-four parental-derived variants and no de novo variants were found, but none appeared to be related to the cause of death. Using trio analysis and an in silico algorithm to analyze all 4813 genes, we identified OBSCN of compound heterozygous and HCCS of hemizygous variants as new candidate genetic variants related to cause of death. Genetic analysis of these deceased infants and their living parents can provide more accurate interpretation of the clinically significant genetic variants than previously possible and help confirm the cause of death.
Collapse
|
8
|
SINEUPs: a novel toolbox for RNA therapeutics. Essays Biochem 2021; 65:775-789. [PMID: 34623427 PMCID: PMC8564737 DOI: 10.1042/ebc20200114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022]
Abstract
RNA molecules have emerged as a new class of promising therapeutics to expand the range of druggable targets in the genome. In addition to ‘canonical’ protein-coding mRNAs, the emerging richness of sense and antisense long non-coding RNAs (lncRNAs) provides a new reservoir of molecular tools for RNA-based drugs. LncRNAs are composed of modular structural domains with specific activities involving the recruitment of protein cofactors or directly interacting with nucleic acids. A single therapeutic RNA transcript can then be assembled combining domains with defined secondary structures and functions, and antisense sequences specific for the RNA/DNA target of interest. As the first representative molecules of this new pharmacology, we have identified SINEUPs, a new functional class of natural antisense lncRNAs that increase the translation of partially overlapping mRNAs. Their activity is based on the combination of two domains: an embedded mouse inverted SINEB2 element that enhances mRNA translation (effector domain) and an overlapping antisense region that provides specificity for the target sense transcript (binding domain). By genetic engineering, synthetic SINEUPs can potentially target any mRNA of interest increasing translation and therefore the endogenous level of the encoded protein. In this review, we describe the state-of-the-art knowledge of SINEUPs and discuss recent publications showing their potential application in diseases where a physiological increase of endogenous protein expression can be therapeutic.
Collapse
|
9
|
Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22126353. [PMID: 34198563 PMCID: PMC8231903 DOI: 10.3390/ijms22126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Collapse
Affiliation(s)
- Giulia Cannata
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
- Correspondence: ; Tel.: +39-0521-7047
| |
Collapse
|
10
|
Abstract
In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c. KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists.
Collapse
|
11
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
12
|
Indrieri A, Franco B. Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): An Unconventional Mitochondrial Disorder. Genes (Basel) 2021; 12:genes12020263. [PMID: 33670341 PMCID: PMC7918533 DOI: 10.3390/genes12020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders, although heterogeneous, are traditionally described as conditions characterized by encephalomyopathy, hypotonia, and progressive postnatal organ failure. Here, we provide a systematic review of Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA), a rare, unconventional mitochondrial disorder which presents as a developmental disease; its main clinical features include microphthalmia with different degrees of severity, linear skin lesions, and central nervous system malformations. The molecular basis of this disorder has been elusive for several years. Mutations were eventually identified in three X-linked genes, i.e., HCCS, COX7B, and NDUFB11, which are all endowed with defined roles in the mitochondrial respiratory chain. A peculiar feature of this condition is its inheritance pattern: X-linked dominant male-lethal. Only female or XX male individuals can be observed, implying that nullisomy for these genes is incompatible with normal embryonic development in mammals. All three genes undergo X-inactivation that, according to our hypothesis, may contribute to the extreme variable expressivity observed in this condition. We propose that mitochondrial dysfunction should be considered as an underlying cause in developmental disorders. Moreover, LSDMCA should be taken into consideration by clinicians when dealing with patients with microphthalmia with or without associated skin phenotypes.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-1923-0615
| |
Collapse
|
13
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
14
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
15
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
16
|
Chateau A, Kutsche K, Fuchs S, Harms F, Kruse CH, Mosam A. Microphthalmia with linear skin defects syndrome associated with hypopigmented mosaic lesions and ptosis: two siblings from Africa. Int J Dermatol 2020; 59:864-866. [PMID: 32386085 DOI: 10.1111/ijd.14905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Antoinette Chateau
- Department of Dermatology, Greys Hospital, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carl-Heinz Kruse
- Department of Ophthalmology, Greys Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Anisa Mosam
- Department of Dermatology, Greys Hospital, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V. Mitochondrial diseases in adults. J Intern Med 2020; 287:592-608. [PMID: 32463135 DOI: 10.1111/joim.13064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
Collapse
Affiliation(s)
- C La Morgia
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - A Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - L Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - M L Valentino
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - V Carelli
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
18
|
A Novel 4-Gene Score to Predict Survival, Distant Metastasis and Response to Neoadjuvant Therapy in Breast Cancer. Cancers (Basel) 2020; 12:cancers12051148. [PMID: 32370309 PMCID: PMC7281399 DOI: 10.3390/cancers12051148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
We generated a 4-gene score with genes upregulated in LM2-4, a metastatic variant of MDA-MB-231 (DOK 4, HCCS, PGF, and SHCBP1) that was strongly associated with disease-free survival (DFS) in TCGA cohort (hazard ratio [HR]>1.2, p < 0.02). The 4-gene score correlated with overall survival of TCGA (HR = 1.44, p < 0.001), which was validated with DFS and disease-specific survival of METABRIC cohort. The 4-gene score was able to predict worse survival or clinically aggressive tumors, such as high Nottingham pathological grade and advanced cancer staging. High score was associated with worse survival in the hormonal receptor (HR)-positive/Her2-negative subtype. High score enriched cell proliferation-related gene sets in GSEA. The score was high in primary tumors that originated, in and metastasized to, brain and lung, and it predicted worse progression-free survival for metastatic tumors. Good tumor response to neoadjuvant chemotherapy or hormonal therapy was accompanied by score reduction. High scores were also predictive of response to neoadjuvant chemotherapy for HR-positive/Her2-negative subtype. High score tumors had increased expression of T cell exhaustion marker genes, suggesting that the score may also be a biomarker for immunotherapy response. Our novel 4-gene score with both prognostic and predictive values may, therefore, be clinically useful particularly in HR-positive breast cancer.
