1
|
Nicolaï MPJ, Rogalla S, Yousefi M, Bowie RCK, D'Alba L, Shawkey MD. Ecological, genetic and geographical divergence explain differences in colouration among sunbird species (Nectariniidae). Ecol Evol 2024; 14:e11427. [PMID: 39263465 PMCID: PMC11387724 DOI: 10.1002/ece3.11427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
How extravagant ornamental traits evolve is a key question in evolutionary biology. Bird plumages are among the most elaborate ornaments, displaying almost all colours of the rainbow. Why and how birds evolved to be so colourful remains an open question with multiple and sometimes competing hypotheses. Different colours in different patches (i.e. body parts) might have different functions and thus result from different forms of selection (e.g. natural vs. sexual selection). Here we test the influence of three factors on colour diversity in sunbirds: (1) geographical distance, (2) differences in light environment and (3) phylogenetic distances. We show that both natural and sexual selection affect the evolution of sunbird colouration, but that their extent and direction differs between sexes, and varies with the extent of species overlap and across different patches on the body. Even though overlap in light environment partially explains colour differences among species, no colour metric (brightness, hue or chroma) covaries with light environment. Our results suggest that multiple forms of selection influence the colouration of different colour patches in different ways across an organism's body, highlighting the need to investigate colouration as a network of individual but inter-connected colour patches. These results are likely to be generalizable across the multitude of colourful animals.
Collapse
Affiliation(s)
| | - S Rogalla
- UGent Gent Belgium
- Biofisika Institute Leioa Spain
| | - M Yousefi
- Damghan University Damghan Iran
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn Germany
| | - R C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology University of California Berkeley California USA
| | - L D'Alba
- UGent Gent Belgium
- Naturalis Biodiversity Center Leiden the Netherlands
| | | |
Collapse
|
2
|
Nicolaï MPJ, Van Hecke B, Rogalla S, Debruyn G, Bowie RCK, Matzke NJ, Hackett SJ, D'Alba L, Shawkey MD. The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae). Syst Biol 2024; 73:343-354. [PMID: 38289860 DOI: 10.1093/sysbio/syae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bert Van Hecke
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Svana Rogalla
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena, 48940 Leioa, Spain
| | - Gerben Debruyn
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Caves EM, Davis AL, Nowicki S, Johnsen S. Backgrounds and the evolution of visual signals. Trends Ecol Evol 2024; 39:188-198. [PMID: 37802667 DOI: 10.1016/j.tree.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Color signals which mediate behavioral interactions across taxa and contexts are often thought of as color 'patches' - parts of an animal that appear colorful compared to other parts of that animal. Color patches, however, cannot be considered in isolation because how a color is perceived depends on its visual background. This is of special relevance to the function and evolution of signals because backgrounds give rise to a fundamental tradeoff between color signal detectability and discriminability: as its contrast with the background increases, a color patch becomes more detectable, but discriminating variation in that color becomes more difficult. Thus, the signal function of color patches can only be fully understood by considering patch and background together as an integrated whole.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Porter CK, Romero FG, Adams DC, Bowie RCK, Riddell EA. Adaptive and non-adaptive convergent evolution in feather reflectance of California Channel Islands songbirds. Proc Biol Sci 2023; 290:20231914. [PMID: 37964520 PMCID: PMC10646447 DOI: 10.1098/rspb.2023.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Convergent evolution is widely regarded as a signature of adaptation. However, testing the adaptive consequences of convergent phenotypes is challenging, making it difficult to exclude non-adaptive explanations for convergence. Here, we combined feather reflectance spectra and phenotypic trajectory analyses with visual and thermoregulatory modelling to test the adaptive significance of dark plumage in songbirds of the California Channel Islands. By evolving dark dorsal plumage, island birds are generally less conspicuous to visual-hunting raptors in the island environment than mainland birds. Dark dorsal plumage also reduces the energetic demands associated with maintaining homeothermy in the cool island climate. We also found an unexpected pattern of convergence, wherein the most divergent island populations evolved greater reflectance of near-infrared radiation. However, our heat flux models indicate that elevated near-infrared reflectance is not adaptive. Analysis of feather microstructure suggests that mainland-island differences are related to coloration of feather barbs and barbules rather than their structure. Our results indicate that adaptive and non-adaptive mechanisms interact to drive plumage evolution in this system. This study sheds light on the mechanisms driving the association between dark colour and wet, cold environments across the tree of life, especially in island birds.
Collapse
Affiliation(s)
- Cody K. Porter
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Faye G. Romero
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Eric A. Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Eliason CM, McCullough JM, Hackett SJ, Andersen MJ. Complex plumages spur rapid color diversification in kingfishers (Aves: Alcedinidae). eLife 2023; 12:83426. [PMID: 37083474 PMCID: PMC10121218 DOI: 10.7554/elife.83426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Colorful signals in nature provide some of the most stunning examples of rapid phenotypic evolution. Yet, studying color pattern evolution has been historically difficult owing to differences in perceptual ability of humans and analytical challenges with studying how complex color patterns evolve. Island systems provide a natural laboratory for testing hypotheses about the direction and magnitude of phenotypic change. A recent study found that plumage colors of island species are darker and less complex than continental species. Whether such shifts in plumage complexity are associated with increased rates of color evolution remains unknown. Here, we use geometric morphometric techniques to test the hypothesis that plumage complexity and insularity interact to influence color diversity in a species-rich clade of colorful birds-kingfishers (Aves: Alcedinidae). In particular, we test three predictions: (1) plumage complexity enhances interspecific rates of color evolution, (2) plumage complexity is lower on islands, and (3) rates of plumage color evolution are higher on islands. Our results show that more complex plumages result in more diverse colors among species and that island species have higher rates of color evolution. Importantly, we found that island species did not have more complex plumages than their continental relatives. Thus, complexity may be a key innovation that facilitates evolutionary response of individual color patches to distinct selection pressures on islands, rather than being a direct target of selection itself. This study demonstrates how a truly multivariate treatment of color data can reveal evolutionary patterns that might otherwise go unnoticed.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, United States
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, United States
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, United States
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, United States
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
6
|
He Y, Varley ZK, Nouri LO, Moody CJA, Jardine MD, Maddock S, Thomas GH, Cooney CR. Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds. Nat Commun 2022; 13:5068. [PMID: 36038540 PMCID: PMC9424304 DOI: 10.1038/s41467-022-32586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet colouration is thought to be an important form of signalling in many bird species, yet broad insights regarding the prevalence of ultraviolet plumage colouration and the factors promoting its evolution are currently lacking. In this paper, we develop a image segmentation pipeline based on deep learning that considerably outperforms classical (i.e. non deep learning) segmentation methods, and use this to extract accurate information on whole-body plumage colouration from photographs of >24,000 museum specimens covering >4500 species of passerine birds. Our results demonstrate that ultraviolet reflectance, particularly as a component of other colours, is widespread across the passerine radiation but is strongly phylogenetically conserved. We also find clear evidence in support of the role of light environment in promoting the evolution of ultraviolet plumage colouration, and a weak trend towards higher ultraviolet plumage reflectance among bird species with ultraviolet rather than violet-sensitive visual systems. Overall, our study provides important broad-scale insight into an enigmatic component of avian colouration, as well as demonstrating that deep learning has considerable promise for allowing new data to be brought to bear on long-standing questions in ecology and evolution.
