1
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
2
|
Oleinikov AV. Malaria Parasite Plasmodium falciparum Proteins on the Surface of Infected Erythrocytes as Targets for Novel Drug Discovery. BIOCHEMISTRY (MOSCOW) 2022; 87:S192-S177. [PMID: 35501996 PMCID: PMC8802247 DOI: 10.1134/s0006297922140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This review describes our work on the discovery, characterization, and optimization of novel inhibitors that specifically prevent adhesion of IEs to the host vasculature during severe malaria, especially its placental and cerebral forms. The main idea of using anti-adhesion drugs in severe malaria is to release sequestered parasites (or prevent additional sequestration) as quickly as possible. This may significantly improve the outcomes for patients with severe malaria by decreasing local and systemic inflammation associated with the disease and reestablishing the microvascular blood flow. To identify anti-malarial adhesion-inhibiting molecules, we have developed a high-throughput (HT) screening approach and found a number of promising leads that can be further developed into anti-adhesion drugs providing an efficient adjunct therapy against severe forms of malaria.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA.
| |
Collapse
|
3
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
4
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
5
|
Wu Y, Wagstaff SC, Al-Harthi SA, Craig AG. Comparative 1D Blue-Native electrophoresis analysis of Plasmodium falciparum and human proteins associated with cytoadherence. Malar J 2018; 17:293. [PMID: 30103779 PMCID: PMC6090645 DOI: 10.1186/s12936-018-2445-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/04/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND To understand more about changes to the molecular components that occur when host endothelium interacts with Plasmodium falciparum-infected erythrocytes, a combined technique of protein separation (1D Blue-Native electrophoresis) and mass spectrometry of infected erythrocytes with endothelial cells (EC) in a co-culture system has been used. METHODS Native proteins were extracted from co-cultures and identified by mass spectrometry. Proteomic data from different parasite strains, either adhesion proficient (to endothelial cells) or non-adherent, were analysed in parallel to reveal protein associations linked to cytoadherence. Informatic approaches were developed to facilitate this comparison. RESULTS Blue-Native gel separation and LC/MS/MS identification revealed major differences in samples produced from endothelial cell co-culture with adherent and non-adherent parasite strains. This approach enabled us to identify protein associations seen only with the adhesion proficient parasite strain. CONCLUSIONS The combination of proteomic and analytical approaches has identified differences between adherent and non-adherent parasite lines in co-culture with EC, providing potential candidates for complexes or associations formed during cytoadherence involved in cell structure, signalling and apoptosis.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simon C Wagstaff
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Saeed A Al-Harthi
- Department of Parasitology, Faculty of Medicine, Umm AL-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
6
|
Metwally NG, Tilly AK, Lubiana P, Roth LK, Dörpinghaus M, Lorenzen S, Schuldt K, Witt S, Bachmann A, Tidow H, Gutsmann T, Burmester T, Roeder T, Tannich E, Bruchhaus I. Characterisation of Plasmodium falciparum populations selected on the human endothelial receptors P-selectin, E-selectin, CD9 and CD151. Sci Rep 2017. [PMID: 28642573 PMCID: PMC5481354 DOI: 10.1038/s41598-017-04241-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability of the parasite Plasmodium falciparum to evade the immune system and be sequestered within human small blood vessels is responsible for severe forms of malaria. The sequestration depends on the interaction between human endothelial receptors and P. falciparum erythrocyte membrane protein 1 (PfEMP1) exposed on the surface of the infected erythrocytes (IEs). In this study, the transcriptomes of parasite populations enriched for parasites that bind to human P-selectin, E-selectin, CD9 and CD151 receptors were analysed. IT4_var02 and IT4_var07 were specifically expressed in IT4 parasite populations enriched for P-selectin-binding parasites; eight var genes (IT4_var02/07/09/13/17/41/44/64) were specifically expressed in isolate populations enriched for CD9-binding parasites. Interestingly, IT4 parasite populations enriched for E-selectin- and CD151-binding parasites showed identical expression profiles to those of a parasite population exposed to wild-type CHO-745 cells. The same phenomenon was observed for the 3D7 isolate population enriched for binding to P-selectin, E-selectin, CD9 and CD151. This implies that the corresponding ligands for these receptors have either weak binding capacity or do not exist on the IE surface. Conclusively, this work expanded our understanding of P. falciparum adhesive interactions, through the identification of var transcripts that are enriched within the selected parasite populations.