Collapse
|
19
|
Abstract
Genodermatoses are inherited disorders presenting with cutaneous manifestations with or without the involvement of other systems. The majority of these disorders, particularly in cases that present with a cutaneous patterning, may be explained in the context of genetic mosaicism. Despite the barriers to the genetic analysis of mosaic disorders, next-generation sequencing has led to a substantial progress in understanding their pathogenesis, which has significant implications for the clinical management and genetic counseling. Advances in paired and deep sequencing technologies in particular have made the study of mosaic disorders more feasible. In this review, we provide an overview of genetic mosaicism as well as mosaic cutaneous disorders and the techniques required to study them.
Collapse
Affiliation(s)
- Shayan Cheraghlou
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Young Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
20
|
Vendramini-Pittoli S, Candido-Souza RM, Quiezi RG, Zechi-Ceide RM, Kokitsu-Nakata NM, Jehee FS, Ribeiro-Bicudo LA, FitzPatrick DR, Guion-Almeida ML, Richieri-Costa A. Microphthalmia, Linear Skin Defects, Callosal Agenesis, and Cleft Palate in a Patient with Deletion at Xp22.3p22.2. J Pediatr Genet 2020; 9:258-262. [PMID: 32765930 DOI: 10.1055/s-0039-3402047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/07/2019] [Indexed: 01/23/2023]
Abstract
The authors describe the clinical findings observed in a Brazilian girl that are suggestive of microphthalmia and linear skin defects (MLS) also known as MIDAS syndrome (OMIM #309801). She also presented with short stature, agenesis of corpus callosum, cleft palate, enamel defects, and genitourinary anomalies, which are rarely reported within the clinical spectrum of MLS. The 11,5 Mb deletion in Xp22.3p22.2 observed in the patient includes the entire HCCS gene (responsible for the MLS phenotype) and also encompasses several other genes involved with behavioral phenotypes, craniofacial and central nervous system development such as MID1, NLGN4X, AMELX , ARHGAP6, and TBL1X. The whole clinical features of our proband possibly represents an unusual MLS syndromic phenotype caused by an Xp22.3p22.2 continuous gene deletion.
Collapse
Affiliation(s)
- Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rosana Maria Candido-Souza
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Gonçalves Quiezi
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Nancy Mizue Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | | | | | - David R FitzPatrick
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Maria Leine Guion-Almeida
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Antonio Richieri-Costa
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
21
|
Satcher KG, Maegawa GHB, Schoch JJ. Microphthalmia and linear skin defects syndrome: Precise diagnosis guides prognosis. Pediatr Dermatol 2020; 37:217-218. [PMID: 31373408 DOI: 10.1111/pde.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microphthalmia and linear skin defects syndrome (MLS) is a rare X-linked dominant disorder characterized by microphthalmia and linear atrophic plaques of the face and neck. The diagnosis of MLS can be challenging secondary to both its rarity and to clinical overlap with Goltz syndrome. Whereas the skin lesions of MLS are more likely to improve in appearance with age, the lesions of Goltz are typically persistent.
Collapse
Affiliation(s)
- Kerrie G Satcher
- Department of Dermatology, University of Florida, Gainesville, Florida
| | - Gustavo H B Maegawa
- Department of Pediatrics/Genetics & Metabolism, University of Florida, Gainesville, Florida
| | - Jennifer J Schoch
- Department of Dermatology, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
23
|
Johnston JJ, Williamson KA, Chou CM, Sapp JC, Ansari M, Chapman HM, Cooper DN, Dabir T, Dudley JN, Holt RJ, Ragge NK, Schäffer AA, Sen SK, Salvotinek AM, FitzPatrick DR, Glaser TM, Stewart F, Black GCM, Biesecker LG. NAA10 polyadenylation signal variants cause syndromic microphthalmia. J Med Genet 2019; 56:444-452. [PMID: 30842225 PMCID: PMC7032957 DOI: 10.1136/jmedgenet-2018-105836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia. METHODS Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq. RESULTS Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3' UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS. CONCLUSION These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yields.
Collapse
Affiliation(s)
- Jennifer J Johnston
- National institutes of Health, National Human Genome Research institute, Bethesda, Maryland, USA
| | | | - Christopher M Chou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Emergency Medicine, The Permanente Medical Group (TPMG), Roseville/Sacramento, California, USA
| | - Julie C Sapp
- National institutes of Health, National Human Genome Research institute, Bethesda, Maryland, USA
| | - Morad Ansari
- MRC institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- DNA Diagnostic Laboratory, South East Scotland Regional Genetics Services, Western General Hospital, Edinburgh, UK
| | - Heather M Chapman
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - Tabib Dabir
- Northern Ireland Regional Genetics Service (NIRGS), Belfast City Hospital, Belfast, UK
| | - Jeffrey N Dudley
- National institutes of Health, National Human Genome Research institute, Bethesda, Maryland, USA
| | - Richard J Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Alejandro A Schäffer
- Computational Biology Branch, National Center for Biotechnology information, Bethesda, Maryland, USA
- Cancer Data Science Laboratory, National Cancer institute, Bethesda, Maryland, USA
| | - Shurjo K Sen
- Leidos Biomedical Research, Inc, Basic Science Program, Cancer & inflammation, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Anne M Salvotinek
- Department of Pediatrics and institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | | | - Thomas M Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
| | - Fiona Stewart
- Northern Ireland Regional Genetics Service (NIRGS), Belfast City Hospital, Belfast, UK
| | - Graeme CM Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St Mary’s Hospital, Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Leslie G Biesecker
- National institutes of Health, National Human Genome Research institute, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez‐Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao‐Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med 2019; 11:emmm.201708734. [PMID: 30979712 PMCID: PMC6505685 DOI: 10.15252/emmm.201708734] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR-181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber's hereditary optic neuropathy. We found that miR-181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR-181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene-independent therapeutic targets for MDs characterized by neuronal degeneration.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Medical GeneticsDepartment of Translational Medical ScienceUniversity of Naples “Federico II”NaplesItaly
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Medical GeneticsDepartment of Precision MedicineUniversity of Campania “L. Vanvitelli”Caserta CEItaly
| | - Alessia Romano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Jorge Henao‐Mejia
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA,Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Adam Williams