Collapse
Affiliation(s)
- Yichen He
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK.
| | - Zoë K Varley
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Lara O Nouri
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Christopher J A Moody
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Michael D Jardine
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Steve Maddock
- Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP, UK
| | - Gavin H Thomas
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK.
- Bird Group, Department of Life Sciences, The Natural History Museum at Tring, Akeman Street, Tring, HP23 6AP, UK.
| | - Christopher R Cooney
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
7
|
Assis BA, Avery JD, Earley RL, Langkilde T. Masculinized Sexual Ornaments in Female Lizards Correlate with Ornament-Enhancing Thermoregulatory Behavior. Integr Org Biol 2022; 4:obac029. [PMID: 36034057 PMCID: PMC9409079 DOI: 10.1093/iob/obac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The adaptive significance of colorful or exaggerated traits (i.e., ornaments) expressed in females is often unclear. Competing hypotheses suggest that expression of female ornaments arises from maladaptive (or neutral) genetic inheritance from males along with incomplete epigenetic regulation, or from positive selection for ornaments in females under social competition. Whether costly or advantageous, the visibility of such traits can sometimes be behaviorally modulated in order to maximize fitness. Female eastern fence lizards express blue badges that are variable in size and color saturation. These are rudimentary compared to those seen in males and carry important costs such as reduced mating opportunities. Body temperature is a well-established enhancer of badge color, and thus thermoregulation may be one way these animals modulate badge visibility. We quantified realized body temperatures of female lizards paired in laboratory trials and observed that females with larger badges attained higher body temperatures when freely allowed to thermoregulate, sometimes beyond physiological optima. In this association between phenotype and behavior, females with larger badges exhibited thermoregulatory patterns that increase their badges’ visibility. This signal-enhancing behavior is difficult to reconcile with the widely held view that female ornaments are maladaptive, suggesting they may carry context-dependent social benefits.
Collapse
Affiliation(s)
- B A Assis
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| | - J D Avery
- Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology, Pennsylvania State University , University Park, PA 16802
| | - R L Earley
- Department of Biological Sciences, University of Alabama , Tuscaloosa, AL 35487
| | - T Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| |
Collapse
|
8
|
Malpica A, Mendoza-Cuenca L, González C. Color and morphological differentiation in the Sinaloa Wren (Thryophilus sinaloa) in the tropical dry forests of Mexico: The role of environment and geographic isolation. PLoS One 2022; 17:e0269860. [PMID: 35737646 PMCID: PMC9223310 DOI: 10.1371/journal.pone.0269860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
The role and the degree to which environment and geographic isolation contribute to phenotypic diversity has been widely debated. Here, we studied phenotypic variation (morphology and plumage reflectance) in the Sinaloa Wren, an endemic bird distributed throughout the tropical dry forest (TDF) on the Mexican pacific slope where a pronounced variability in environmental conditions has been reported. In particular, we aimed: 1) to characterize phenotypic variation between subspecies; 2) to analyze the relationship between phenotypic and environmental variation in the context of classic ecogeographic rules, such as Bergmann’s, Allen’s, Gloger’s, and Bogert’s, and to quantify the relative roles of environment and geographic isolation and their interaction in shaping phenotypic variation; and 3) to test for niche conservatism between subspecies. Our data revealed significant differences among subspecies morphology and plumage reflectance. The environment explained a higher proportion of the morphological variation, while geography explained a smaller proportion. However, variation in plumage reflectance was mainly explained by the joint effect of geography and environment. Our data did not support for Bergmann´s and Allen´s rule. However, longer tails and wings were positively associated with higher elevations, larger tarsus and culmens were positively related to higher latitudes and to greater tree cover, respectively. Our data partially supported Gloger´s rule, where darker plumages were associated with more humid environments. The effects of temperature on plumage coloration were more consistent with Bogert´s rule. In addition, we found darker plumages related to higher levels of UV-B radiation. Finally, niche divergence was detected between T. s. cinereus and T. s. sinaloa vs. T. s. russeus. In a continuously distributed ecosystem such as the TDF on the pacific slope of Mexico, the environmental conditions and geographic isolation have played an important role in promoting phenotypic differentiation in the Sinaloa Wren.