Collapse
Affiliation(s)
- Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Medical Parasitology Department, Faculty of Medicine-Suez Canal University, Ismailia, Egypt
| | | | - Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa K Roth
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kathrin Schuldt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Henning Tidow
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | - Thomas Roeder
- Zoological Institute, Department of Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
7
|
Vásquez AM, Blair S, García LF, Segura C. Plasmodium falciparum isolates from patients with uncomplicated malaria promote endothelial inflammation. Microbes Infect 2016; 19:132-141. [PMID: 27717894 DOI: 10.1016/j.micinf.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022]
Abstract
The ability of Plasmodium falciparum infected erythrocytes (Pf-IEs) to activate endothelial cells has been described; however, the interaction of the endothelium with Pf-IEs field isolates from patients has been less characterized. Previous reports have shown that isolates alter the endothelial permeability and apoptosis. In this study, the adhesion of 19 uncomplicated malaria isolates to Human Dermal Microvascular Endothelial Cells (HDMEC), and their effect on the expression of ICAM-1 and proinflammatory molecules (sICAM-1, IL-6, IL-8, and MCP-1) was evaluated. P. falciparum isolates adhered to resting and TNFα-activated HDEMC cells at different levels. All isolates increased the ICAM-1 expression on the membrane (mICAM-1) of HDMEC and increased the release of its soluble form (sICAM-1), as well the production of IL-6, IL-8 and MCP-1 by HDMEC with no signs of cell apoptosis. No correlation between parasite adhesion and production of cytokines was observed. In conclusion, isolates from uncomplicated malaria can induce a proinflammatory response in endothelial cells that may play a role during the initial inflammatory response to parasite infection; however, a continuous activation of the endothelium can contribute to pathogenesis.
Collapse
Affiliation(s)
- Ana María Vásquez
- Grupo Malaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 610, Medellín, Colombia.
| | - Silvia Blair
- Grupo Malaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 610, Medellín, Colombia
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 410, Medellín, Colombia
| | - Cesar Segura
- Grupo Malaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 610, Medellín, Colombia
| |
Collapse
|
8
|
Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci Rep 2016; 6:33786. [PMID: 27653778 PMCID: PMC5031962 DOI: 10.1038/srep33786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches.
Collapse
|
9
|
Carvalho TG, Morahan B, John von Freyend S, Boeuf P, Grau G, Garcia-Bustos J, Doerig C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol Biochem Parasitol 2016; 208:2-15. [PMID: 27211241 DOI: 10.1016/j.molbiopara.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Belinda Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Department of Medicine, Melbourne, Victoria 3010, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Georges Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jose Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
10
|
Wu Y, Cruz LN, Szestak T, Laing G, Molyneux GR, Garcia CRS, Craig AG. An external sensing system in Plasmodium falciparum-infected erythrocytes. Malar J 2016; 15:103. [PMID: 26893139 PMCID: PMC4759932 DOI: 10.1186/s12936-016-1144-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Background A number of experiments have previously indicated that Plasmodium falciparum-infected erythrocytes (pRBC) were able to sense host environment. The basis of this ability to detect external cues is not known but in screening signalling molecules from pRBC using commercial antibodies, a 34 kDa phosphorylated molecule that possesses such ability was identified. Methods The pRBC were exposed to different culture conditions and proteins were extracted for 1D or 2D gel electrophoresis followed by Western blot. The localization of 34 kDa protein was examined by biochemical fractionation followed by Western blot. High-resolution mass spectrometric analysis of immune precipitants was used to identify this protein and real-time quantitative reverse transcriptase polymerase chain reaction was used for detecting mRNA expression level. Results The 34 kDa protein was called PfAB4 has immediate responses (dephosphorylation and rapid turnover) to host environmental stimuli such as serum depletion, osmolality change and cytokine addition. PfAB4 is expressed constitutively throughout the erythrocytic lifecycle with dominant expression in trophozoites 30 h post-infection. Tumour necrosis factor (TNF) treatment induced a transient detectable dephosphorylation of PfAB4 in the ItG strain (2 min after addition) and the level of expression and phosphorylation returned to normal within 1–2 h. PfAB4 localized dominantly in pRBC cytoplasm, with a transient shift to the nucleus under TNF stimulation as shown by biochemical fractionation. High-resolution mass spectrometric analysis of immune precipitants of AB4 antibodies revealed a 34 kDa PfAB4 component as a mixture of proliferating cellular nuclear antigen-1 (PCNA1) and exported protein-2 (EXP2), along with a small number of other inconsistently identified peptides. Different parasite strains have different PfAB4 expression levels, but no significant