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA,Department of Genetics and Genomic SciencesUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Richard A Flavell
- Department of ImmunobiologyYale University School of MedicineNew HavenCTUSA,Howard Hughes Medical InstituteChevy ChaseMDUSA
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Institute of Cellular Biology and Neurobiology “ABT”CNRRomaItaly
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Enrico M Surace
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Medical GeneticsDepartment of Translational Medical ScienceUniversity of Naples “Federico II”NaplesItaly,Present address:
Medical GeneticsDepartment of Translational Medical ScienceUniversity of Naples “Federico II”NaplesItaly
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy .,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta CE, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy .,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
25
|
Wong BKY, Sutton VR. Aicardi syndrome, an unsolved mystery: Review of diagnostic features, previous attempts, and future opportunities for genetic examination. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:423-431. [PMID: 30536540 DOI: 10.1002/ajmg.c.31658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
Aicardi syndrome is a rare, severe neurodevelopmental disorder classically characterized by the triad of infantile spasms, central chorioretinal lacunae, and agenesis of the corpus callosum. Aicardi syndrome only affects females, with the exception of a few males with a 47, XXY chromosome constitution. All cases are de novo and the only cases of definitive recurrence in families are in identical twins. It is now recognized that individuals with Aicardi syndrome commonly exhibit a variety of other neuronal migration defects, eye anomalies, and other somatic features, including skin, skeletal, and craniofacial systems. The etiology of Aicardi syndrome remains unknown despite an international effort exploring different genetic mechanisms. Although various technologies examining candidate genes, copy number variation, skewing of X-chromosome inactivation, and whole-exome sequences have been explored, no strong genetic candidates have been identified to date. New technologies that can detect low-level mosaicism and balanced rearrangements, as well as platforms examining changes at the DNA and chromatin level affecting regulatory regions are all potential avenues for future studies that may one day solve the mystery of the etiology of Aicardi syndrome.
Collapse
Affiliation(s)
- Bibiana K Y Wong
- Departments of Obstetrics and Gynecology, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute Texas Children's Hospital, Houston, Texas
| | - V Reid Sutton
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
26
|
Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial Metabolism in Major Neurological Diseases. Cells 2018; 7:E229. [PMID: 30477120 PMCID: PMC6316877 DOI: 10.3390/cells7120229] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell's ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation⁻functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Grant L Austin
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lyndsay E A Young
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | - Ramon Sun
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
27
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
28
|
Prepeluh N, Korpar B, Zagorac A, Zagradišnik B, Golub A, Kokalj Vokač N. A mosaic form of microphthalmia with linear skin defects. BMC Pediatr 2018; 18:254. [PMID: 30068298 PMCID: PMC6090767 DOI: 10.1186/s12887-018-1234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/20/2018] [Indexed: 11/29/2022] Open
Abstract
Background Microphthalmia with linear skin defects (MLS) syndrome is a rare neurodevelopmental X-dominant disorder. It presents in females as it is normally lethal in males. Three causative genes for MLS syndrome (OMIM 309801) have been identified all taking part in mitochondrial respiratory chain and oxidative phosphorylation. In our case, we describe a newborn with mosaic deletion encompassing HCCS gene resulting in unilateral microphthalmia and facial skin lesions. Case presentation A girl was born with caesarean section at 40 weeks of gestation. Clinical findings revealed anophthalmia of the left eye. The left eyelids were intact, the orbit was empty and the right eye was normal, without any abnormalities. She had typical linear skin defects on the left cheek, one on the left side of the neck, and two on the 3th and 4th fingers of the left hand. The other clinical findings and the neurological exam were normal. US of the brain and EEG were normal. Molecular karyotyping using BlueGnome CytoChip Oligo 4× 180K array was performed detecting an approximately 18% mosaic 3.3 Mb deletion (arr[GRCh37] Xp22.31p22.2(8,622,553_11,887,361)× 1[0.18]). FISH using RPCI11-768H20 BAC clone on cultivated interphase and metaphase lymphocytes was used to confirm the array results. The observed deletion was present in 29% of cells (46,XX,ish del(p22.2p22.31)(RPCI11-768H20)[60/205]). Conclusions In this report we present a female proband with MLS syndrome. To our knowledge, there have been only few other cases of mosaic MLS syndrome described in the literature. Our case shows that low grade mosaicism does not preclude full clinical presentation and further supports the critical role of the X inactivation pattern in the development of the clinical findings.
Collapse
Affiliation(s)
- Nina Prepeluh
- Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Bojan Korpar
- Department of Perinatology, Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia
| | - Andreja Zagorac
- Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Boris Zagradišnik
- Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Andreja Golub
- Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Nadja Kokalj Vokač
- Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia. .,Medical Faculty, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
29
|
Microphthalmia, Dermal Aplasia, and Sclerocornea Syndrome: Endoscopic Cyclophotocoagulation in the Management of Congenital Glaucoma. J Glaucoma 2017; 27:e7-e10. [PMID: 29088057 DOI: 10.1097/ijg.0000000000000812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report on the use of endoscopic cyclophotocoagulation (ECP) to treat congenital glaucoma in a triple X female with microphthalmia, dermal aplasia, and sclerocornea (MIDAS) syndrome. OBSERVATIONS The patient demonstrated linear streaks on the face and neck consistent with dermal aplasia. The corneas were scleralized with ectatic areas of corneal thinning, and the eyes were microphthalmic. Ultrasound biomicroscopy demonstrated congenital aphakia and iris stumps. The patient had elevated intraocular pressure (IOP) that responded to topical glaucoma therapy in the right but not the left eye. Intraoperative endoscopy of the posterior segment revealed multiple hypopigmented chorioretinal lacunae surrounding a pale, cupped optic nerve. ECP of the ciliary processes in the left eye led to marked improvement in IOP. CONCLUSIONS AND IMPORTANCE Patients with MIDAS syndrome can develop congenital glaucoma secondary to angle dysgenesis. This is the first case report to demonstrate the safe and effective use of ECP to treat elevated IOP in a patient with MIDAS.
