1
|
Gubser C, Pascoe RD, Chang J, Chiu C, Solomon A, Cao R, Rasmussen TA, Lewin SR. GITR activation ex vivo impairs CD8 T cell function in people with HIV on antiretroviral therapy. iScience 2023; 26:108165. [PMID: 38026168 PMCID: PMC10660494 DOI: 10.1016/j.isci.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a co-stimulatory immune checkpoint molecule constitutively expressed on regulatory T cells (Tregs) and on activated T conventional cells (Tconv). In blood collected from PWH on suppressive ART, GITR expression was reduced in multiple activated CD4 and CD8 T cell subsets but was increased in Tregs. HIV specific CD8 T cells expressed higher levels of GITR and programmed cell death protein 1 (PD-1) compared to total CD8 T cells. Following stimulation with HIV peptides and GITR-ligand (L), we demonstrated a significant decrease in killing by HIV specific CD8 T cells and an increased exhausted profile. T cell receptor co-stimulation with GITR-L abrogated Treg suppression and induced expansion of CD4 Tconv. We conclude that GITR activation is an additional factor contributing to an impaired HIV immune response in PWH on ART and that GITR agonist antibodies should not be pursued for HIV cure strategies.
Collapse
Affiliation(s)
- Céline Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rachel D. Pascoe
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Judy Chang
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Chris Chiu
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ajantha Solomon
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rosalyn Cao
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Mechanisms of immune aging in HIV. Clin Sci (Lond) 2022; 136:61-80. [PMID: 34985109 DOI: 10.1042/cs20210344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Massive CD4+ T-cell depletion as well as sustained immune activation and inflammation are hallmarks of Human Immunodeficiency Virus (HIV)-1 infection. In recent years, an emerging concept draws an intriguing parallel between HIV-1 infection and aging. Indeed, many of the alterations that affect innate and adaptive immune subsets in HIV-infected individuals are reminiscent of the process of immune aging, characteristic of old age. These changes, of which the presumed cause is the systemic immune activation established in patients, likely participate in the immuno-incompetence described with HIV progression. With the success of antiretroviral therapy (ART), HIV-seropositive patients can now live for many years despite chronic viral infection. However, acquired immunodeficiency syndrome (AIDS)-related opportunistic infections have given way to chronic diseases as the leading cause of death since HIV infection. Therefore, the comparison between HIV-1 infected patients and uninfected elderly individuals goes beyond the sole onset of immunosenescence and extends to the deterioration of several physiological functions related to inflammation and systemic aging. In light of this observation, it is interesting to understand the precise link between immune activation and aging in HIV-1 infection to figure out how to best care for people living with HIV (PLWH).
Collapse
|
3
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
4
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
5
|
Miska J, Rashidi A, Chang AL, Muroski ME, Han Y, Zhang L, Lesniak MS. Anti-GITR therapy promotes immunity against malignant glioma in a murine model. Cancer Immunol Immunother 2016; 65:1555-1567. [PMID: 27734112 DOI: 10.1007/s00262-016-1912-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023]
Abstract
Regulatory T cells (Tregs) are potently immunosuppressive cells that accumulate within the glioma microenvironment. The reduction in their function and/or trafficking has been previously shown to enhance survival in preclinical models of glioma. Glucocorticoid-induced TNFR-related protein (GITR) is a tumor necrosis factor superfamily receptor enriched on Tregs that has shown promise as a target for immunotherapy. An agonistic antibody against GITR has been demonstrated to inhibit Tregs in a number of models and has only been recently addressed in glioma. In this study, we examined the modality of the antibody function at the tumor site as opposed to the periphery as the blood-brain barrier prevents efficient antibody delivery to brain tumors. Mice harboring established GL261 tumors were treated with anti-GITR monotherapy and were shown to have a significant increase in overall survival (p < 0.01) when antibodies were injected directly into the glioma core, whereas peripheral antibody treatment only had a modest effect. Peripheral treatment resulted in a significant decrease in granzyme B (GrB) expression by Tregs, whereas intratumoral treatment resulted in both a decrease in GrB expression by Tregs and their selective depletion, which was largely mediated by FcγR-mediated destruction. We also discovered that anti-GITR treatment results in the enhanced survival and functionality of dendritic cells (DCs)-a previously unreported effect of this immunotherapy. In effect, this study demonstrates that the targeting of GITR is a feasible and noteworthy treatment option for glioma, but is largely dependent on the anatomical location in which the antibodies are delivered.