association between mRNA and PfAB4 levels was seen, indicating that the differences may be at the post-transcriptional, presumably phosphorylation, level. A triple serine phosphorylated PCNA1 peptide was identified from the PfAB4 high expression strain only, providing further evidence that the identity of PfAB4 is PCNA1 in P.falciparum. Conclusion A protein element in the human malaria parasite that responds to external cues, including the pro-inflammatory cytokine TNF have been discovered. Treatment results in a transient change in phosphorylation status of the response element, which also migrates from the parasite cytoplasm to the nucleus. The response element has been identified as PfPCNA1. This sensing response could be regulated by a parasite checkpoint system and be analogous to bacterial two-component signal transduction systems. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Wu
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Laura N Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - Tadge Szestak
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Gavin Laing
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Gemma R Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Celia R S Garcia
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
11
|
Type of in vitro cultivation influences cytoadhesion, knob structure, protein localization and transcriptome profile of Plasmodium falciparum. Sci Rep 2015; 5:16766. [PMID: 26568166 PMCID: PMC4645185 DOI: 10.1038/srep16766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 02/02/2023] Open
Abstract
In vitro cultivation of Plasmodium falciparum is critical for studying the biology of this parasite. However, it is likely that different in vitro cultivation conditions influence various aspects of the parasite’s life cycle. In the present study two P. falciparum isolates were cultivated using the two most common methods, in which AlbuMAX or human serum as additives are used, and the results were compared. The type of cultivation influenced the knob structure of P. falciparum-infected erythrocytes (IEs). IEs cultivated with AlbuMAX had fewer knobs than those cultivated with human serum. Furthermore, knob size varied between isolates and is also depended on the culture medium. In addition, there was a greater reduction in the cytoadhesion of IEs to various endothelial receptors in the presence of AlbuMAX than in the presence of human serum. Surprisingly, cytoadhesion did not correlate with the presence or absence of knobs. Greater numbers of the variant surface antigen families RIFIN, STEVOR, and PfMC-2TM were found at the IE membrane when cultivated in the presence of AlbuMAX. Moreover, the type of cultivation had a marked influence on the transcriptome profile. Compared with cultivation with human serum, cultivation with AlbuMAX increased the expression of approximately 500–870 genes.
Collapse
|
12
|
Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg 2015; 93:42-56. [PMID: 26259939 PMCID: PMC4574273 DOI: 10.4269/ajtmh.14-0841] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023] Open
Abstract
More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph D. Smith
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Hempel C, Boisen IM, Efunshile A, Kurtzhals JAL, Staalsø T. An automated method for determining the cytoadhesion of Plasmodium falciparum-infected erythrocytes to immobilized cells. Malar J 2015; 14:112. [PMID: 25881267 PMCID: PMC4391601 DOI: 10.1186/s12936-015-0632-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/02/2015] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum exports antigens to the surface of infected erythrocytes causing cytoadhesion to the host vasculature. This is central in malaria pathogenesis but in vitro studies of cytoadhesion rely mainly on manual counting methods. The current study aimed at developing an automated high-throughput method for this purpose utilizing the pseudoperoxidase activity of intra-erythrocytic haemoglobin. Methods Chinese hamster ovary (CHO) cells were grown to confluence in chamber slides and microtiter plates. Cytoadhesion of co-cultured P. falciparum, selected for binding to CHO cells, was quantified by microscopy of Giemsa-stained chamber slides. In the automated assay, binding was quantified spectrophotometrically in microtiter plates after cell lysis using tetramethylbenzidine as peroxidase-catalysed substrate. The relevance of the method for binding studies was assessed using: i) binding of P. falciparum-infected erythrocytes to CHO cells over-expressing chondroitin sulfate A and ii) CHO cells transfected with CD36. Binding of infected erythrocytes including field isolates to primary endothelial cells was also performed. Data was analysed using linear regression and Bland-Altman plots. Results The manual and automated quantification showed strong, positive correlation (r2 = 0.959, p <0.001) and with similar detection limit and precision. The automated assay showed the expected dose-dependent reduction in binding to CHO cells when blocking with soluble chondroitin sulfate A or anti-CD36 antibody. Quantification of binding to endothelial cells showed clear distinction between selected vs. non-selected parasite lines. Importantly, the assay was sufficiently sensitive to detect adhesion of field isolates to endothelial cells. Conclusions The assay is simple and in a reproducible manner quantifies erythrocyte adhesion to several types of immobilized cells.