Collapse
|
30
|
Babbitt SE, Hsu J, Mendez DL, Kranz RG. Biosynthesis of Single Thioether c-Type Cytochromes Provides Insight into Mechanisms Intrinsic to Holocytochrome c Synthase (HCCS). Biochemistry 2017; 56:3337-3346. [PMID: 28617588 DOI: 10.1021/acs.biochem.7b00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
C-type cytochromes (cyts c) are generally characterized by the presence of two thioether attachments between heme and two cysteine residues within a highly conserved CXXCH motif. Most eukaryotes use the System III cyt c biogenesis pathway composed of holocytochrome c synthase (HCCS) to catalyze thioether formation. Some protozoan organisms express a functionally equivalent, natural variant of cyt c with an XXXCH heme-attachment motif, resulting in a single covalent attachment. Previous studies have shown that recombinant HCCS can produce low levels of the XXXCH single thioether variant. However, cyt c variants containing substitutions at the C-terminal cysteine of the heme-attachment site (i.e., resulting in CXXXH) have never been observed in nature, and attempts to biosynthesize a recombinant version of this cyt c variant have been largely unsuccessful. In this study, we report the biochemical analyses of an HCCS-matured CXXXH cyt c variant, comparing its biosynthesis and properties to those of the XXXCH variant. The results indicate that although HCCS mediates heme attachment to the N-terminal cysteine in CXXXH cyt c variants, up to 50% of the cyt c produced is modified in an oxygen-dependent manner, resulting in a mixed population of cyt c. Since this aerobic modification occurs only in the context of CXXXH, we also propose that natural HCCS-mediated heme attachment to CXXCH likely initiates at the C-terminal cysteine.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Jennifer Hsu
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Deanna L Mendez
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Robert G Kranz
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| |
Collapse
|
31
|
Couser NL, Masood MM, Aylsworth AS, Stevenson RE. Ocular manifestations in the X-linked intellectual disability syndromes. Ophthalmic Genet 2017; 38:401-412. [PMID: 28112979 DOI: 10.1080/13816810.2016.1247459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intellectual disability (ID), a common neurodevelopmental disorder characterized by limitations of both intellectual functioning and adaptive behavior, affects an estimated 1-2% of children. Genetic causes of ID are often accompanied by recognizable syndromal patterns. The vision apparatus is a sensory extension of the brain, and individuals with intellectual disabilities frequently have coexisting abnormalities of ocular structures and the visual pathway system. About one-third of the X-linked intellectual disability (XLID) syndromes have significant eye or ocular adnexa abnormalities that provide important diagnostic clues. Some XLID syndromes (e.g. Aicardi, cerebrooculogenital, Graham anophthalmia, Lenz, Lowe, MIDAS) are widely known for their characteristic ocular manifestations. Nystagmus, optic atrophy, and strabismus are among the more common, nonspecific, ocular manifestations that contribute to neuro-ophthalmological morbidity. Common dysmorphic oculofacial findings include anophthalmia, microphthalmia, hypertelorism, and abnormalities in the configuration or orientation of the palpebral fissures. Four XLID syndromes with major ocular manifestations (incontinentia pigmenti, Goltz, MIDAS, and Aicardi syndromes) are notable because of male lethality and expression occurring predominantly in females. The majority of the genes associated with XLID and ocular manifestations have now been identified.
Collapse
Affiliation(s)
- Natario L Couser
- a Department of Ophthalmology , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA.,b Division of Genetics and Metabolism, Department of Pediatrics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Maheer M Masood
- c University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Arthur S Aylsworth
- b Division of Genetics and Metabolism, Department of Pediatrics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA.,d Department of Genetics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Roger E Stevenson
- e Greenwood Genetic Center, JC Self Research Institute of Human Genetics , Greenwood , South Carolina , USA
| |
Collapse
|
32
|
Rea G, Homfray T, Till J, Roses-Noguer F, Buchan RJ, Wilkinson S, Wilk A, Walsh R, John S, McKee S, Stewart FJ, Murday V, Taylor RW, Ashworth M, Baksi AJ, Daubeney P, Prasad S, Barton PJR, Cook SA, Ware JS. Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11. Cold Spring Harb Mol Case Stud 2017; 3:a001271. [PMID: 28050600 PMCID: PMC5171697 DOI: 10.1101/mcs.a001271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022] Open
Abstract
Variants in NDUFB11, which encodes a structural component of complex I of the mitochondrial respiratory chain (MRC), were recently independently reported to cause histiocytoid cardiomyopathy (histiocytoid CM) and microphthalmia with linear skin defects syndrome (MLS syndrome). Here we report an additional case of histiocytoid CM, which carries a de novo nonsense variant in NDUFB11 (ENST00000276062.8: c.262C > T; p.[Arg88*]) identified using whole-exome sequencing (WES) of a family trio. An identical variant has been previously reported in association with MLS syndrome. The case we describe here lacked the diagnostic features of MLS syndrome, but a detailed clinical comparison of the two cases revealed significant phenotypic overlap. Heterozygous variants in HCCS (which encodes an important mitochondrially targeted protein) and COX7B, which, like NDUFB11, encodes a protein of the MRC, have also previously been identified in MLS syndrome including a case with features of both MLS syndrome and histiocytoid CM. However, a systematic review of WES data from previously published histiocytoid CM cases, alongside four additional cases presented here for the first time, did not identify any variants in these genes. We conclude that NDUFB11 variants play a role in the pathogenesis of both histiocytoid CM and MLS and that these disorders are allelic (genetically related).