Collapse
Affiliation(s)
- Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Alan L Chang
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Megan E Muroski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Lingjiao Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Saifi B, Aflatoonian R, Tajik N, Erfanian Ahmadpour M, Vakili R, Amjadi F, Valizade N, Ahmadi S, Rezaee SA, Mehdizadeh M. T regulatory markers expression in unexplained recurrent spontaneous abortion. J Matern Fetal Neonatal Med 2015; 29:1175-80. [PMID: 26037627 DOI: 10.3109/14767058.2015.1039507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate expression of glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and IL-10 in peripheral blood mononuclear cells (PBMCs) of 20 women with unexplained recurrent spontaneous abortion (URSA) compared to 20 normal non-pregnant women (NNP) during luteal phase in the window of implantation. METHODS Quantitative real-time PCR (qRT-PCR) was performed using the Taqman method for expression of GITR and SYBR Green method for expression of CTLA-4 and IL-10. RESULTS Expression of CTLA-4 in the NNPs (median; interquartile range; 3; 1.8-10) was significantly higher than the URSAs (0.72; 0.26-3.81, p = 0.015). Expression of GITR in the NNPs (53; 10-139) was significantly higher than the URSAs (6; 3-27, p = 0.005). However, IL-10 expression in the URSAs was significantly higher than the NNPs, did not meet a significant value. A significant correlation was found between CTLA-4 and GITR expression in the study population (p = 0.0001). CONCLUSIONS Expression of CTLA-4 and GITR were significantly down-regulated in the URSAs compared to NNPs at the window of implantation, which shows the essential role of Treg cells in creating an immunological privileged site for fetus as an allograft at the maternal-fetal interface by high expression levels of CTLA-4 and GITR during a normal pregnancy.
Collapse
Affiliation(s)
- Bita Saifi
- a Department of Anatomical Sciences, Faculty of Medicine , Iran University of Medical Sciences , Tehran , Iran .,b Department of Anatomical Sciences, Mashhad Medical Science Branch , Islamic Azad University , Mashhad , Iran
| | - Reza Aflatoonian
- c Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center , Royan Institute for Reproductive Biomedicine, ACECR , Tehran , Iran
| | - Nader Tajik
- d Department of Immunology, Faculty of Medicine, Division of Immunogenetics , Iran University of Medical Sciences , Tehran , Iran
| | - Mahmood Erfanian Ahmadpour
- b Department of Anatomical Sciences, Mashhad Medical Science Branch , Islamic Azad University , Mashhad , Iran
| | - Rosita Vakili
- e Center of Pathological and Medical Diagnostic Services, Iranian Academic Center for Education, Culture & Research (ACECR), Mashhad Branch , Mashhad , Iran
| | - Fatemehsadat Amjadi
- a Department of Anatomical Sciences, Faculty of Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Narges Valizade
- f Immunology Research Center , Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - Sanaz Ahmadi
- e Center of Pathological and Medical Diagnostic Services, Iranian Academic Center for Education, Culture & Research (ACECR), Mashhad Branch , Mashhad , Iran
| | - Seyed Abdolrahim Rezaee
- f Immunology Research Center , Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - Mehdi Mehdizadeh
- g Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
7
|
Clouthier DL, Zhou AC, Watts TH. Anti-GITR agonist therapy intrinsically enhances CD8 T cell responses to chronic lymphocytic choriomeningitis virus (LCMV), thereby circumventing LCMV-induced downregulation of costimulatory GITR ligand on APC. THE JOURNAL OF IMMUNOLOGY 2014; 193:5033-43. [PMID: 25281716 DOI: 10.4049/jimmunol.1401002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The costimulatory TNFR family member GITR can provide important survival signals for CD8 T cells. However, little is known about the regulation of this pathway during a chronic infection. In this study, we show that GITR ligand (GITRL) is maximally induced on APCs at day 2 post-lymphocytic choriomeningitis virus (LCMV) clone 13 infection, but is downregulated to below baseline levels by day 8 postinfection (p.i.), and remains so at the chronic stage of infection. At its peak, GITRL expression is highest on macrophages, with lower expression on conventional and plasmacytoid dendritic cells. GITR expression was highest on T regulatory cells but was also detected on Th1 and LCMV-specific CD8 T cells at day 8 p.i. and was maintained at low, but above baseline levels at the chronic stage of LCMV infection. As GITRL was limiting at the chronic stage of infection, we investigated the potential of therapeutic stimulation of GITR at this stage using agonistic anti-GITR Ab. Anti-GITR treatment at day 21 p.i. increased the frequency and number of LCMV-specific CD8 T cells, resulting in increased in vivo CTL activity and a concomitant decrease in viral load, despite the persistence of PD-1 expression. These effects of anti-GITR were CD8 T cell intrinsic, with no detectable effects on Th1 or T regulatory cells. In contrast to other TNFR agonists, such as anti-4-1BB, which can cause immune pathology, a single therapeutic dose of anti-GITR did not induce splenomegaly or increase serum alanine transaminase. These studies identify GITR as a promising therapeutic target for chronic infection.