Collapse
Affiliation(s)
- Casper Hempel
- Centre for Medical Parasitology at Department of Clinical Microbiology, Copenhagen University Hospital Department Clinical Microbiology, 7602, Ole Maaløesvej 26, 2200, Copenhagen N, Denmark.
| | - Ida M Boisen
- Centre for Medical Parasitology at Department of Clinical Microbiology, Copenhagen University Hospital Department Clinical Microbiology, 7602, Ole Maaløesvej 26, 2200, Copenhagen N, Denmark. .,Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Akinwale Efunshile
- Institute of Medical Microbiology and Infectious Disease Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany. .,Department of Medical Microbiology, Federal Teaching Hospital/Ebonyi State University, Abakaliki, Nigeria.
| | - Jørgen A L Kurtzhals
- Centre for Medical Parasitology at Department of Clinical Microbiology, Copenhagen University Hospital Department Clinical Microbiology, 7602, Ole Maaløesvej 26, 2200, Copenhagen N, Denmark. .,Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Trine Staalsø
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
|
15
|
Solomon W, Wilson NO, Anderson L, Pitts S, Patrickson J, Liu M, Ford BD, Stiles JK. Neuregulin-1 attenuates mortality associated with experimental cerebral malaria. J Neuroinflammation 2014; 11:9. [PMID: 24433482 PMCID: PMC3906904 DOI: 10.1186/1742-2094-11-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Cerebral Malaria (CM) is a diffuse encephalopathy caused by Plasmodium falciparum infection. Despite availability of antimalarial drugs, CM-associated mortality remains high at approximately 30% and a subset of survivors develop neurological and cognitive disabilities. While antimalarials are effective at clearing Plasmodium parasites they do little to protect against CM pathophysiology and parasite-induced brain inflammation that leads to seizures, coma and long-term neurological sequelae in CM patients. Thus, there is urgent need to explore therapeutics that can reduce or prevent CM pathogenesis and associated brain inflammation to improve survival. Neuregulin-1 (NRG-1) is a neurotrophic growth factor shown to protect against brain injury associated with acute ischemic stroke (AIS) and neurotoxin exposure. However, this drug has not been tested against CM-associated brain injury. Since CM-associated brain injuries and AIS share similar pathophysiological features, we hypothesized that NRG-1 will reduce or prevent neuroinflammation and brain damage as well as improve survival in mice with late-stage experimental cerebral malaria (ECM). Methods We tested the effects of NRG-1 on ECM-associated brain inflammation and mortality in P. berghei ANKA (PbA)-infected mice and compared to artemether (ARM) treatment; an antimalarial currently used in various combination therapies against malaria. Results Treatment with ARM (25 mg/kg/day) effectively cleared parasites and reduced mortality in PbA-infected mice by 82%. Remarkably, NRG-1 therapy (1.25 ng/kg/day) significantly improved survival against ECM by 73% despite increase in parasite burden within NRG-1-treated mice. Additionally, NRG-1 therapy reduced systemic and brain pro-inflammatory factors TNFalpha, IL-6, IL-1alpha and CXCL10 and enhanced anti-inflammatory factors, IL-5 and IL-13 while decreasing leukocyte accumulation in brain microvessels. Conclusions This study suggests that NRG-1 attenuates ECM-associated brain inflammation and injuries and may represent a novel supportive therapy for the management of CM.
Collapse
Affiliation(s)
- Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Raza A, Ghanchi NK, Sarwar Zubairi AB, Raheem A, Nizami S, Beg MA. Tumor necrosis factor -α, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan. PLoS One 2013; 8:e81363. [PMID: 24324686 PMCID: PMC3852525 DOI: 10.1371/journal.pone.0081363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cytokine-mediated endothelial activation pathway is a known mechanism of pathogenesis employed by Plasmodium falciparum to induce severe disease symptoms in human host. Though considered benign, complicated cases of Plasmodium vivax are being reported worldwide and from Pakistan. It has been hypothesized that P.vivax utilizes similar mechanism of pathogenesis, as that of P.falciparum for manifestations of severe malaria. Therefore, the main objective of this study was to characterize the role of cytokines and endothelial activation markers in complicated Plasmodium vivax isolates from Pakistan. METHODS AND PRINCIPLE FINDINGS A case control study using plasma samples from well-characterized groups suffering from P.vivax infection including uncomplicated cases (n=100), complicated cases (n=82) and healthy controls (n=100) were investigated. Base line levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Intercellular adhesion molecule-1 (ICAM-1), Vascular adhesion molecule-1(VCAM-1) and E-selectin were measured by ELISA. Correlation of cytokines and endothelial activation markers was done using Spearman's correlation analysis. Furthermore, significance of these biomarkers as indicators of disease severity was also analyzed. The results showed that TNF-α, IL-10, ICAM-1and VCAM-1 were 3-fold, 3.7 fold and 2 fold increased between uncomplicated and complicated cases. Comparison of healthy controls with uncomplicated cases showed no significant difference in TNF-α concentrations while IL-6, IL-10, ICAM-1, VCAM-1 and E-selectin were found to be elevated respectively. In addition, significant positive correlation was observed between TNF-α and IL-10/ ICAM-1, IL-6 and IL-10, ICAM-1 and VCAM-1.A Receiver operating curve (ROC) was generated which showed that TNF-α, IL-10, ICAM-1 and VCAM-1 were the best individual predictors of complicated P.vivax malaria. CONCLUSION The results suggest that though endothelial adhesion molecules are inducible by pro-inflammatory cytokine TNF-α, however, cytokine-mediated endothelial activation pathway is not clearly demonstrated as a mechanism of pathogenesis in complicated P.vivax malaria cases from Pakistan.