Collapse
Affiliation(s)
- Gillian Rea
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, BT9 7AB, United Kingdom
| | - Tessa Homfray
- Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Jan Till
- Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Ferran Roses-Noguer
- Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Rachel J Buchan
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Sam Wilkinson
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Alicja Wilk
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Roddy Walsh
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Shibu John
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, BT9 7AB, United Kingdom
| | - Fiona J Stewart
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, BT9 7AB, United Kingdom
| | - Victoria Murday
- Department of Clinical Genetics, Laboratory Medicine, The Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Michael Ashworth
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - A John Baksi
- Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Piers Daubeney
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Sanjay Prasad
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Paul J R Barton
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Stuart A Cook
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
- National Heart Centre Singapore, Singapore 169609, Singapore
| | - James S Ware
- NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, United Kingdom
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
33
|
Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo. Sci Rep 2016; 6:27315. [PMID: 27265476 PMCID: PMC4893607 DOI: 10.1038/srep27315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/18/2016] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs provide additional regulatory layers to gene expression as well as the potential to being exploited as therapeutic tools. Non-coding RNA-based therapeutic approaches have been attempted in dominant diseases, however their use for treatment of genetic diseases caused by insufficient gene dosage is currently more challenging. SINEUPs are long antisense non-coding RNAs that up-regulate translation in mammalian cells in a gene-specific manner, although, so far evidence of SINEUP efficacy has only been demonstrated in in vitro systems. We now show that synthetic SINEUPs effectively and specifically increase protein levels of a gene of interest in vivo. We demonstrated that SINEUPs rescue haploinsufficient gene dosage in a medakafish model of a human disorder leading to amelioration of the disease phenotype. Our results demonstrate that SINEUPs act through mechanisms conserved among vertebrates and that SINEUP technology can be successfully applied in vivo as a new research and therapeutic tool for gene-specific up-regulation of endogenous functional proteins.
Collapse
|
34
|
Torraco A, Bianchi M, Verrigni D, Gelmetti V, Riley L, Niceta M, Martinelli D, Montanari A, Guo Y, Rizza T, Diodato D, Di Nottia M, Lucarelli B, Sorrentino F, Piemonte F, Francisci S, Tartaglia M, Valente E, Dionisi‐Vici C, Christodoulou J, Bertini E, Carrozzo R. A novel mutation in
NDUFB11
unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia. Clin Genet 2016; 91:441-447. [DOI: 10.1111/cge.12790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Affiliation(s)
- A. Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - M. Bianchi
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - D. Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - V. Gelmetti
- Neurogenetics Unit, CSS‐Mendel LaboratoryIRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo Italy
| | - L. Riley
- Genetic Metabolic Disorders Research UnitChildren's Hospital at Westmead Sydney Australia
- Discipline of Paediatrics & Child HealthUniversity of Sydney Sydney Australia
| | - M. Niceta
- Division of Genetic Disorders and Rare DiseasesBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - D. Martinelli
- Division of MetabolismBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - A. Montanari
- Pasteur Institute – Cenci Bolognetti FoundationSapienza University of Rome Rome Italy
| | - Y. Guo
- Genetic Metabolic Disorders Research UnitChildren's Hospital at Westmead Sydney Australia
| | - T. Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - D. Diodato
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - M. Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - B. Lucarelli
- Stem Cell Transplant Unit, Department of Hematology and OncologyBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - F. Sorrentino
- UO Talassemici ‐Anemie Rare del Globulo Rosso, Ospedale S Eugenio Rome Italy
| | - F. Piemonte
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - S. Francisci
- Department of Biology and Biotechnologies “C. Darwin”Sapienza University of Rome Rome Italy
| | - M. Tartaglia
- Division of Genetic Disorders and Rare DiseasesBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - E.M. Valente
- Section of Neurosciences, Department of Medicine and SurgeryUniversity of Salerno Salerno Italy
| | - C. Dionisi‐Vici
- Division of MetabolismBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - J. Christodoulou
- Genetic Metabolic Disorders Research UnitChildren's Hospital at Westmead Sydney Australia
- Discipline of Paediatrics & Child HealthUniversity of Sydney Sydney Australia
- Discipline of Genetic MedicineUniversity of Sydney Sydney Australia
| | - E. Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - R. Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| |
Collapse
|
35
|
Ansari M, Rainger J, Hanson IM, Williamson KA, Sharkey F, Harewood L, Sandilands A, Clayton-Smith J, Dollfus H, Bitoun P, Meire F, Fantes J, Franco B, Lorenz B, Taylor DS, Stewart F, Willoughby CE, McEntagart M, Khaw PT, Clericuzio C, Van Maldergem L, Williams D, Newbury-Ecob R, Traboulsi EI, Silva ED, Madlom MM, Goudie DR, Fleck BW, Wieczorek D, Kohlhase J, McTrusty AD, Gardiner C, Yale C, Moore AT, Russell-Eggitt I, Islam L, Lees M, Beales PL, Tuft SJ, Solano JB, Splitt M, Hertz JM, Prescott TE, Shears DJ, Nischal KK, Doco-Fenzy M, Prieur F, Temple IK, Lachlan KL, Damante G, Morrison DA, van Heyningen V, FitzPatrick DR. Genetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome. PLoS One 2016; 11:e0153757. [PMID: 27124303 PMCID: PMC4849793 DOI: 10.1371/journal.pone.0153757] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/04/2016] [Indexed: 12/26/2022] Open
Abstract
We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic hybridization identified six whole gene deletions: four encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regulatory effects were identified: five that were 3' (telomeric) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint. Disruption of PHF21A has previously been implicated in the causation of intellectual disability (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals (12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.