Collapse
Affiliation(s)
- Andreia Malpica
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México
| | - Luis Mendoza-Cuenca
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México
| | - Clementina González
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México
- * E-mail:
| |
Collapse
|
9
|
Venable GX, Gahm K, Prum RO. Hummingbird plumage color diversity exceeds the known gamut of all other birds. Commun Biol 2022; 5:576. [PMID: 35739263 PMCID: PMC9226176 DOI: 10.1038/s42003-022-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
A color gamut quantitatively describes the diversity of a taxon's integumentary coloration as seen by a specific organismal visual system. We estimated the plumage color gamut of hummingbirds (Trochilidae), a family known for its diverse barbule structural coloration, using a tetrahedral avian color stimulus space and spectra from a taxonomically diverse sample of 114 species. The spectra sampled occupied 34.2% of the total diversity of colors perceivable by hummingbirds, which suggests constraints on their plumage color production. However, the size of the hummingbird color gamut is equivalent to, or greater than, the previous estimate of the gamut for all birds. Using the violet cone type visual system, our new data for hummingbirds increases the avian color gamut by 56%. Our results demonstrate that barbule structural color is the most evolvable plumage coloration mechanism, achieving unique, highly saturated colors with multi-reflectance peaks.
Collapse
Affiliation(s)
- Gabriela X Venable
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Ecology and Evolution, Univeristy of California, Los Angeles, California, CA, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Davis A, Zipple MN, Diaz D, Peters S, Nowicki S, Johnsen S. Influence of visual background on discrimination of signal-relevant colours in zebra finches ( Taeniopygia guttata). Proc Biol Sci 2022; 289:20220756. [PMID: 35673868 PMCID: PMC9174715 DOI: 10.1098/rspb.2022.0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colour signals of many animals are surrounded by a high-contrast achromatic background, but little is known about the possible function of this arrangement. For both humans and non-human animals, the background colour surrounding a colour stimulus affects the perception of that stimulus, an effect that can influence detection and discrimination of colour signals. Specifically, high colour contrast between the background and two given colour stimuli makes discrimination more difficult. However, it remains unclear how achromatic background contrast affects signal discrimination in non-human animals. Here, we test whether achromatic contrast between signal-relevant colours and an achromatic background affects the ability of zebra finches to discriminate between those colours. Using an odd-one-out paradigm and generalized linear mixed models, we found that higher achromatic contrast with the background, whether positive or negative, decreases the ability of zebra finches to discriminate between target and non-target stimuli. This effect is particularly strong when colour distances are small (less than 4 ΔS) and Michelson achromatic contrast with the background is high (greater than 0.5). We suggest that researchers should consider focal colour patches and their backgrounds as collectively comprising a signal, rather than focusing on solely the focal colour patch itself.
Collapse
Affiliation(s)
- Alexander Davis
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Matthew N. Zipple
- Department of Biology, Duke University, Durham, NC 27708, USA,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Danae Diaz
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Susan Peters
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Alfonso C, Jones BC, Vernasco BJ, Moore IT. Integrative Studies of Sexual Selection in Manakins, a Clade of Charismatic Tropical Birds. Integr Comp Biol 2021; 61:1267-1280. [PMID: 34251421 DOI: 10.1093/icb/icab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The neotropical manakins (family Pipridae) provide a great opportunity for integrative studies of sexual selection as nearly all of the 51 species are lek-breeding, an extreme form of polygyny, and highly sexually dimorphic both in appearance and behavior. Male courtship displays are often elaborate and include auditory cues, both vocal and mechanical, as well as visual elements. In addition, the displays are often extremely rapid, highly acrobatic, and, in some species, multiple males perform coordinated displays that form the basis of long-term coalitions. Male manakins also exhibit unique neuroendocrine, physiological, and anatomical adaptations to support the performance of these complex displays and the maintenance of their intricate social systems. The Manakin Genomics Research Coordination Network (Manakin RCN, https://www.manakinsrcn.org) has brought together researchers (many in this symposium and this issue) from across disciplines to address the implications of sexual selection on evolution, ecology, behavior, and physiology in manakins. The objective of this paper is to present some of the most pertinent and integrative manakin research as well as introducing the papers presented in this issue. The results discussed at the manakin symposium, part of the 2021 Society for Integrative and Comparative Biology Conference, highlight the remarkable genomic, behavioral, and physiological adaptations as well as the evolutionary causes and consequences of strong sexual selection pressures that are evident in manakins.
Collapse
Affiliation(s)
- Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Blake C Jones
- Science and Mathematics, Bennington College, 1 College Dr., Bennington, VT 05201, USA
| | - Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Schaedler LM, Taylor LU, Prum RO, Anciães M. CONSTRAINT AND FUNCTION IN THE PREDEFINITIVE PLUMAGES OF MANAKINS (AVES: PIPRIDAE). Integr Comp Biol 2021; 61:1363-1377. [PMID: 33956153 DOI: 10.1093/icb/icab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Birds with delayed plumage maturation exhibit a drab predefinitive plumage, often despite gonad maturation, before developing the definitive plumage associated with increased reproductive success. Manakins are a diverse clade of neotropical lekking birds with extreme sexual dichromatism, radical sexual displays, and a unique diversity in the predefinitive plumages of males across species. Here, we provide the first full review of the natural history of manakin predefinitive plumages as the basis for qualitatively addressing the six major hypotheses about the production and function of predefinitive plumages. We find little evidence to support the possibilities that manakin predefinitive plumages are directly constrained by inflexible molt schedules, resource limitations to definitive coloration, or hormonal ties to reproductive behaviors. There is little evidence that could support a crypsis function, although direct experimentation is needed, and mimicry is refuted except for one unusual species in which predefinitive males sire young. Instead, evidence from a handful of well-studied species suggests that predefinitive plumages help young males explicitly signal their social status, and thereby gain entry to the social hierarchies which dictate future reproductive success. Our conclusions are especially influenced by the unique fact that males of at least 11 species throughout the family exhibit multiple predefinitive plumage stages with distinctively male patches. For each hypothesis, we highlight ways in which a better knowledge of female and young male birds offers critical opportunities for the use of manakins as a model clade.