Collapse
Affiliation(s)
- Afsheen Raza
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Sindh, Pakistan
| | - Najia K. Ghanchi
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Sindh, Pakistan
| | | | - Ahmed Raheem
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Sindh, Pakistan
| | - Sobia Nizami
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Sindh, Pakistan
| | - Mohammad Asim Beg
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Sindh, Pakistan
| |
Collapse
|
17
|
CD36 recruits α₅β₁ integrin to promote cytoadherence of P. falciparum-infected erythrocytes. PLoS Pathog 2013; 9:e1003590. [PMID: 24009511 PMCID: PMC3757042 DOI: 10.1371/journal.ppat.1003590] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to receptors on different host cells plays a divergent yet critical role in determining the progression and outcome of the infection. Based on our ex vivo studies with clinical parasite isolates from adult Thai patients, we have previously proposed a paradigm for IRBC cytoadherence under physiological shear stress that consists of a recruitment cascade mediated largely by P-selectin, ICAM-1 and CD36 on primary human dermal microvascular endothelium (HDMEC). In addition, we detected post-adhesion signaling events involving Src family kinases and the adaptor protein p130CAS in endothelial cells that lead to CD36 clustering and cytoskeletal rearrangement which enhance the magnitude of the adhesive strength, allowing adherent IRBC to withstand shear stress of up to 20 dynes/cm2. In this study, we addressed whether CD36 supports IRBC adhesion as part of an assembly of membrane receptors. Using a combination of flow chamber assay, atomic force and confocal microscopy, we showed for the first time by loss- and gain-of function assays that in the resting state, the integrin α5β1 does not support adhesive interactions between IRBC and HDMEC. Upon IRBC adhesion to CD36, the integrin is recruited either passively as part of a molecular complex with CD36, or actively to the site of IRBC attachment through phosphorylation of Src family kinases, a process that is Ca2+-dependent. Clustering of β1 integrin is associated with an increase in IRBC recruitment as well as in adhesive strength after attachment (∼40% in both cases). The adhesion of IRBC to a multimolecular complex on the surface of endothelial cells could be of critical importance in enabling adherent IRBC to withstand the high shear stress in the microcirculations. Targeting integrins may provide a novel approach to decrease IRBC cytoadherence to microvascular endothelium. Of the several species of malaria parasites that infect humans, disease caused by Plasmodium falciparum is responsible for most of the deaths. The unique pathological finding of this infection is the intense adhesion of infected red blood cells (IRBC) in the microcirculation, resulting in obstruction to blood flow and organ dysfunction. The focus of our research is to identify the molecules on host endothelial cells that support the adhesion as potential therapeutic targets. In this report, we showed for the first time a functional association between CD36, a well studied adhesion molecule for parasite adhesion, and α5β1, a member of the integrin family of adhesion molecules that are important for adhesion of leukocytes to blood vessels and cell adhesion to the extracellular matrix. We found that by itself, α5β1 integrin does not support IRBC adhesion. When IRBC adhere to CD36, the integrin is recruited to the site of adhesion through activation of the Src family kinase signaling pathway. As a result, both the number of adherent IRBC and the strength with which they adhere is greatly increased. These results demonstrate that IRBC adhesion is a dynamic and complex process. We need to identify each of the functional components to design anti-adhesive therapy.