Collapse
Affiliation(s)
- Morad Ansari
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jacqueline Rainger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Isabel M. Hanson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Kathleen A. Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Freddie Sharkey
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Louise Harewood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Angela Sandilands
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jill Clayton-Smith
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
| | - Helene Dollfus
- Service de Génétique Médicale, Hôpital de Haute-Pierre, Strasbourg, France
| | - Pierre Bitoun
- Medical Genetics Departments, University Hospital Jean Verdier, Bondy, France
| | - Francoise Meire
- Department of ophthalmopediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Bruxelles, Belgium
| | - Judy Fantes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Brunella Franco
- Medical Genetics, Department of Medical Translational Sciences, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Universitaetsklinikum Giessen and Marburg UKGM, Giessen, Germany
| | - David S. Taylor
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Fiona Stewart
- Northern Ireland Regional Genetics Service (NIRGS), Belfast City Hospital, Belfast, United Kingdom
| | - Colin E. Willoughby
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Meriel McEntagart
- Medical Genetics Unit, St George's University of London, London, United Kingdom
| | - Peng Tee Khaw
- Moorfields Eye Hospital, London, UK and University College London, Institute of Ophthalmology, London, United Kingdom
| | - Carol Clericuzio
- Department of Pediatric Genetics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | | | - Denise Williams
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Ruth Newbury-Ecob
- Department of Clinical Genetics, University Hospitals, Bristol, United Kingdom
| | - Elias I. Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, United States of America
| | - Eduardo D. Silva
- Department Ophthalmology, University Hospital of Coimbra, Coimbra, Portugal
| | - Mukhlis M. Madlom
- Children's Hospital, Doncaster Royal Infirmary, Doncaster, United Kingdom
| | - David R. Goudie
- Human Genetics Unit, University of Dundee College of Medicine, Dentistry and Nursing, Ninewells Hospital, Dundee, United Kingdom
| | - Brian W. Fleck
- Department of Ophthalmology, Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh, United Kingdom
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | - Alice D. McTrusty
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Carol Gardiner
- Clinical Genetics, Southern General Hospital, Glasgow, United Kingdom
| | - Christopher Yale
- Department of Paediatrics and Child Health, Ipswich Hospital, Ipswich, United Kingdom
| | - Anthony T. Moore
- Moorfields Eye Hospital, London, UK and University College London, Institute of Ophthalmology, London, United Kingdom
| | - Isabelle Russell-Eggitt
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Lily Islam
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Melissa Lees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London, United Kingdom
| | - Philip L. Beales
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Stephen J. Tuft
- Moorfields Eye Hospital, London, UK and University College London, Institute of Ophthalmology, London, United Kingdom
| | - Juan B. Solano
- Ruber International Hospital, Medical Genetics Unit, Mirasierra, Madrid, Spain
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Trine E. Prescott
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Deborah J. Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Ken K. Nischal
- UPMC Eye Center, Children's Hospital of Pittsburgh of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Fabienne Prieur
- CHU de Saint Etienne, Service de génétique médicale, Saint-Etienne, France
| | - I. Karen Temple
- Academic Unit of Genetic Medicine, Division of Human Genetics, University of Southampton, Southampton, United Kingdom
| | - Katherine L. Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Giuseppe Damante
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Danny A. Morrison
- St. Thomas’ Hospital, Westminster Bridge Road, London, United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Babbitt SE, Sutherland MC, San Francisco B, Mendez DL, Kranz RG. Mitochondrial cytochrome c biogenesis: no longer an enigma. Trends Biochem Sci 2015; 40:446-55. [PMID: 26073510 DOI: 10.1016/j.tibs.2015.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | - Deanna L Mendez
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Robert G Kranz
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| |
Collapse
|
37
|
van Rahden V, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, Zeviani M, Kutsche K. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet 2015; 96:640-50. [PMID: 25772934 DOI: 10.1016/j.ajhg.2015.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 01/07/2023] Open
Abstract
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Collapse
|
38
|
Weh E, Reis LM, Happ HC, Levin AV, Wheeler PG, David KL, Carney E, Angle B, Hauser N, Semina EV. Whole exome sequence analysis of Peters anomaly. Hum Genet 2014; 133:1497-511. [PMID: 25182519 PMCID: PMC4395516 DOI: 10.1007/s00439-014-1481-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly.
Collapse
Affiliation(s)
- Eric Weh
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy Department, Medical, College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linda M. Reis
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hannah C. Happ
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alex V. Levin
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye, Hospital, Philadelphia, PA 19107, USA
| | | | - Karen L. David
- Division of Genetics, Department of Medicine, New York, Methodist Hospital, Brooklyn, NY 11215, USA
| | - Erin Carney
- Division of Genetics, Department of Medicine, New York, Methodist Hospital, Brooklyn, NY 11215, USA
| | - Brad Angle
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Natalie Hauser
- Center for Human Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy Department, Medical, College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
39
|
Almeida HLD, Rossi G, Abreu LBD, Bergamaschi C, Silva ABD, Kutsche K. Dermatoscopic aspects of the microphthalmia with linear skin defects (MLS) syndrome. An Bras Dermatol 2014; 89:180-1. [PMID: 24626674 PMCID: PMC3938380 DOI: 10.1590/abd1806-4841.20142240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/14/2013] [Indexed: 11/22/2022] Open
Abstract
The association of microphthalmia and linear skin defects was named microphthalmia
with linear skin defects syndrome (MLS) or MIDAS syndrome (microphthalmia, dermal
aplasia, and sclerocornea), an X-chromosomal disorder manifesting mainly in females.
We examined a female newborn with facial linear skin defects following the Blaschko
lines. Computer tomography and ophthalmological examination confirmed bilateral
microphthalmia. An interstitial microdeletion at Xp22.2, encompassing the entire HCCS
gene, was identified. Dermatoscopic examination showed erythematous linear areas with
telangectasias and absence of sebaceous glands, which appear as brilliant white dots.
Vellus hairs were also absent in the red areas. Dermatoscopy could help to establish
the diagnosis of MLS/MIDAS syndrome by confirming the aplastic nature of the
lesions.