Collapse
Affiliation(s)
- Laura M Schaedler
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil
| | - Liam U Taylor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Marina Anciães
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil
| |
Collapse
|
13
|
Biagolini-Jr C, Perrella DF. Bright coloration of male blue manakin is not connected to higher rates of nest predation. Acta Ethol 2020. [DOI: 10.1007/s10211-020-00352-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Simpson RK, Mistakidis AF, Doucet SM. Natural and sexual selection shape the evolution of colour and conspicuousness in North American wood-warblers (Parulidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Natural and sexual selection drive colour evolution in animals. However, these different selective forces are often studied independently or without considering environmental variation. We evaluated the roles of natural and sexual selection together on colour evolution in 15 sympatric wood-warbler species, while considering the influence of variation in the light environment and visual background. We tested the influence of each selective pressure on male and female coloration and contrast against the background using avian visual models in phylogenetically controlled analyses. We found natural and sexual selection simultaneously driving cryptic and conspicuous plumage in males by acting on different body regions. For example, we found that ground-nesting species had males with conspicuous under-body plumage and cryptic upper-body plumage, showing how natural and sexual selection can drive colour evolution concordantly. We also found interesting relationships with female plumage, such as nest predation positively covarying with female contrast against the background, suggesting a cost to female conspicuousness. Our findings here showcase the complexity of selection on coloration and illustrate the importance of: (1) accounting for environmental variation when assessing how natural and sexual selection drive colour evolution; and (2) testing how multiple selection pressures are shaping colour diversity among species.
Collapse
Affiliation(s)
- Richard K Simpson
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | - Allison F Mistakidis
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | - Stéphanie M Doucet
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| |
Collapse
|
15
|
Gardner KM, Mennill DJ, Newman AEM, Doucet SM. Social and physiological drivers of rapid colour change in a tropical toad. Gen Comp Endocrinol 2020; 285:113292. [PMID: 31580882 DOI: 10.1016/j.ygcen.2019.113292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
Dynamic sexual dichromatism occurs when males and females differ in colouration for a limited time. Although this trait has been primarily studied in cephalopods, chameleons, and fishes, recent analyses suggest that dynamic dichromatism is prevalent among anurans and may be mediated through sexual selection and sex recognition. Yellow toads, Incilius luetkenii, exhibit dynamic dichromatism during explosive breeding events at the onset of the rainy season: males change from a cryptic brown to a bright yellow and back again during the brief mating event. We tested the hypothesis that dynamic dichromatism in yellow toads is influenced by conspecific interactions and mediated through sex hormones and stress hormones. We placed male toads into one of four social treatments (with three other males, one male, one female, or no other toads). Immediately before and after each one-hour treatment, we quantified male colour with a reflectance spectrometer and we collected a blood sample to assess plasma concentrations of both testosterone and corticosterone. We found that males held with conspecific animals showed the brightest yellow colour and showed little or no change in their corticosterone levels. Across treatments, toads with duller yellow colour had higher levels of corticosterone. Male colour showed no association with testosterone. Interestingly, males showed substantial temporal variation in colour and corticosterone: toads were duller yellow and exhibited greater levels of corticosterone post-treatment across subsequent days at the onset of the rainy season. Our findings reveal that both conspecific interactions and corticosterone are involved in the dynamic colour change of yellow toads.
Collapse
Affiliation(s)
- Katrina M Gardner
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Daniel J Mennill
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Stéphanie M Doucet
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
16
|
Marcondes RS, Brumfield RT. Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution 2019; 73:704-719. [DOI: 10.1111/evo.13707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/14/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Rafael S. Marcondes
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Robb T. Brumfield
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| |
Collapse
|
17
|
Gunderson AR, Fleishman LJ, Leal M. Visual "playback" of colorful signals in the field supports sensory drive for signal detectability. Curr Zool 2018; 64:493-498. [PMID: 30108630 PMCID: PMC6084605 DOI: 10.1093/cz/zoy046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/02/2018] [Indexed: 11/12/2022] Open
Abstract
Colorful visual signals are important systems for investigating the effects of signaling environments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory drive hypothesis on color signal evolution is mostly based on documenting correlations between the properties of signals and habitat conditions under which the signals are given (i.e., a correlational approach) and less commonly on the use of mathematical models that integrate representations of visual environments, signal properties, and sensory systems (i.e., a functional approach). Here, we used an experimental approach in the field to evaluate signal efficacy of colorful lizard throat fans called dewlaps that show geographic variation in the lizard Anolis cristatellus. We used a remote controlled apparatus to display "fake dewlaps" to wild lizards to test for adaptive divergence in dewlap brightness (i.e., perceived intensity) among populations in situ. We found evidence of local adaptation in dewlap brightness consistent with the sensory drive hypothesis. Specifically, dewlaps that had the brightness characteristics of local lizards were more likely to be detected than those with the brightness characteristics of non-local lizards. Our findings indicate that simplified mathematical representations of visual environments may allow robust estimates of relative detectability or conspicuousness in natural habitats. We have shown the feasibility of evaluating color signal efficacy experimentally under natural conditions and demonstrate the potential advantages of presenting isolated components of signals to an intended receiver to measure their contribution to signal function.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Manuel Leal
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, USA
| | | |
Collapse
|
18
|
Fifty shades of white: how white feather brightness differs among species. Naturwissenschaften 2018; 105:18. [DOI: 10.1007/s00114-018-1543-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
19
|
Stevens M, Troscianko J, Wilson-Aggarwal JK, Spottiswoode CN. Improvement of individual camouflage through background choice in ground-nesting birds. Nat Ecol Evol 2017; 1:1325-1333. [PMID: 28890937 PMCID: PMC5584661 DOI: 10.1038/s41559-017-0256-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 12/29/2022]
Abstract
Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales.