Collapse
|
18
|
Krause MA, Diakite SAS, Lopera-Mesa TM, Amaratunga C, Arie T, Traore K, Doumbia S, Konate D, Keefer JR, Diakite M, Fairhurst RM. α-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One 2012; 7:e37214. [PMID: 22623996 PMCID: PMC3356384 DOI: 10.1371/journal.pone.0037214] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND α-Thalassemia results from decreased production of α-globin chains that make up part of hemoglobin tetramers (Hb; α(2)β(2)) and affects up to 50% of individuals in some regions of sub-Saharan Africa. Heterozygous (-α/αα) and homozygous (-α/-α) genotypes are associated with reduced risk of severe Plasmodium falciparum malaria, but the mechanism of this protection remains obscure. We hypothesized that α-thalassemia impairs the adherence of parasitized red blood cells (RBCs) to microvascular endothelial cells (MVECs) and monocytes--two interactions that are centrally involved in the pathogenesis of severe disease. METHODS AND FINDINGS We obtained P. falciparum isolates directly from Malian children with malaria and used them to infect αα/αα (normal), -α/αα and -α/-α RBCs. We also used laboratory-adapted P. falciparum clones to infect -/-α RBCs obtained from patients with HbH disease. Following a single cycle of parasite invasion and maturation to the trophozoite stage, we tested the ability of parasitized RBCs to bind MVECs and monocytes. Compared to parasitized αα/αα RBCs, we found that parasitized -α/αα, -α/-α and -/-α RBCs showed, respectively, 22%, 43% and 63% reductions in binding to MVECs and 13%, 33% and 63% reductions in binding to monocytes. α-Thalassemia was associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's main cytoadherence ligand and virulence factor, on the surface of parasitized RBCs. CONCLUSIONS Parasitized α-thalassemic RBCs show PfEMP1 display abnormalities that are reminiscent of those on the surface of parasitized sickle HbS and HbC RBCs. Our data suggest a model of malaria protection in which α-thalassemia ameliorates the pro-inflammatory effects of cytoadherence. Our findings also raise the possibility that other unstable hemoglobins such as HbE and unpaired α-globin chains (in the case of β-thalassemia) protect against life-threatening malaria by a similar mechanism.
Collapse
Affiliation(s)
- Michael A. Krause
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seidina A. S. Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takayuki Arie
- Department of Physics and Electronics, School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Karim Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Jeffrey R. Keefer
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Alister GC, Mohd Fadzli Mustaffa K. Cytoadherence and severe malaria. Malays J Med Sci 2012; 19:5-18. [PMID: 22973133 PMCID: PMC3431742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/15/2011] [Indexed: 06/01/2023] Open
Abstract
Malaria is a disease that causes enormous human morbidity and mortality. One feature of mature Plasmodium falciparum-infected erythrocytes leading to the development of severe malaria is thought to be cytoadherence and blockage of the microvasculature. Therefore, an understanding of mechanisms that mediate parasite adhesion leading to malaria pathology is needed to yield new treatments for malaria. However, to date, cytoadherence-associated pathology is still under debate. Is cytoadherence needed to develop severe malaria? This review will discuss the available information on associations of cytoadherence with the development of severe malaria.
Collapse
Affiliation(s)
- G Craig Alister
- Department of Molecular and Biochemical
Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA
Liverpool, United Kingdom
| | - Khairul Mohd Fadzli Mustaffa
- Department of Molecular and Biochemical
Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA
Liverpool, United Kingdom
- Institute for Research in Molecular
Medicine, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| |
Collapse
|
20
|
Park GS, Ireland KF, Opoka RO, John CC. Evidence of Endothelial Activation in Asymptomatic Plasmodium falciparum Parasitemia and Effect of Blood Group on Levels of von Willebrand Factor in Malaria. J Pediatric Infect Dis Soc 2012; 1:16-25. [PMID: 23687570 PMCID: PMC3656549 DOI: 10.1093/jpids/pis010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/12/2012] [Indexed: 11/14/2022]
Abstract
BACKGROUND Endothelial activation may contribute to development of severe disease from Plasmodium falciparum infection, but optimal markers of endothelial activation in severe malaria, the extent of endothelial activation in asymptomatic infection, and the effect of blood group O on endothelial activation have not been defined. METHODS Serum levels of 3 markers of endothelial activation-von Willebrand factor (VWF), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1)-were assessed in Ugandan children with cerebral malaria (CM) (n = 86), children with uncomplicated malaria (UM) (n = 81), and community children (CC) (n = 90). RESULTS Serum VWF, sICAM-1, and sVCAM-1 levels were all elevated in asymptomatic community children with microscopy-confirmed parasitemia when compared with children without parasitemia by microscopy or polymerase chain reaction (all, P ≤ .05). Levels of VWF, sICAM-1, and sVCAM-1 were higher in children with UM than in CC (all, P < 0.001), but only VWF levels effectively distinguished CM from UM (P < 0.001), a finding confirmed by receiver operating characteristic analyses (area under the curve = 0.67; 95% confidence interval, .58-.75). Von Willebrand factor levels were lower in children with blood group O versus non-O blood groups across the disease spectrum, but VWF levels remained higher in CM versus UM, even after controlling for blood group. CONCLUSIONS Endothelial activation, as assessed by serum levels of VWF, sICAM-1, and sVCAM-1, occurs even in subclinical P. falciparum parasitemia. Von Willebrand factor levels increase with greater malaria disease severity. Blood group O is associated with lower VWF levels, but presence of blood group O alone does not explain the higher VWF levels seen in children with CM.