Collapse
Affiliation(s)
- Hiram Larangeira de Almeida
- Federal and Catholic University of Pelotas, Brazil, Associate Professor of Dermatology - Federal and Catholic University of Pelotas, Brazil
| | - Gabriela Rossi
- Catholic University of Porto Alegre, Brazil, Dermatology Resident - Catholic University of Porto Alegre, Brazil
| | - Luciana Boff de Abreu
- Catholic University of Porto Alegre, Brazil, Dermatology Resident - Catholic University of Porto Alegre, Brazil
| | - Cristina Bergamaschi
- Catholic University of Porto Alegre, Brazil, Dermatology Resident - Catholic University of Porto Alegre, Brazil
| | | | - Kerstin Kutsche
- University Medical Center Hamburg-Eppendorf, Institute of Human Genetics, Hamburg, Germany, Professor, Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Babbitt SE, San Francisco B, Bretsnyder EC, Kranz RG. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme. Biochemistry 2014; 53:5261-71. [PMID: 25054239 PMCID: PMC4139152 DOI: 10.1021/bi500704p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
41
|
van Rahden VA, Rau I, Fuchs S, Kosyna FK, de Almeida HL, Fryssira H, Isidor B, Jauch A, Joubert M, Lachmeijer AMA, Zweier C, Moog U, Kutsche K. Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J Rare Dis 2014; 9:53. [PMID: 24735900 PMCID: PMC4021606 DOI: 10.1186/1750-1172-9-53] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/11/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Segmental Xp22.2 monosomy or a heterozygous HCCS mutation is associated with the microphthalmia with linear skin defects (MLS) or MIDAS (microphthalmia, dermal aplasia, and sclerocornea) syndrome, an X-linked disorder with male lethality. HCCS encodes the holocytochrome c-type synthase involved in mitochondrial oxidative phosphorylation (OXPHOS) and programmed cell death. METHODS We characterized the X-chromosomal abnormality encompassing HCCS or an intragenic mutation in this gene in six new female patients with an MLS phenotype by cytogenetic analysis, fluorescence in situ hybridization, sequencing, and quantitative real-time PCR. The X chromosome inactivation (XCI) pattern was determined and clinical data of the patients were reviewed. RESULTS Two terminal Xp deletions of ≥ 11.2 Mb, two submicroscopic copy number losses, one of ~850 kb and one of ≥ 3 Mb, all covering HCCS, 1 nonsense, and one mosaic 2-bp deletion in HCCS are reported. All females had a completely (>98:2) or slightly skewed (82:18) XCI pattern. The most consistent clinical features were microphthalmia/anophthalmia and sclerocornea/corneal opacity in all patients and congenital linear skin defects in 4/6. Additional manifestations included various ocular anomalies, cardiac defects, brain imaging abnormalities, microcephaly, postnatal growth retardation, and facial dysmorphism. However, no obvious clinical sign was observed in three female carriers who were relatives of one patient. CONCLUSION Our findings showed a wide phenotypic spectrum ranging from asymptomatic females with an HCCS mutation to patients with a neonatal lethal MLS form. Somatic mosaicism and the different ability of embryonic cells to cope with an OXPHOS defect and/or enhanced cell death upon HCCS deficiency likely underlie the great variability in phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
42
|
García-Rabasco A, De-Unamuno B, Martínez F, Febrer-Bosch I, Alegre-de-Miquel V. Microphthalmia with linear skin defects syndrome. Pediatr Dermatol 2013; 30:e230-1. [PMID: 22612277 DOI: 10.1111/j.1525-1470.2012.01735.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microphthalmia with linear skin defects (MLS) or microcornea, dermal aplasia and sclerocornea (MIDAS) syndrome is a rare X-linked-dominant disorder. We present a patient with agenesis of corpus callosum, ocular abnormalities, and multiple skin defects. The cytogenetic studies of the MLS critical region (Xp22.2) were normal, but a skewed X-chromosome inactivation pattern (85:15) was observed.
Collapse
Affiliation(s)
- Ana García-Rabasco
- Department of Dermatology, Valencia General University Hospital and Medical School, Valencia, SpainGenetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | | | | |
Collapse
|
43
|
Vergult S, Leroy B, Claerhout I, Menten B. Familial cases of a submicroscopic Xp22.2 deletion: genotype-phenotype correlation in microphthalmia with linear skin defects syndrome. Mol Vis 2013; 19:311-8. [PMID: 23401659 PMCID: PMC3566894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 02/04/2013] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Microphthalmia with linear skin defects syndrome (MLS or MIDAS, OMIM #309801) is a rare X-linked male-lethal disorder characterized by microphthalmia or other ocular anomalies and skin lesions limited to the face and neck. However, inter- and intrafamilial variability is high. Here we report a familial case of MLS. METHODS A mother and daughter with MLS underwent a complete ophthalmological examination, and extensive imaging, including anterior segment pictures, corneal topography and keratometry, autofluorescence, infrared reflectance and red free images, as well as spectral-domain optical coherence tomography. The mother also underwent full-field flash electroretinography. In addition, high-resolution array comparative genomic hybridization analysis was performed in both as well as in the maternal grandparents of the proband. RESULTS Microphthalmia and retinal abnormalities were noted in the proband and the mother, whereas only the mother presented with scars of the typical neonatal linear skin defects. Array comparative genomic hybridization analysis revealed a 185-220 kb deletion on chromosome band Xp22.2 including the entire HCCS gene. CONCLUSIONS The identification of a deletion including HCCS led to the diagnosis of MLS in these patients. Retinal abnormalities can be part of the ocular manifestations of MLS.
Collapse
Affiliation(s)
- Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Bart Leroy
- Center for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium,Department of Ophthalmology, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Ilse Claerhout
- Department of Ophthalmology, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Indrieri A, Conte I, Chesi G, Romano A, Quartararo J, Tatè R, Ghezzi D, Zeviani M, Goffrini P, Ferrero I, Bovolenta P, Franco B. The impairment of HCCS leads to MLS syndrome by activating a non-canonical cell death pathway in the brain and eyes. EMBO Mol Med 2013; 5:280-93. [PMID: 23239471 PMCID: PMC3569643 DOI: 10.1002/emmm.201201739] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial-dependent (intrinsic) programmed cell death (PCD) is an essential homoeostatic mechanism that selects bioenergetically proficient cells suitable for tissue/organ development. However, the link between mitochondrial dysfunction, intrinsic apoptosis and developmental anomalies has not been demonstrated to date. Now we provide the evidence that non-canonical mitochondrial-dependent apoptosis explains the phenotype of microphthalmia with linear skin lesions (MLS), an X-linked developmental disorder caused by mutations in the holo-cytochrome c-type synthase (HCCS) gene. By taking advantage of a medaka model that recapitulates the MLS phenotype we demonstrate that downregulation of hccs, an essential player of the mitochondrial respiratory chain (MRC), causes increased cell death via an apoptosome-independent caspase-9 activation in brain and eyes. We also show that the unconventional activation of caspase-9 occurs in the mitochondria and is triggered by MRC impairment and overproduction of reactive oxygen species (ROS). We thus propose that HCCS plays a key role in central nervous system (CNS) development by modulating a novel non-canonical start-up of cell death and provide the first experimental evidence for a mechanistic link between mitochondrial dysfunction, intrinsic apoptosis and developmental disorders.