Collapse
Affiliation(s)
- Martin Stevens
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Jared K Wilson-Aggarwal
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Claire N Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
20
|
Shultz AJ, Burns KJ. The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae). Evolution 2017; 71:1061-1074. [DOI: 10.1111/evo.13196] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Allison J. Shultz
- Department of Biology San Diego State University 5500 Campanile Drive San Diego California 92182
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge Massachusetts 02138
| | - Kevin J. Burns
- Department of Biology San Diego State University 5500 Campanile Drive San Diego California 92182
| |
Collapse
|
21
|
Tedore C, Johnsen S. Using RGB displays to portray color realistic imagery to animal eyes. Curr Zool 2017; 63:27-34. [PMID: 29491960 PMCID: PMC5804149 DOI: 10.1093/cz/zow076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 02/27/2016] [Accepted: 06/03/2016] [Indexed: 11/13/2022] Open
Abstract
RGB displays effectively simulate millions of colors in the eyes of humans by modulating the relative amount of light emitted by 3 differently colored juxtaposed lights (red, green, and blue). The relationship between the ratio of red, green, and blue light and the perceptual experience of that light has been well defined by psychophysical experiments in humans, but is unknown in animals. The perceptual experience of an animal looking at an RGB display of imagery designed for humans is likely to poorly represent an animal's experience of the same stimulus in the real world. This is due, in part, to the fact that many animals have different numbers of photoreceptor classes than humans do and that their photoreceptor classes have peak sensitivities centered over different parts of the ultraviolet and visible spectrum. However, it is sometimes possible to generate videos that accurately mimic natural stimuli in the eyes of another animal, even if that animal's sensitivity extends into the ultraviolet portion of the spectrum. How independently each RGB phosphor stimulates each of an animal's photoreceptor classes determines the range of colors that can be simulated for that animal. What is required to determine optimal color rendering for another animal is a device capable of measuring absolute or relative quanta of light across the portion of the spectrum visible to the animal (i.e., a spectrometer), and data on the spectral sensitivities of the animal's photoreceptor classes. In this article, we outline how to use such equipment and information to generate video stimuli that mimic, as closely as possible, an animal's color perceptual experience of real-world objects. Key words: color vision, computer animation, perception, video playback, virtual reality.
Collapse
Affiliation(s)
- Cynthia Tedore
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, SwedenDepartment of Biology, Duke University, Durham, 125 Science Drive, NC 27708, USA
| | - Sönke Johnsen
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, SwedenDepartment of Biology, Duke University, Durham, 125 Science Drive, NC 27708, USA
| |
Collapse
|
22
|
Bitton PP, Janisse K, Doucet SM. Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models. PLoS One 2017; 12:e0169810. [PMID: 28076391 PMCID: PMC5226829 DOI: 10.1371/journal.pone.0169810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1) can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1 photoreceptor, or present models for both.
Collapse
Affiliation(s)
- Pierre-Paul Bitton
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
- * E-mail:
| | - Kevyn Janisse
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Stéphanie M. Doucet
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
23
|
Delhey K, Peters A. The effect of colour‐producing mechanisms on plumage sexual dichromatism in passerines and parrots. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaspar Delhey
- School of Biological Sciences Monash University 25 Rainforest walk Melbourne VIC3800 Australia
- Max Planck Institute for Ornithology RadolfzellD‐78315 Germany
| | - Anne Peters
- School of Biological Sciences Monash University 25 Rainforest walk Melbourne VIC3800 Australia
- Max Planck Institute for Ornithology RadolfzellD‐78315 Germany
| |
Collapse
|
24
|
Hick KG, Doucet SM, Mennill DJ. Tropical wrens rely more on acoustic signals than visual signals for inter- and intraspecific discrimination. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Igic B, D'Alba L, Shawkey MD. Manakins can produce iridescent and bright feather colours without melanosomes. J Exp Biol 2016; 219:1851-9. [DOI: 10.1242/jeb.137182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Males of many species often use colourful and conspicuous ornaments to attract females. Among these, male manakins (family: Pipridae) provide classic examples of sexual selection favouring the evolution of bright and colourful plumage coloration. The highly iridescent feather colours of birds are most commonly produced by the periodic arrangement of melanin-containing organelles (melanosomes) within barbules. Melanin increases the saturation of iridescent colours seen from optimal viewing angles by absorbing back-scattered light; however, this may reduce the wide-angle brightness of these signals, contributing to a dark background appearance. We examined the nanostructure of four manakin species (Lepidothrix isidorei, L. iris, L. nattereri and L. coeruleocapilla) to identify how they produce their bright plumage colours. Feather barbs of all four species were characterized by dense and fibrous internal spongy matrices that likely increase scattering of light within the barb. The iridescent, yet pale or whitish colours of L. iris and L. nattereri feathers were produced not by periodically arranged melanosomes within barbules, but by periodic matrices of air and β-keratin within barbs. Lepidothrix iris crown feathers were able to produce a dazzling display of colours with small shifts in viewing geometry, likely because of a periodic nanostructure, a flattened barb morphology and disorder at a microstructural level. We hypothesize that iridescent plumage ornaments of male L. iris and L. nattereri are under selection to increase brightness or luminance across wide viewing angles, which may potentially increase their detectability by females during dynamic and fast-paced courtship displays in dim light environments.