Collapse
Affiliation(s)
- Gregory S. Park
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Kathleen F. Ireland
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | | | - Chandy C. John
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis,Corresponding Author: Chandy C. John, Department of Pediatrics, University of Minnesota Medical School, 717 Delaware St SE, Rm 363, Minneapolis, MN 55414. E-mail:
| |
Collapse
|
21
|
Razakandrainibe R, Pelleau S, Grau GE, Jambou R. Antigen presentation by endothelial cells: what role in the pathophysiology of malaria? Trends Parasitol 2012; 28:151-60. [PMID: 22365903 DOI: 10.1016/j.pt.2012.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/19/2022]
Abstract
Disruption of the endothelial cell (EC) barrier leads to pathology via edema and inflammation. During infections, pathogens are known to invade the EC barrier and modulate vascular permeability. However, ECs are semi-professional antigen-presenting cells, triggering T-cell costimulation and specific immune-cell activation. This in turn leads to the release of inflammatory mediators and the destruction of infected cells by effectors such as CD8(+) T-cells. During malaria, transfer of parasite antigens to the EC surface is now established. At the same time, CD8 activation seems to play a major role in cerebral malaria. We summarize here some of the pathways leading to antigen presentation by ECs and address the involvement of these mechanisms in the pathophysiology of cerebral malaria.
Collapse
|
22
|
Grau GER, Craig AG. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 2012; 7:291-302. [DOI: 10.2217/fmb.11.155] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cerebral malaria is one of a number of clinical syndromes associated with infection by human malaria parasites of the genus Plasmodium. The etiology of cerebral malaria derives from sequestration of parasitized red cells in brain microvasculature and is thought to be enhanced by the proinflammatory status of the host and virulence characteristics of the infecting parasite variant. In this article we examine the range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans and review the evidence to support their role.
Collapse
Affiliation(s)
- Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown NSW 2042, Australia
- La Jolla Infectious Disease Institute, San Diego, CA 92109, USA
| | | |
Collapse
|
23
|
Wu Y, Szestak T, Stins M, Craig AG. Amplification of P. falciparum Cytoadherence through induction of a pro-adhesive state in host endothelium. PLoS One 2011; 6:e24784. [PMID: 22043276 PMCID: PMC3197193 DOI: 10.1371/journal.pone.0024784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/17/2011] [Indexed: 01/03/2023] Open
Abstract
This study examined the ability of P.falciparum-infected erythrocytes (IE) to induce a pro-adhesive environment in the host endothelium during malaria infection, prior to the systemic cytokine activation seen in the later phase of disease. Previous work had shown increases in receptor levels but had not measured to actual impact on IE binding. Using a co-culture system with a range of endothelial cells (EC) and IE with different cytoadherent properties, we have characterised the specific expression of adhesion receptors and subsequent IE binding by FACS and adhesion assays. We have also examined the specific signalling pathways induced during co-culture that are potentially involved in the induction of receptor expression. The results confirmed that ICAM-1 is up-regulated, albeit at much lower levels than seen with TNF activation, in response to co-culture with infected erythrocytes in all three tissue endothelial cell types tested but that up-regulation of VCAM-1 is tissue-dependent. This small increase in the levels of EC receptors correlated with large changes in IE adhesion ability. Co-culture with either RBC or IE increased the potential of subsequent adhesion indicating priming/modulation effects on EC which make them more susceptible to adhesion and thereby the recruitment of IE. Trypsin surface digestion of IE and the use of a Pfsbp1-knockout (ko) parasite line abrogated the up-regulation of ICAM-1 and reduced IE binding to EC suggesting that PfEMP-1 and other molecules exported to the IE surface via the PfSBP1 pathway are major mediators of this phenotype. This was also supported by the higher induction of EC adhesion receptors by adherent IE compared to isogenic, non-adherent lines.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tadge Szestak
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Monique Stins
- RT Johnson Division of NeuroImmunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alister G. Craig
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Taoufiq Z, Pino P, N'dilimabaka N, Arrouss I, Assi S, Soubrier F, Rebollo A, Mazier D. Atorvastatin prevents Plasmodium falciparum cytoadherence and endothelial damage. Malar J 2011; 10:52. [PMID: 21356073 PMCID: PMC3056843 DOI: 10.1186/1475-2875-10-52] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/28/2011] [Indexed: 12/29/2022] Open
Abstract
Background The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders. Methods The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models. Results Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites. Conclusions These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.
Collapse
Affiliation(s)
- Zacharie Taoufiq
- INSERM, UMR S945, Université Pierre et Marie Curie-Paris 6, CHU-Pitié-Salpêtrière, 91 bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zougbédé S, Miller F, Ravassard P, Rebollo A, Cicéron L, Couraud PO, Mazier D, Moreno A. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J Cereb Blood Flow Metab 2011; 31:514-26. [PMID: 20683453 PMCID: PMC3049507 DOI: 10.1038/jcbfm.2010.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood-brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs.