Collapse
|
45
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
46
|
Abstract
The progress of molecular genetics helps clinicians to prove or exclude a suspected diagnosis for a vast and yet increasing number of genodermatoses. This leads to precise genetic counselling, prenatal diagnosis and preimplantation genetic haplotyping for many inherited skin conditions. It is also helpful in such occasions as phenocopy, late onset and incomplete penetrance, uniparental disomy, mitochondrial inheritance and pigmentary mosaicism. Molecular methods of two genodermatoses are explained in detail, i.e. genodermatoses with skin fragility and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Vesarat Wessagowit
- Molecular Genetics Laboratory, The Institute of Dermatology, Bangkok, Thailand.
| |
Collapse
|
47
|
Indrieri A, van Rahden V, Tiranti V, Morleo M, Iaconis D, Tammaro R, D’Amato I, Conte I, Maystadt I, Demuth S, Zvulunov A, Kutsche K, Zeviani M, Franco B. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 2012; 91:942-9. [PMID: 23122588 PMCID: PMC3487127 DOI: 10.1016/j.ajhg.2012.09.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022] Open
Abstract
Microphthalmia with linear skin lesions (MLS) is an X-linked dominant male-lethal disorder associated with mutations in holocytochrome c-type synthase (HCCS), which encodes a crucial player of the mitochondrial respiratory chain (MRC). Unlike other mitochondrial diseases, MLS is characterized by a well-recognizable neurodevelopmental phenotype. Interestingly, not all clinically diagnosed MLS cases have mutations in HCCS, thus suggesting genetic heterogeneity for this disorder. Among the possible candidates, we analyzed the X-linked COX7B and found deleterious de novo mutations in two simplex cases and a nonsense mutation, which segregates with the disease, in a familial case. COX7B encodes a poorly characterized structural subunit of cytochrome c oxidase (COX), the MRC complex IV. We demonstrated that COX7B is indispensable for COX assembly, COX activity, and mitochondrial respiration. Downregulation of the COX7B ortholog (cox7B) in medaka (Oryzias latipes) resulted in microcephaly and microphthalmia that recapitulated the MLS phenotype and demonstrated an essential function of complex IV activity in vertebrate CNS development. Our results indicate an evolutionary conserved role of the MRC complexes III and IV for the proper development of the CNS in vertebrates and uncover a group of mitochondrial diseases hallmarked by a developmental phenotype.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | | | - Valeria Tiranti
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology, 20126 Milan, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Ilaria D’Amato
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology, 20126 Milan, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Isabelle Maystadt
- Centre de Genetique Humaine, Institut de Pathologie et de Genetique, 6041 Gosselies (Charleroi), Belgium
| | | | - Alex Zvulunov
- Schneider Children’s Medical Center of Israel, Faculty of Health Sciences, Medical School for International Health, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Kerstin Kutsche
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology, 20126 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
- Medical Genetics Services, Department of Pediatrics, Federico II University, 80131 Naples, Italy
| |
Collapse
|
48
|
van Rahden VA, Brand K, Najm J, Heeren J, Pfeffer SR, Braulke T, Kutsche K. The 5-phosphatase OCRL mediates retrograde transport of the mannose 6-phosphate receptor by regulating a Rac1-cofilin signalling module. Hum Mol Genet 2012; 21:5019-38. [PMID: 22907655 DOI: 10.1093/hmg/dds343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the OCRL gene encoding the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) 5-phosphatase OCRL cause Lowe syndrome (LS), which is characterized by intellectual disability, cataracts and selective proximal tubulopathy. OCRL localizes membrane-bound compartments and is implicated in intracellular transport. Comprehensive analysis of clathrin-mediated endocytosis in fibroblasts of patients with LS did not reveal any difference in trafficking of epidermal growth factor, low density lipoprotein or transferrin, compared with normal fibroblasts. However, LS fibroblasts displayed reduced mannose 6-phosphate receptor (MPR)-mediated re-uptake of the lysosomal enzyme arylsulfatase B. In addition, endosome-to-trans Golgi network (TGN) transport of MPRs was decreased significantly, leading to higher levels of cell surface MPRs and their enrichment in enlarged, retromer-positive endosomes in OCRL-depleted HeLa cells. In line with the higher steady-state concentration of MPRs in the endosomal compartment in equilibrium with the cell surface, anterograde transport of the lysosomal enzyme, cathepsin D was impaired. Wild-type OCRL counteracted accumulation of MPR in endosomes in an activity-dependent manner, suggesting that PI(4,5)P(2) modulates the activity state of proteins regulated by this phosphoinositide. Indeed, we detected an increased amount of the inactive, phosphorylated form of cofilin and lower levels of the active form of PAK3 upon OCRL depletion. Levels of active Rac1 and RhoA were reduced or enhanced, respectively. Overexpression of Rac1 rescued both enhanced levels of phosphorylated cofilin and MPR accumulation in enlarged endosomes. Our data suggest that PI(4,5)P(2) dephosphorylation through OCRL regulates a Rac1-cofilin signalling cascade implicated in MPR trafficking from endosomes to the TGN.
Collapse
Affiliation(s)
- Vanessa A van Rahden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Jonathan Zumwalt
- Department of Pediatric Dermatology, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | |
Collapse
|
50
|
Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab 2011; 104:448-56. [PMID: 22005280 PMCID: PMC3224152 DOI: 10.1016/j.ymgme.2011.09.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33-95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, oculofaciocardiodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143-0748, USA.
| |
Collapse
|