Collapse
Affiliation(s)
- Branislav Igic
- Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Liliana D'Alba
- Department of Biology, The University of Akron, Akron, OH 44325, USA
| | | |
Collapse
|
26
|
Maia R, Rubenstein DR, Shawkey MD. Selection, constraint, and the evolution of coloration in African starlings. Evolution 2016; 70:1064-79. [DOI: 10.1111/evo.12912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/27/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Rafael Maia
- Department of Biology, Integrated Bioscience Program; University of Akron; Akron Ohio 44325
- Department of Ecology, Evolution, and Environmental Biology; Columbia University; New York New York 10027
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution, and Environmental Biology; Columbia University; New York New York 10027
- Center for Integrative Animal Behavior; Columbia University; New York New York 10027
| | - Matthew D. Shawkey
- Department of Biology, Integrated Bioscience Program; University of Akron; Akron Ohio 44325
- Department of Biology, Terrestrial Ecology Unit; University of Ghent; Ledeganckstraat 35 9000 Ghent Belgium
| |
Collapse
|
27
|
Delhey K. The colour of an avifauna: A quantitative analysis of the colour of Australian birds. Sci Rep 2015; 5:18514. [PMID: 26679370 PMCID: PMC4683462 DOI: 10.1038/srep18514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/03/2015] [Indexed: 12/02/2022] Open
Abstract
Animal coloration is a poorly-understood aspect of phenotypic variability. Here I expand initial studies of the colour gamut of birds by providing the first quantitative description of the colour variation of an entire avifauna: Australian landbirds (555 species). The colour of Australian birds occupies a small fraction (19%) of the entire possible colour space and colour variation is extremely uneven. Most colours are unsaturated, concentrated in the centre of colour space and based on the deposition of melanins. Other mechanisms of colour production are less common but account for larger portions of colour space and for most saturated colours. Male colours occupy 45–25% more colour space than female colours, indicating that sexual dichromatism translates into a broader range of male colours. Male-exclusive colours are often saturated, at the edge of chromatic space, and have most likely evolved for signalling. While most clades of birds occupy expected or lower-than-expected colour volumes, parrots and cockatoos (Order Psittaciformes) occupy a much larger volume than expected. This uneven distribution of colour variation across mechanisms of colour production, sexes and clades is probably shared by avifaunas in other parts of the world, but this remains to be tested with comparable data.
Collapse
Affiliation(s)
- Kaspar Delhey
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.,Max Planck Institute for Ornithology, Radolfzell, 78315, Germany
| |
Collapse
|
28
|
Clark DL, Macedonia JM, Rowe JW, Stuart MA, Kemp DJ, Ord TJ. Evolution of displays in Galápagos lava lizards: comparative analyses of signallers and robot playbacks to receivers. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Bleiweiss R. Extrinsic Versus Intrinsic Control of Avian Communication Based on Colorful Plumage Porphyrins. Evol Biol 2015. [DOI: 10.1007/s11692-015-9343-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
María Arenas L, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Sci Rep 2015; 5:11021. [PMID: 26046332 PMCID: PMC4457162 DOI: 10.1038/srep11021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
Many animals have bright colours to warn predators that they have defences and are not worth attacking. However, it remains unclear whether the strength of warning colours reliably indicate levels of defence. Few studies have unambiguously established if warning signals are honest, and have rarely considered predator vision or conspicuousness against the background. Importantly, little data exists either on how differences in signal strength translate into survival advantages. Ladybirds exhibit impressive variation in coloration both among and within species. Here we demonstrate that different levels of toxicity exist among and within ladybird species, and that signal contrast against the background is a good predictor of toxicity, showing that the colours are honest signals. Furthermore, field experiments with ladybird models created with regards to predator vision show that models with lower conspicuousness were attacked more frequently. This provides one of the most comprehensive studies on signal honesty in warning coloration to date.
Collapse
Affiliation(s)
- Lina María Arenas
- 1] Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, UK [2] Centre for Ecology &Conservation, College of Life &Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Dominic Walter
- Centre for Ecology &Conservation, College of Life &Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Martin Stevens
- Centre for Ecology &Conservation, College of Life &Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
31
|
Mason NA, Shultz AJ, Burns KJ. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds. Proc Biol Sci 2015; 281:20140967. [PMID: 24943371 DOI: 10.1098/rspb.2014.0967] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers.
Collapse
Affiliation(s)
- Nicholas A Mason
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Allison J Shultz
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Kevin J Burns
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
32
|
Kahn AT, Holman L, Backwell PR. Female preferences for timing in a fiddler crab with synchronous courtship waving displays. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Physical Alignments Between Plumage Carotenoid Spectra and Cone Sensitivities in Ultraviolet-Sensitive (UVS) Birds (Passerida: Passeriformes). Evol Biol 2014. [DOI: 10.1007/s11692-014-9273-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Schultz TD, Fincke OM. Lost in the crowd or hidden in the grass: signal apparency of female polymorphic damselflies in alternative habitats. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Plumage evolution in relation to light environment in a novel clade of Neotropical tanagers. Mol Phylogenet Evol 2013; 66:112-25. [DOI: 10.1016/j.ympev.2012.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/20/2022]
|
36
|
Signal Detection, Noise, and the Evolution of Communication. ANIMAL SIGNALS AND COMMUNICATION 2013. [DOI: 10.1007/978-3-642-41494-7_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Mennill DJ, Doucet SM, Ward KAA, Maynard DF, Otis B, Burt JM. A novel digital telemetry system for tracking wild animals: a field test for studying mate choice in a lekking tropical bird. Methods Ecol Evol 2012. [DOI: 10.1111/j.2041-210x.2012.00206.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Raveh S, van Dongen WFD, Grimm C, Ingold P. Cone opsins and response of female chamois (Rupicapra rupicapra) to differently coloured raincoats. EUR J WILDLIFE RES 2012. [DOI: 10.1007/s10344-012-0629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Coyle BJ, Hart NS, Carleton KL, Borgia G. Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. J Exp Biol 2012; 215:1090-105. [DOI: 10.1242/jeb.062224] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Variation in visual spectral tuning has evolved in concert with signal colour in some taxa, but there is limited evidence of this pattern in birds. To further investigate this possibility, we compared spectral sensitivity among bowerbird species that occupy different visual habitats and are highly diverged in plumage and decoration colour displays, which are important in mate choice and possibly reproductive isolation. Microspectrophotometry of violet-, short-, medium- and long-wavelength-sensitive cones revealed no significant interspecific variation in visual pigment peak spectral absorbance values that ranged between 404–410, 454, 503–511 and 558–568 nm, respectively. Mean cut-off wavelength values for C-, Y-, R- and P-type coloured oil droplets were 418–441, 508–523, 558–573 and 412–503 nm, respectively, with values at longer wavelengths in ventral compared with dorsal retina cones. Low ocular media mid-wavelength transmission values (340–352 nm) suggest that bowerbirds may represent a transitional stage in the evolution from the ancestral violet-sensitive- to the derived ultraviolet-sensitive-type short-wavelength-sensitive-1-based visual system found in younger passerine lineages. Sequence data obtained for rod opsin and four cone opsin genes were identical at key tuning sites, except for an interspecific leucine-52-alanine polymorphism in the short-wavelength-sensitive 2 opsin. There was no obvious relationship between relative proportions of cone classes and either visual habitat or display colour. Overall, we detected little interspecific variation in bowerbird spectral sensitivity and no association between sensitivity and display diversity, which is consistent with the general trend among avian taxa.