Collapse
|
26
|
Hughes KR, Biagini GA, Craig AG. Continued cytoadherence of Plasmodium falciparum infected red blood cells after antimalarial treatment. Mol Biochem Parasitol 2009; 169:71-8. [PMID: 19800372 PMCID: PMC2814047 DOI: 10.1016/j.molbiopara.2009.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/02/2022]
Abstract
Development of severe disease in Plasmodium falciparum malaria infection is thought to be, at least in part, due to the sequestration of trophozoite-stage infected red blood cells in the microvasculature. The process of cytoadherence is mediated by binding of the parasite protein PfEMP-1 on the surface of infected red blood cells to endothelial cell receptors. Although antimalarial treatments rapidly kill parasites, significant mortality is still seen in severe malaria, particularly within 24h of hospital admission. We find that cytoadherence of infected red blood cells continues for several hours after killing of the parasite by antimalarials; after 24h treatment using a range of antimalarials binding is approximately one-third the level of untreated parasite cultures. This is consistent with the maintained presence of PfEMP-1 on the surface of drug-treated infected red blood cells. A specific advantage of artesunate over other treatments tested is seen on addition of this drug to younger ring stage parasites, which do not mature to the cytoadherent trophozoite-stage. These findings show that cytoadherence, a potential pathogenic property of P. falciparum infected red blood cells, continues long after the parasite has been killed. These data support the development of adjunctive therapies to reverse the pathophysiological consequences of cytoadherence.
Collapse
Affiliation(s)
- Katie R Hughes
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | | |
Collapse
|
27
|
Wu Y, Nelson MM, Quaile A, Xia D, Wastling JM, Craig A. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum. Malar J 2009; 8:105. [PMID: 19450262 PMCID: PMC2696463 DOI: 10.1186/1475-2875-8-105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 05/18/2009] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC). METHODS Metabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE) has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI). 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. RESULTS 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. CONCLUSION Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P. falciparum proteins and 77 human proteins as phosphorylated protein in pRBC, while only 48 human proteins were identified in the corresponding fractions from uninfected RBC. Refinement of the search to include significant ion scores indicating a specific phospho-peptide identified 21 P. falciparum proteins and 14 human proteins from pRBC, 13 host proteins were identified from normal RBC. The results achieved by complementary techniques consistently reflect a reliable proteomic overview of pRBC.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Morag M Nelson
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Andrew Quaile
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Dong Xia
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Jonathan M Wastling
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
28
|
Moxon CA, Heyderman RS, Wassmer SC. Dysregulation of coagulation in cerebral malaria. Mol Biochem Parasitol 2009; 166:99-108. [PMID: 19450727 PMCID: PMC2724037 DOI: 10.1016/j.molbiopara.2009.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 12/27/2022]
Abstract
Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum infection and represents a major cause of morbidity and mortality worldwide. The nature of the pathogenetic processes leading to the cerebral complications remains poorly understood. It has recently emerged that in addition to their conventional role in the regulation of haemostasis, coagulation factors have an inflammatory role that is pivotal in the pathogenesis of a number of acute and chronic conditions, including CM. This new insight offers important therapeutic potential. This review explores the clinical, histological and molecular evidence for the dysregulation of the coagulation system in CM, looking at possible underlying mechanisms. We discuss areas for future research to improve understanding of CM pathogenesis and for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Christopher Alan Moxon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Chichiri, PO Box 30096, Blantyre 3, Malawi.
| | | | | |
Collapse
|
29
|
Abstract
Cytoadherence of PRBCs (Plasmodium falciparum-infected red blood cells) to host endothelium has been associated with pathology in severe malaria, but, despite extensive information on the primary processes involved in the adhesive interactions, the mechanisms underlying the disease are poorly understood. Endothelial cells have the ability to mobilize immune and pro-adhesive responses when exposed to both PRBCs and TNF (tumour necrosis factor). In addition, there is also an up-regulation by PRBCs and TNF and a concurrent down-regulation of a range of genes involved in inflammation and cell death, by PRBCs and TNF. We propose that the balance between positive and negative regulation will contribute to endothelial pathology during malarial infection. Apposition of PRBCs has been shown by a number of groups to activate signalling pathways. This is dependent, at least in part, on the cytoadherence characteristics of the invading isolate, such that the avidity of the PRBC for the receptor on host endothelium is proportional to the level of activation of the signalling pathways. An understanding of the post-adhesive processes produced by cytoadherence may help us to understand the variable pathology seen in malaria and to design appropriate therapies to alleviate severe disease.
Collapse
|