Collapse
Affiliation(s)
- Derek L Clouthier
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Angela C Zhou
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Clouthier DL, Watts TH. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 2014; 25:91-106. [DOI: 10.1016/j.cytogfr.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
|
9
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
10
|
Shete A, Thakar M, Singh DP, Gangakhedkar R, Gaikwad A, Pawar J, Paranjape R. Short communication: HIV antigen-specific reactivation of HIV infection from cellular reservoirs: implications in the settings of therapeutic vaccinations. AIDS Res Hum Retroviruses 2012; 28:835-43. [PMID: 21936714 DOI: 10.1089/aid.2010.0363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Therapeutic vaccinations using human immunodeficiency virus (HIV) antigens in HIV-infected patients on antiretroviral therapy (ART) have so far been attempted with the purpose of inducing CTL response. However, they can also be useful as a strategy for activation of latent HIV reservoir, which is thought to be mainly comprised of latently infected HIV-specific memory CD4 cells, eventually leading to elimination of the virus. The present study was carried out to explore the ability of different HIV antigens to activate HIV replication as assessed by intracellular P24 detection as well as to induce T cell responses in terms of cytokine expression by flow cytometry after stimulation of PBMCs from HIV-infected patients. HIV antigens were found to be able to activate most of the CD4 T cells harboring proviral DNA. HIV-1 Pol and Env were responsible for induction of higher HIV replication in terms of both magnitude and frequency followed by Gag and Nef. As opposed to this, Pol and Env contributed to fewer numbers of polyfunctional CD8 cells desirable for elimination of HIV-infected cells in comparison to Gag and Nef. Thus, HIV antigens may provide a strategy for the activation of a latent reservoir. It was observed that HIV replication started as early as half an hour after in vitro activation indicating a stringent need for maintaining effective concentrations of antiretroviral drugs to prevent further spread of HIV during this process. HIV-infected cells were found to be responsible for higher IL-10 secretion after activation, which could also serve as one of the reasons for suppressed CD8 responses to Pol and Env as more HIV-infected CD4 cells would be secreting IL-10 in response to these antigens. Since IL-10 blockade helped to improve immune responses in terms of cytokine secretion, it should be considered in settings of therapeutic vaccination to improve CTL responses, which will ultimately limit the persistence of the viral reservoir.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyoti Pawar
- National AIDS Research Institute, Pune, India
| | | |
Collapse
|
11
|
|
12
|
Snell LM, Lin GHY, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 2012; 244:197-217. [PMID: 22017440 DOI: 10.1111/j.1600-065x.2011.01063.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GITR [glucocorticoid inducible tumor necrosis factor receptor (TNFR)-related protein] and 4-1BB are costimulatory TNFR family members that are expressed on regulatory and effector T cells as well as on other cells of the immune system. Here we discuss the role of GITR and 4-1BB on T cells during viral infections and in cancer immunotherapy. Systemic treatment with agonistic anti-4-1BB antibody leads to a number of immune system abnormalities, and clinical trials of anti-4-1BB have been terminated. However, other modes of 4-1BB ligation may be less toxic. To date, similar toxicities have not been reported for anti-GITR treatment of mice, although anti-GITR antibodies can exacerbate mouse autoimmune models. Intrinsic effects of GITR and 4-1BB on effector T cells appear to predominate over their effects on other cell types in some models. Despite their similarities in enhancing T-cell survival, 4-1BB and GITR are clearly not redundant, and both pathways are required for maximal CD8(+) T-cell responses and mouse survival following severe respiratory influenza infection. GITR uses TNFR-associated factor (TRAF) 2 and TRAF5, whereas 4-1BB recruits TRAF1 and TRAF2 to mediate survival signaling in T cells. The differential use of signaling adapters combined with their differential expression may explain the non-redundant roles of GITR and 4-1BB in the immune system.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
13
|
De Keersmaecker B, Heirman C, Corthals J, Empsen C, van Grunsven LA, Allard SD, Pen J, Lacor P, Thielemans K, Aerts JL. The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 2011; 89:989-99. [DOI: 10.1189/jlb.0810466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Glucocorticoid-induced TNFR-related (GITR) protein and its ligand in antitumor immunity: functional role and therapeutic modulation. Clin Dev Immunol 2010; 2010:239083. [PMID: 20936139 PMCID: PMC2948872 DOI: 10.1155/2010/239083] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022]
Abstract
The ability of the tumor necrosis factor receptor (TNFR) family member GITR to modulate immune responses has been the subject of multiple studies. Initially thought to be critically involved in governing functions of regulatory T cells, GITR and its ligand GITRL have meanwhile been found to modulate the reactivity of various different cell types and to influence a broad variety of immunological conditions including the immune response against tumors. Not only GITR, but also GITRL is capable of transducing signals, and the consequences of GITR-GITRL interaction may vary among different effector cell types, differ upon signal transduction via the receptor, the ligand, or both, depend on the level of an ongoing immune response, and even differ among mice and men. In this paper, we address available data on GITR and its ligand in immune responses and discuss the role and potential therapeutic modulation of this molecule system in antitumor immunity.
Collapse
|