Collapse
Affiliation(s)
- Brian J. Coyle
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Nathan S. Hart
- School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Karen L. Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Gerald Borgia
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
40
|
Renoult JP, Schaefer HM, Sallé B, Charpentier MJE. The evolution of the multicoloured face of mandrills: insights from the perceptual space of colour vision. PLoS One 2011; 6:e29117. [PMID: 22216180 PMCID: PMC3244440 DOI: 10.1371/journal.pone.0029117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/21/2011] [Indexed: 01/12/2023] Open
Abstract
Multicomponent signals consist of several traits that are perceived as a whole. Although many animals rely on multicomponent signals to communicate, the selective pressures shaping these signals are still poorly understood. Previous work has mainly investigated the evolution of multicomponent signals by studying each trait individually, which may not accurately reflect the selective pressures exerted by the holistic perception of signal receivers. Here, we study the design of the multicoloured face of an Old World primate, the mandrill (Mandrillus sphinx), in relation to two aspects of signalling that are expected to be selected by receivers: conspicuousness and information. Using reflectance data on the blue and red colours of the faces of 34 males and a new method of hue vectorisation in a perceptual space of colour vision, we show that the blue hue maximises contrasts to both the red hue and the foliage background colouration, thereby increasing the conspicuousness of the whole display. We further show that although blue saturation, red saturation and the contrast between blue and red colours are all correlated with dominance, dominance is most accurately indicated by the blue-red contrast. Taken together our results suggest that the evolution of blue and red facial colours in male mandrills are not independent and are likely driven by the holistic perception of conspecifics. In this view, we propose that the multicoloured face of mandrills acts as a multicomponent signal. Last, we show that information accuracy increases with the conspicuousness of the whole display, indicating that both aspects of signalling can evolve in concert.
Collapse
Affiliation(s)
- Julien P Renoult
- Department of Evolutionary Biology and Animal Ecology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | | | | | | |
Collapse
|
41
|
Prum RO. THE LANDE-KIRKPATRICK MECHANISM IS THE NULL MODEL OF EVOLUTION BY INTERSEXUAL SELECTION: IMPLICATIONS FOR MEANING, HONESTY, AND DESIGN IN INTERSEXUAL SIGNALS. Evolution 2010; 64:3085-100. [DOI: 10.1111/j.1558-5646.2010.01054.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Sibling competition and conspicuousness of nestling gapes in altricial birds: a comparative study. PLoS One 2010; 5:e10509. [PMID: 20463902 PMCID: PMC2865545 DOI: 10.1371/journal.pone.0010509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/12/2010] [Indexed: 11/19/2022] Open
Abstract
Background Nestlings of altricial birds capture parents' attention through conspicuous visual displays, including exposure of their gape coloration which informs parents about their level of need, competitive ability or health; information that parents use for deciding food allocation among their offspring. Thus, because nestlings compete with nest mates for parental care, nestling conspicuousness is expected to increase with level of sibling competition along bird phylogeny. Methodology/Principal Findings We test this prediction by jointly using information of brood reduction, clutch size and duration of nestling period as proxies for intensity of sibling competition, and visual models that assess detectability of nestlings by adult birds. As predicted, we found a positive association between nestling conspicuousness and intensity of brood reduction, while clutch size and duration of nestling period did not enter in the best models. Level of brood reduction was positively related with the achromatic component of nestling conspicuousness and body mass was negatively related with the chromatic component. Conclusions These associations are in agreement with the hypothesis that sibling competition for parental attention has driven the evolution of visual nestling conspicuousness in a context of parent-offspring communication in altricial birds.
Collapse
|
43
|
TIBBETTS EA, SAFRAN RJ. Co-evolution of plumage characteristics and winter sociality in New and Old World sparrows. J Evol Biol 2009; 22:2376-86. [DOI: 10.1111/j.1420-9101.2009.01861.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Renoult JP, Courtiol A, Kjellberg F. When assumptions on visual system evolution matter: nestling colouration and parental visual performance in birds. J Evol Biol 2009; 23:220-5. [PMID: 19895654 DOI: 10.1111/j.1420-9101.2009.01885.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comparative studies in visual ecology of birds often rely on several assumptions on the evolution of avian vision. In this study, we show that when these assumptions are not upheld, conclusions may be strongly affected. To illustrate this purpose, we reanalysed the data of Avilés & Soler (J. Evol. Biol.22: 376-386, 2009) who demonstrated that nestling gape colouration in altricial birds is associated with visual system. We show that a slight change in analysis methodology leads to opposite conclusions. Such conflicting result raises the problem of applying powerful methods developed for continuous variables to a small sample and a small number of independent events of qualitative visual system shift in comparative analyses. Further, we show that the current trend to assume strong phylogenetic inertia of avian visual systems is contradicted by data and that the sequencing of the SWS1 opsin gene should be considered as an alternative approach.
Collapse
Affiliation(s)
- J P Renoult
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier Cedex 5, France.
| | | | | |
Collapse
|
45
|
Doucet SM, Mennill DJ. Dynamic sexual dichromatism in an explosively breeding Neotropical toad. Biol Lett 2009; 6:63-6. [PMID: 19793736 DOI: 10.1098/rsbl.2009.0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual selection often promotes the evolution of elaborate colour signals in males, but the importance of sexually selected colour signals remains poorly studied in amphibians. We used reflectance spectrometry to document pronounced sexual dichromatism and dramatic colour change in Bufo luetkenii, a toad that breeds in large aggregations at the onset of the rainy season in Costa Rica. Our observations suggest that males fade rapidly from a vibrant lemon yellow to a dull brown once they have paired with a female. We demonstrate this by showing that males are much brighter than females and that unpaired males are more colourful than males in amplexus. We also show that coloration fades rapidly when males are briefly held captive. This is, to our knowledge, the first study to document such dynamic change in male coloration and sexual dichromatism in anurans.
Collapse
Affiliation(s)
- Stéphanie M Doucet
- Department of Biological Sciences, University of Windsor, , Windsor, Ontario, Canada , N9A 2N2.
| | | |
Collapse
|
46
|
Habitat light and dewlap color diversity in four species of Puerto Rican anoline lizards. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1043-60. [DOI: 10.1007/s00359-009-0478-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 07/20/2009] [Accepted: 08/31/2009] [Indexed: 11/24/2022]
|
47
|
Schultz TD, Fincke OM. Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01584.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Doucet SM, Meadows MG. Iridescence: a functional perspective. J R Soc Interface 2009; 6 Suppl 2:S115-32. [PMID: 19336344 PMCID: PMC2706478 DOI: 10.1098/rsif.2008.0395.focus] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/12/2022] Open
Abstract
In animals, iridescence is generated by the interaction of light with biological tissues that are nanostructured to produce thin films or diffraction gratings. Uniquely among animal visual signals, the study of iridescent coloration contributes to biological and physical sciences by enhancing our understanding of the evolution of communication strategies, and by providing insights into physical optics and inspiring biomimetic technologies useful to humans. Iridescent colours are found in a broad diversity of animal taxa ranging from diminutive marine copepods to terrestrial insects and birds. Iridescent coloration has received a surge of research interest of late, and studies have focused on both characterizing the nanostructures responsible for producing iridescence and identifying the behavioural functions of iridescent colours. In this paper, we begin with a brief description of colour production mechanisms in animals and provide a general overview of the taxonomic distribution of iridescent colours. We then highlight unique properties of iridescent signals and review the proposed functions of iridescent coloration, focusing, in particular, on the ways in which iridescent colours allow animals to communicate with conspecifics and avoid predators. We conclude with a brief overview of non-communicative functions of iridescence in animals. Despite the vast amount of recent work on animal iridescence, our review reveals that many proposed functions of iridescent coloration remain virtually unexplored, and this area is clearly ripe for future research.
Collapse
Affiliation(s)
- Stéphanie M Doucet
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| | | |
Collapse
|
49
|
Avilés JM, Soler JJ. Nestling colouration is adjusted to parent visual performance in altricial birds. J Evol Biol 2009; 22:376-86. [PMID: 19196385 DOI: 10.1111/j.1420-9101.2008.01655.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hitherto, most of the investigation on the perceptual efficacy of begging signals has dwelled on how patterns of nestling colouration adjust to predominant nest luminosity. However, visual sensitivity of birds varies across species, which raises the question of whether colouration of traits involved in begging displays is adjusted to parent visual capacities. Here, by comparing nestling colouration and visual sensitivity across 22 altricial bird species, we provide a first test of this hypothesis. Firstly, we assessed differences in performance of typical UV-tuned and violet-tuned bird eyes when looking at the nestling traits under the light regimes prevailing at their nests. Secondly, while controlling for common ancestry in a comparative approach, we explored variation in colouration of nestlings in relation to parent visual system. The colour discrimination model indicated a general higher performance of the ultraviolet over the violet eye at detecting gape and body skin traits in either open- or hole-nest light conditions. Gape colouration was associated with parental visual system as the nestlings of UVS species displayed more yellow and less pure ultraviolet mouths than the nestlings of VS species. Thus, our results agree with an adaptive parent-offspring communication scenario where the nestlings' colours tuned the perception capacities of their parents.
Collapse
Affiliation(s)
- J M Avilés
- Departamento de Biología Animal y Ecología, Universidad de Granada, Granada, Spain.
| | | |
Collapse
|
50
|
Avilés JM. Egg colour mimicry in the common cuckoo Cuculus canorus as revealed by modelling host retinal function. Proc Biol Sci 2008; 275:2345-52. [PMID: 18595836 DOI: 10.1098/rspb.2008.0720] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some parasite cuckoo species lay eggs that, to the human eye, appear to mimic the appearance of the eggs of their favourite hosts, which hinders discrimination and removal of their eggs by host species. Hitherto, perception of cuckoo-host egg mimicry has been estimated based on human vision or spectrophotometry, which does not account for what the receivers' eye (i.e. hosts) actually discriminates. Using a discrimination model approach that reproduces host retinal functioning, and museum egg collections collected in the south of Finland, where at least six different races of the European cuckoo (Cuculus canorus) coexist, I first assess whether the colour design of cuckoo eggs of different races maximizes matching for two favourite avian hosts, viz. the redstart (Phoenicurus phoenicurus) and the pied wagtail (Motacilla alba). Second, I assess the role of nest luminosity on host perception of mimicry by the same two hosts. Phoenicurus-cuckoo eggs showed a better chromatic matching with the redstart-host eggs than other cuckoo races, and in most cases can not be discriminated. Sylvia-cuckoo eggs, however, showed better achromatic matching with redstart-host eggs than Phoenicurus-cuckoo eggs. Also, Motacilla-cuckoo eggs showed poorer chromatic and achromatic matching with pied wagtail-host eggs than Sylvia-cuckoo eggs. Nest luminosity affected chromatic and achromatic differences between cuckoo and host eggs, although only minimally affected the proportion of cuckoo eggs discriminated by chromatic signals. These results reveal that cuckoo races as assessed by humans do not entirely match with host perception of matching and that achromatic mechanisms could play a main role in the discrimination of cuckoo eggs at low-light levels.
Collapse
Affiliation(s)
- Jesús M Avilés
- Departamento de Biología Animal y Ecología, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|